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The general properties of the Molien generating function and invariant and covariant tensors for
the corepresentations of nonunitary point groups are presented. The generating functions and
(2,2 ,,) (invariant) and (Z,,2 ,,,) (covariant) tensors are obtained for the 32 grey point groups

and the 58 black-white point groups.
PACS numbers: 02.20. + b

I. INTRODUCTION

There are various problems in physics such as the re-
normalization and Landau theories of phase transitions and
the calculation of selection rules for high order optical pro-
cesses which require the knowledge of polynomial invariants
for the relevant representations of the symmetry group of the
problem. The first step in determining these invariants is the
calculation of the Molien function'? for the particular repre-
sentation of interest. Molien functions and polynomial in-
variants and covariants have been calculated for the 32 point
groups®~® and a systematic procedure and some applications
have been given for calculating Molien functions for space
groups.® It is the purpose of this work to use corepresenta-
tion theory’ in order to investigate properties of Molien
functions, invariants and covariants of magnetic point
groups. Recently, Saint-Aubin® has presented Molien func-
tions and integrity bases for unitary representations of the
finite subgroups of the Lorentz group O(3,1). These groups
are isomorphic to the magnetic point groups. In addition,
some discussion of integrity bases for unitary representa-
tions of magnetic point groups has also been given by
Kopsky.’ However, neither Saint-Aubin nor Kopsky con-
sider the corepresentations of the nonunitary groups.

Section II will summarize the pertinent results of Refs.
4 and 5 for Molien functions and integrity bases for unitary
point groups. Sections III and I'V will consider Molien func-
tions and invariants and covariants for nonunitary point
groups. Finally, Sec. V will present the Molien functions,
invariants and covariants for the 32 grey groups and the 58
black-white groups.

Il. MOLIEN FUNCTIONS AND INVARIANTS OF UNITARY
GROUPS

Let G be a finite unitary group having |G | elements g
and irreducible representations 77 (g) of dimension /; and
characters y;(g). If one forms the n™ symmetrized product
representation of the m"" irreducible representation, [I",, ],
having characters y,, ™, then [I",, ] will contain the #" re-
presentation I',,C /., times where

L Sy el 2.1)

WgeG

mn) =
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In particular, C,, , indicates the number of times I',
the identity representation, appearsin [I,, |"” and is equal to
the number of independent invariants of degree » transform-
ingas I",,. That s, if I",, has bases (/7" ), then there are
C .. independent homogeneous polynomials P of de-

m,(n

gree n in the {¢7"} such that

P,Z"=0IP"
= 2" for all gegG, (2.2)
where
Py =3T,(8.,.Y (2.3)

These invariant polynomials will be called (I",,[",,} tensors.

We can also construct (I",,I,,) covariant tensors of de-
gree n such that the tensor components (f7,..., f7 ) are each
homogeneous polynomials of degree n in the bases {¢§" }and
the {f7 } transform by I”, when the {glr,f"} transform by I,,,.
The number of independent (I, ,I",,) tensors of degree n is
givenby C, .

Following the procedure of Molien' as elaborated by
Burnside,” C, ,, can be found most easily from

. 1 -(8)*
Zcm,wi = Z £
z |G| & det|E — AT, (g)]
=B(Il,,I ;L) (2.4)

where E is the identity matrix.
As is pointed out in Refs. 4 and 5, the Molien function
B(I,,I",, ;A ) can be written as

B[, IiA) = Sk,A?/](1 — A9, (2.5)

where the k, are positive integers. For each factor (1 — 4 9)in
the denominator of B (I",,I",,;A ), there corresponds an alge-
braically independent polynomial of degree g, written
I4r,,r,,). For each term k,A ? in the numerator of
B(I',,I", ;A ) there are k, linearly independent tensors
EAr,,I,)of degree p. ANI™I,,[",,) are linearly indepen-
dent of each other and algebraically independent of any low-
er degree (I",,I,,) invariant, but powers of the E*(I",,I",,)
may be expressable as polynomials in lower degree
invariants.

11i. MOLIEN FUNCTIONS OF NONUNITARY POINT
GROUPS

A nonunitary group M can be written as
M =G + A,G, (3.1)
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TABLE 1. Corepresentations of nonunitary groups :M = G + 4,G.

Type of representation I" of G

Corepresentation & (u) of M

Corepresentation & (Au) of M

Type a:

T(u)=Br(d,” 'udp)*8 " Dwu)=T(u)

BB* = F(Aoz)

Type b:

I () = BT (g™ uAo*B " aw=""% 1)
BB*= — F(Aoz)

Type c:

I (u) is not equivalent to D(u) = (1‘(1:)) F(z?))

f(u)=r(A0*‘uA0)t

DAgu) =T (Aoud 5 B

D(Aou) = (([). 71 ~ T (Agud s )ﬁ)
(oudg )8 0O

0 [(Aud,)
Aok = (F (oud s 1) O )

where G is a unitary group, A, = 6u, is an antiunitary ele-
ment, G is the time reversal element, and u,, is a unitary ele-
ment which may or may not belong to G. If », belongs to G
we have one of the 32 grey groups. If u, does not belong to G
we have one of the 58 black~white groups. The corepresenta-
tions & of M may be of three types’ depending on the rela-
tionship between I (w)and I (u) = T'* (4 5 ' u 4,), where I"
is an irreducible representation of G. These types of corepre-
sentations are presented in Table I.

d’, ., the number of times the corepresentation &,
appears in the symmetrized n'" product corepresentation
[Z,.]", is given by'®

dm= ——ZXr( )*X‘"’(u)/——ZXr(u)Xr(u)* (3:2)

‘ ueG
These sums are only over unitary elements. X, is the charac-
ter of corepresentation &, and X 7 is the character of
2,1
Thed, ,, can be determined more readily from a Mo-
lien function B(Z,,%Z ;A ), where

B("@r’@ j’)_zdm(n)
1 1 X, (u)*

= (3.3)
N |G| &tdet\E — 19 ,,(u))|
and
1, &, type a
N =14, 9 type b, (3.4)
2, Y, type ¢

The calculation of B (¥ ,,% ;A ) can be simplified by
separately considering whether I”, and I',, are of type a, b, or
¢ as described in Table 1.

A.l, istypea

If I, is type a then from Eq. (3.3) and the structure of
the corepresentations as given in Table I it is obvious that

B(D,,D i )
B(I',,[,;A) I type a
=BT Tih) I type b (3.5)
I’B(rr!rm/{)*_B(I.:r’rm/t)} rrtype C.
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Since the B(I",,I", ;A ) are given in Refs. 4 and 5, the
B(Z,,Y,, ;A ) are readily obtained when I',, is a type a re-
presentation. Note that the case of I, type b does not occur
for point groups.

B.I, istypeb

All type b representations of point groups are real and
one dimensional so that

B\, T pid) =5 i
" N IG‘ueG[l‘_iXm(u)]
1 1 24
= — —— S X, (w)*{1 + 24y, () + 34 2y (@) + ).
N 1G] ZG J*{ Xm(t) X
(3.6)
But
11 . j_{&,l (J even),
NIoT& M = s (o, BT
Thus
2
11+—j22 for ¥, =9,
89,9,2={" " 3.8
— for Y,=9,
(1-47
C.r,istypec
If I",, is a type c representation, then

1l X, (u)*
N |G| &detlE— A (T w)o T, w)|

(3.9
B may be calculated directly from Eq. {3.9) or one can use the
following*:

B(I,,I, el A )=
ZB(Frnrm;/{') (rr !F jZ)Cr,ry
s

B(Q@r’gm;ﬂ’}z

(3.10)

where C, is the multiplicity of I, inI", ® I', . Then
B\ Z,.YD,A) _
B, e, )
\B(I',,I,,&T,;A)
WB(,.[,el,;A)
B(F,.I, oF,1))

for I',type a,
for I, type b,

for I',type c. (3.11)
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However, for crystallographic point groups, with the
exception of representations I', and I'; of T [for which Eq.
(3.10) is the simplest method of calculation], all type ¢ repre-
sentations are one dimensional. In addition, except for type ¢
representations of five black—white groups (see Table V), the
remaining type c representations are such that I (u) = I" *(u)
for all u. For these one dimensional complex representations
the calculations of the Molien function can be simplified as
follows:

ey | X w)*
B @ ) = T 200 = g L = A )
ETZ S ) (S 4w )
lGl i<t ot
(3.12)
Let z be the smallest nonzero integer such that
=(¥.u)*f=1 forallu (3.13)
and deﬁne s and ¢ such that
Yo (W) = (v, ()*) = x,(u) forallu {3.14)
where
O<s<z, 0<t<z, and s+t=2z
Then, since
|G| —> XA X () (1))
=1 for [y, (u)y..u)”]=x.(u)
=0 otherwise, (3.15)

the only nonzero contributions to (3.12) are for
J =t+j+ nz, for eachjand forj =5+ + n'z for each '
(r,n’ =0,1,2,...). Thus

B(I,. I, el *A)

i/{j‘is+j'+n’z

f=on=0

oc o
z/{jlll+1+nz

Oon
_ A4 AT
(1—A1—2%
IV. INVARIANTS AND COVARIANTS OF NONUNITARY
POINT GROUPS
If {¢ Teeeih ;"} are the bases for corepresentation & ,,,

then an invariant polynomial &' of degree n in these bases
fie,a (¥ ¥, ) invariant] must satisfy

(3.16)

P, 2" =22" all ueG (4.1)
and
P, 7" =" all Aed,G, (4.2)
where
Pu¢:4n=z@m(u)v.u¢:1 (43)
and
= zgm(‘/q )v,u¢ :1 (4'4)
and
P,YCor=3CrP. 4 (4.5)
7 7
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Similarly, (¢,,2 ,,) covariant tensors of degree n are
such that the tensor components { f",..., f; "} are each homo-
geneous polynomials of degree 7 in the bases {¢ "} and the
{ £} transform by 2, ( g) when the {¢ "} transform by
9, (g forallgeM = G + 4,G.

Two corepresentations & and &' are equivalent if
there exists a unitary matrix ¥ such that

D' (u) = V')V }
DlAg) =V DAV * for all ueG. (4.6)

The matrix V transforms the bases {¢,} of & to the bases
{#:}of 2’ Thatis,

¢(’1 =§V13a¢/3' (4-7)

If V = wE where w is an arbitrary phase and E is the

identity matrix, then 2'(u) = 9 {u) and Z'(A,u)

= w*?Y(A,u). Thus a common arbitrary phase factor exists
for the corepresentation matrices for the antiunitary ele-
ments. Those corepresentations having identical matrices
Y (u) but matrices % (4,u) that differ by a phase factor are
equivalent. Similarly, a change of phase for the matrix 3 for
type a or b representations (see Table I} produces an equiv-
alent corepresentation.

In particular, the “identity” corepresentation &% , has
all + 1’s for unitary elements and some common phase @,
for all antiunitary elements. In identifying invariants, how-
ever, Eqgs. (4.1} and (4.2) will be used. That is, a (¥ ,< )
invariant transforms as that corepresentation & | for which
o, =1

As always in presenting tables of bases, invariants, or
covariants, the entries correspond to a particular choice of
representation or corepresentation and a transformation to
an equivalent representation or corepresentation will result
in a transformation of bases [Eq. (4.7)] and a change in the
form of invariants or covariants. In particular, for two core-
presentations & ,, and & |, related by Eq. (4.6) where
V = w, E, consider an invariant polynomial Z'¥ and the
transformed polynomial 2. 2" and %' can be written
in terms of bases {¢ f"} and {¢ ,’-'"}, respectively. If

7= »%Cm (@77, (4.8)

where C, | is a complex constant (possibly zero) and there is

one C,, , for each set of integers (&}, 3im k, = n, then

i=1

‘")—(w*)zck;((w')k BrY), (a9)

where the C|, ; are the same as in Eq. (4.8). Thus, if invar-
iants are given for &, the invariants for &/, are obtained
from (4.9). Similar phase relationships will exist for covar-
iants (&,,4,,). For convenience, therefore, all invariants
and covariants have been calculated for the particular choice
of corepresentations &, and & ,, in which w, = 1 and
©,, =1.

Now consider the form of the (& ,,% ) invariants and
covariants for different types of corepresentations.
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A.I',, and I', are both type a

Two situations arise.

1. If 3,, and B, can be chosen such that8,, = I, (u) for
some element u€G and 3, = I, (i7) for some element #ZeG,
then the (Z,,9 ) tensors are identical to the (I",,I",,) ten-
sors given in Refs. 4 and 5.

2.1f B, #1I",,(u) for all ueG, and/or B, #I".(u) for alt
u€G, then the (Z,, ) must be checked for invariance un-
der antiunitary operations. For example, consider the
(2,4 ,) invariants of corepresentation Z , of the grey
group 3ml' (M = C;, + 6C,,) which is based on the type a
representation I, of C,,. From Ref. 5 the generators, Molien
function, and (I"},I",) invariants are

e 0 >.(o A
0 e"™3) \i o)

Generators: (

. . 1+A%
Molien function: B (I, jA) = ——mM——.
o) = i
(') invariants: T4 = ¢i¢3, I°=¢5 — ¢S

E®= (¢S + ¥3).
However, for this example
I'(u) = B, (u)*B ~', where

0 1
ﬂ"<—1 J
and B #I',(u).
The (¥ ,,% ) invariants are then

B.I,istypea, l,istypec

In this case the E#(Z,,4,,) tensors are given by

EANL,, I,)
Ep(gr’@m)z(Ep(f r )

m)
and E?(I",,I', ) are available from Refs. 4 and 5. Again if

B.. #I,,(u)for all ueG, then the EX(I",,I",, ) must be checked
for invariance under antiunitary operations.

(4.10)

C.I',istypeb

Since I',, (1} is one dimensional, the corepresentation
D ,, has bases {¢,,6,}. The unitary operations do not “mix”
¢, and ¢, so that the invariants under G are monomials

#%'¢ 5 and ¢ ¢ X' However, under the operations of an an-
tiunitary operator, say P, , we have (for 8 = 1)

P, Coigy=(—1/C*p1d}. (4.11)

Thus the (¥ ,%,,) invariants are polynomials 2" of the
form

Ptk = Cplg ke 4 (— 1JCHphph. (4.12)
As an example consider the grey group 11’ = C, + 6C,
and, in particular, the corepresentation formed from the

type b double-valued representation I, of C,. The matrices
for this corepresentation are given as follows:

ouer=( ) a7 9

] 0 -1 = 1
_ 7 mz:( ) 7 mz:( ).¢w)
F=419% I°=i(@i—¢3) E'=idds(6% +63) O o TR o)
TABLE II. Grey groups: M = G + 6G.
Typea Typeb Typec
M G representations representations representations
1 C, r, r,
1 C rg r
21 C, r,r, ry,r,
ml’ C, r.r, r,.r,
2221 D, All
2mm]1’ C,, All
3 C3 r, Iy r2vr3§r4vrs
32r D, I,D,r,re rsr,
3ml’ G, n,r,r,r.:. s,y
41 C, r.r, J W PR ' P N O
3y M r.r, DLl Ll Ty
4221’ D, All
4ml’ C,. All
2mr D,, All
61' c, r.r, Iy ryls, T,y
roriol ol
61’ C,, r.r, I, ryrs,rglhyry,
J 9 QTS A P
6221’ D, All
6mml’ Coo All
62m1’ D,, All
231 T r.r,r, yrylels
4321 0 All, y®
43m1’ T, All, T',®

*For these representations 8 # 1 (u).
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TABLE III. Molien functions and invariants and covariants for type c grey group representations.

M G r,. r, Molien function Invariants and covariants
4 - - -
w6 ne N o I=igh 1=+ 5% E* = ip* — §°)
ml' C,
[ — El=47+§%E] =187~ )
(1—//112)(11?/1") 4 5
+ I L W
T (=271 =4 £ (¢)E '(¢’)
' _ 144" 2 4T3 a3 L FAE =i B3
31 (o Iy, T, (I—AZ)(I;Aﬂ I"'=¢81"=¢ -;:5 ET=i¢"~¢7)
A+l BN LAYTE
T =231 A e'=(5)e= ()
1+4° - - . -
I r ]2 = 5 =g° SES — j$® — FO
' (1_;22)(11_4/16} '¢:2 ¢ T; 6740
A rA 1_ B4
Faa (1—A1—4° E _(JZ)’E _(Q;‘)
_A.ﬂ_ﬁ___ | _ @ . 5_.¢'
Fs (1-12)(3-1“) E _(g?E _'(¢)
I (1—/12)(/1“—,16) E:(J")
, 14 s - , _
3 I, \ — 2 BT — 4 R PE R
321 D. , r Ty I"=igg I =¢" + ¢ E" =ii¢" — ¢7)
Iml’ C.
r, El=¢*+§%E =i~ §?)
: (1= 231 -7 : y ’ ”5,
+ L (BN S
Fe (12701 - 27 £ "(J)’E _'(¢’)

, 1+4% . ~ - _ _
41 e E I I*=¢31 =+ F4E = iig* — §*)
ar A

. —2 E}=¢24 F B =ig?~ 4§
(1= A% =27 ’ s ’ "J,
_ AtAT ()
e (=27 E ‘(J)’E ‘(¢)
1 _ - _
T e ETL L I =igfd* = ¢* + FHE* = ilg* ~ §
244 - -
r -~ 4 _ 44 4 fsh _ F
2 (1 _,1422)(11_648) Ea ¢¢ 2+¢ lEbJGI(¢ ¢ )
+
r. — - 2 (¥ Vpe—
. (1=A%1~4% E (¢2)‘E (.gj)
A4+A ¢ é
T AL AN T | }VET =
=AM =AY E (¢)E '(¢’2
AP+ 2 3_ ¢ . _ ¢
T T =)= ()
I, r, Sameas !, , =T,
r, Sameas!l,, , =I,, =T,
r,, Sameas !, , =Ise,[; =1,
I Sameas I, , =, [ ;=1
e Sameas I, , =14, ; =Ty,

, 1+4° - - _
o G M L pad P=ggI =¢*+§ E>=ip> - §?)
61’ Ci,

A4A? ¢ ¢’
r S B ={%)E2=
YA E (¢)’Ez (¢2)
+ - - -
Tsg r, e I’=¢8I°=¢°+$%E°=iip°— 49
,{2_’_/14 ¢'2 ¢4
r L xr - FY—
TRV ETEYE Ez‘(w)’E‘_(J‘)
I —u___ E} =¢34+ 33E} =id>—&?
4 (1_/{2)(1_/{6) a ¢ +¢ (ol ] l(¢ ¢)
At+4’ ¢ ¢
r — 1 S —
36 (1—,111(1172/16) E _(5)’E _(¢5)
r, 1 =igg] ' = 512 = { —¢
3 r (1 _f“.’)-ri_si 12) 12 ’¢;:112 ¢l2¢_t¢ Z’EIZ l(¢ 12 ¢I2)
T T4 - F8 —
3 (1—,1;)}16_,1'2) E4_(¢‘)’E3_($“)
T TEvETrT ES=¢°+4%E;=i¢°—¢°)
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TABLE III. (Continued)

M G r,, T, Molien function

,{ 2 +/{ 10

rS(x 1 2u1 112,

i (1—A31 =13
A +/{ "

I —

T =A=4")
AS+A7

r. —_—

1o (1—A31—4"
AT+A°

T —_—

T -A1 -2

o r, Sameas !, , =1, =T,

r,, Sameas I, , =14, =1,,
r, Sameas !, , =I5,I, =T,

s Sameas I, , =I5, ; =15,
Iy Sameas I, =150 ;=T

Iy Sameas I, , =1, 4.0 ,; =TI,

Iy, Sameas !, , =130, =1,
1444
r Ia S e oL,
.12 1 (1__/12)(12_/14)
o 2
(1~f )l;;i)
LA
r —rr
e (1—A1— 2%
231 T I, r, _1+A
' (T=231 =47
A+A2
I -
s (1—AY1—13
1+?j.4+2/{(’+2/1“+/1'2
p6.7 rl
(1A - A1 =49
r A4+ 240 4348
2 (1=A1 =443 =19
r A2 454+ 8L+ 548 43410
‘ (1=AY1 =A% =19
r 234+ 6A°+647+24°
3 (1—AY1 =A% =49
r A43A+425+447 +34°°+ A"
6,7

(T—AH1 —A%1—4%

Invariants and covariants

(e ()
-

I*=igdl*=¢*+F4E*=il¢* -4
E,=¢>+¢%E;, =i¢*~ )

AV A
e =) -40)
IP'=¢fI'=¢"+3%E =g’ - )

i (%) 2 (%
e =) - (6)
I’= ¢I$I + ¢2$z
I5=91-23'"0163 + 63 + 67 +23'78143 + 41

Iy =97 —23"¢183 + 43 —i(61 +213'°418} +41)
I°=¢,6,(¢1 — 83) +6:6:(81 —¢3)

The Molien function as given in Eq. (3.8) is
B(D,DyA)=(1+AH/(1 =A%

The monomials ¢ 7,4 2, and ¢,¢, are invariant under the
unitary operations. The second order invariants under all
operations (unitary and anitunitary) of 11’ are then

(¢% +¢§)! ’(¢% _¢§)’ al’ldi¢|¢2.

Also
B(@z,.,@z;/l)=/l/(l——/12)2 (4.14)
and
1 _ &,
ENG G, = (¢2). {4.15)

C.I', istypec
With the exception of representations I, and I'; of T,
all other type ¢ representations are one dimensional.
Consider the invariants for these one dimensional cases.
The basis functions for the corepresentations are {¢,¢ |,

1556 J. Math. Phys., Vol. 23, No. 9, September 1982

where

P.o=4¢ (4.16)
and

P,o=T(4})¢. (4.17)

Since the unitary operations do not “mix” ¢ and #, theinvar-
iants of G are monomials ¢ “¢ ¥, where

P,¢'¢" =T wfTwf (465, (4.18)
Under antiunitary operations
P co " =c*I (43)6 " (4.19)

In particular, for one-dimensional complex representa-
tions from Sec. IIIC the generating function is

B([.I,ol*A)=A"+A5)/(1=A%1—-247%

and forr=1 {4.20)

BN, el*A)=(1+A9/(1 —A3)1 =49
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TABLE IV. Black-white groups: M = G + 6u,G,u£G.

Typea Typeb Typec 4
M MG) representations representations representations
T c(C,)®
by C,y(C)) All
m' C.(C)) All
2/m’ Gl Cy)*
2/m C,,(CH*
2/m C,(C) All
22 D.(C,) All
2m'm’ C,.(Cs) All
2m'm C,.(C) All
m'm'm'’ D,,(D,)*?
mmm’ D,,(C,.)*
m'm'm D, (C,,) All
4 CiCy) b T, I, rur,
¥ S,(Co)® r, r, rr.
42 D,(C,) All
422 D(D,) rrares r,r,
4/m CanlCY®
4/m’ ConlSy)?
4/m CunlCyi)® ry ry r.rg
4m'm’ C,(C,) All
dmm’ C,.(Cs,) r,r,r r.,r,
a2'm D,,(S,) All
2m’ D,4(D,) rorarss r,.r,
42m Dy,(C,,) rrelse nr,
4/m'm'm’ D,,(D,?
4/m'mm D, (C,.)*
4/mmm D, (Dy,) ry.r;.r: r}.r
4/m'm'm D, \D,,)*
4/mm'm’ D, (C,,) All
32 D\(C,) All
Im' C,.(C) All
& CinlCy)® r,r, rr,
rrs
6m'2’ D, (Cyi) All
6'm2 D,,(C,) All
&'m'2- D, (D)) All
¢ CCy® r.r, r,r
rmrﬁ
¥ Cul(Cyj*
Im’ D,(Cy) All
Im D,,IC,)*
Im D, (D)
622 D(C,) All
6'22' D(D,) All
6/m’ ConlC)?
6/m’ ConlCo)® ry.rg r,.r
rg.r¢
6'/m ConlCin)?
6m'm’ C,. (Ch) All
6'mm’ ColCi All
6'/mm'm D¢, (D,,)?
6/mm'm D, (D All
6/m'm'm’ D, (D,)?
6/m'mm D, (C,.)?
6/mm'm’ Dy, (Cypl All
m'3 T,T)*
im TAT) All,
Ty rary,r,”
43 o(r) All
[P T PR AN
m'Im' o,0)*®
m'3m O,(T,)*
mim’ 0,(T,) All,
Tl T T

2For these groups u, = / (the inversion element) and the corepresentations are the same as for the grey group of G.
®For these groups «, commutes with all & and the Molien functions are the same as for the grey group of G.
“For these representations 3 # I (u).

1557 J. Math. Phys., Vol. 23, No. 9, September 1982 Rhoda Berenson 1557



All type c corepresentations &, based on one dimen-
sional complex representations I, and I" * have the follow-
ing invariants:

119,92 ,,) = (c+c*T (45))$8,

19,9 ,)=¢*+¢° (4.21)
and

END D) =il$p*— 7).

Similarly, for EAZ,,9 ) covariant tensors, the fol-
lowing generalizations can be made.
If £, is one dimensional {and, therefore, real) then

s=t=2z/2
and
E\D,D,)=¢"+¢
and
E\D,D,)=i$*—¢°). (4.22)

If 2, is a two-dimensional type c corepresentation the
covariants are

E‘=c,($:) and E' =c,(j:).

For example, consider the black-white group 4’ for
whichM = G + 6C ;} G and G = C,. The corepresentations
formed from the type ¢ double-valued representations I,
and I, of C, are given as follows:

amr=() ) se=(] )
sm=(-) )

9@,)=(_(§ ?) 9("0)=((1) _é)

(4.23)

(4.24)

Note that I" (43 ) = — i. The Molien function is given by
B(2,D s A)=(1+AY/(1 =291 4% (4.25)

The monomials ¢8,¢ *,and @ * areinvariant under the unitary
operations of C,. The invariants under M are then (1 — i\éd,
(#°+ %), and ilg* — §*)

Also,

B(D 340D ah)= A+ AV(1 =21 =17 (4.26)
and
T3
E l(@ 3,4»g3,4) = (g), Es(g 3,4 ,@ 3,4) = (Z 3)-
(4.27)

V. SUMMARY OF RESULTS FOR MAGNETIC POINT
GROUPS

The corepresentations of the magnetic point groups
have been given by Cracknell'! for the single-valued repre-
sentations and Cracknell and Wong'? for the double-valued
representations and are also given in Bradley and Crack-
nell.”® Molien functions, invariants and covariants for these
corepresentations have been determined using the proce-
dures of the previous sections. The resuits are summarized in
Tables II-V and Secs. VA and VB below.

A. Grey groups

Tables II and III give the results for grey groups
(M = G 4 0G ). These tables do not include those groups ob-
tainable by direct multiplication of the groups given and the
inversion group. The Molien functions and invariants for
such groups can be obtained from those given as described in
Ref. 4. Table II lists the types of representations of the grey
groups. The labeling of the representations I'; is that of Ref.
14. The Molien functions for type a representations are
found in Refs. 4 and 5 and those for type b representations

TABLE V. Molien functions and invariants and covariants for some type ¢ black-white group representations.

M G -r,. r, Molien function Invariants and covariants
422 D, ru r, ﬁ_l/l_z)z 12:¢2+52§1§,=¥(¢2—(52)
4'mm’ G,
am’ D,
- A r= (%)
4'2'm sz 2.3 mz— = J .
A _
T, —_— E?=
! (1—A% %
1 _ ] —
4/mmm D, ;.. r. (1-}'2_)2 I2=¢ +¢%I} =i¢*—¢7
A ¢
P e-(%)
23 (1 ~§lz)2 ¢
A -
. ————— Ez::
r, THyET 86
r,, e =g +du =7 -6
A . (¢)
I E'=|-
2.3 (1 _42)2 ¢
r. 4 E*=4d

(1—4%?
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are given in Eq. (3.8) of this paper. Invariants and covariants
for type a representations are also given in Refs. 4 and 5
except for those representations forwhich 8 # I” (1) when Eq.
(4.2) must be satisfied. Such representations are indicated by
footnote a in Table II. All type b invariants are as in the
example of Sec. IV.

Table I1I lists the Molien functions and invariants of
type c representations of grey groups. Column 1 gives the
nonunitary group M while column 2 gives G, the subgroup of
unitary operations. Columns 3 and 4 give & ,, and &, re-
spectively, wherefor @, = (I, I, )= (I",, ®T,), theen-
try reads I, ,. Column 5 gives the Molien function
B(9,,9,,;A)and column 6 gives the appropriate invariant
tensors. EA(9,,9,,)and 1Y ,,% ,,) are written for sim-
plicity as E” and 19 and the basesof &, =1I", @ T, are
always written as {#,4 }. Note that for each &, the table
includes only those &, for which B (¥ ,,¥ ;A ) is nonzero.
In addition for 'y & I, 0f 231’ (T + 8T}, only the denomina-
tor invariants, [ (< ,& ), have been given for the generat-
ing matrices given in Ref. 5.

B. Black-white groups

The black-white groups are listed in Table IV. The
groups have been labeled by both International and Schoen-
flies notation. In particular, for M = G + u,6G, the Schoen-
flies notation is M '(G ), where M’ = G + u,G. In order to
simplify the table, note that for u, = I (the inversion opera-
tor), the corepresentations of M and, therefore, the Molien
functions and invariants, are the same as for the grey group
of G. Twenty-one of the 58 black—white groups have this
property'® and are so indicated by footnote a in column 2 of
Table IV. In addition, 26 other black—white groups have
only type a representations so that their Molien functions
and invariants are obtainable from Refs. 4 and 5 [with the
application of Eq. (4.2) when appropriate].

1559 J. Math. Phys., Vol. 23, No. 9, September 1982

For the remaining groups, if u, commutes with all », the
Molien function again is the same as for the grey group of G.
However, the coefficients of the invariant polynomials [such
as the “c’s” in Eq. (4.21)] may be different in order to have
invariance under antiunitary operations. These groups are
indicated by footnote b in column 2 of Table IV.

Finally, there are five black—white groups wherein %,
does not commute with all «. The Molien functions and in-
variants and covariants for these groups are given in Table V.
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The generating functions for polynomial tensors based on each SU(2) tensor of rank from 7 to 13
(angular momentum 7/2 to 13/2) are given in a “positive” form suitable for interpretation in
terms of an integrity basis. An iterative procedure for extending the results to higher rank tensors

is indicated.

PACS numbers: 02.30. + g

1. INTRODUCTION

A problem which arises in many contexts in mathemat-
ical physics is that of determining all irreducible SU(2) ten-
sors whose components are homogeneous polynomials in
the components of a fixed irreducible tensor of rank L (and
dimension L + 1; the corresponding angular momentum is
1 L). We call such polynomial tensors generalized spherical
harmonics or, more specifically, L-harmonics. For L = 1
they are Wigner monomials, and for L = 2, if one discards
those containing the quadratic scalar as a factor, they are the
familiar spherical harmonics.

Over a century ago Cayley, Sylvester, and Franklin'™
gave a sequence of generating functions F, (U,4 ),

L =0,1,...,12 which enumerate L-harmonics. The power
series expansion of the rational function

F (UA)=3 mt, U“4* (1.1)

provides the number of linearly independent L-harmonics of
degree u and rank a as the expansion coefficient mZ, >

To find the explicit algebraic form of the L-harmonics,
an essential step is the determination of their integrity basis,
a finite number of L-harmonics, called elementary tensors,
in terms of which all can be expressed as stretched products.
A serious drawback of the old Cayley—Sylvester—Franklin
generating functions is that the value of a particular m~, is
the result of a cancellation involving terms of both signs.
This makes the computation of m%, cumbersome, but, more
importantly, it obscures the form of the integrity basis. In
this paper we rederive the generating functions F, (U,4 ) for
L=0,1,...,13in a “positive” form. All contributions to
each m’ are positive, a circumstance which makes it possi-
ble to read the degrees and ranks of the integrity basis ele-
ments, as well as the the existence of syzygies (polynomial
identities) relating them.

In Sec. 2 we present the new forms of the generating
functions. In Sec. 3 is found an example of their interpreta-
tion and the explicit construction of an integrity basis. Sec-
tion 4 contains an explanation of their derivation. Some con-
cluding remarks are made in Sec. 5.

1560 J. Math. Phys. 23(9), September 1982
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Symmetries discovered by Murnaghan® imply that m=,
is also the multiplicity of u-harmonics of degree L and rank
a, and, moreover, is the multiplicity of rank-a tensors which
are completely antisymmetric in the components of L or u
copies of a tensor of rank L + u — 1.

The L-harmonics provide polynomial bases for sym-
metric representations (#,0,0, . . . ,0) of SU(L 4- 1), or, for L
odd, of Sp(L + 1), reduced according to the principal SU(2)
subgroup. For L even they play a similar role for O(L + 1),
or, with L = 6, for G,; in these cases they must be rendered
traceless by projecting out terms containing the quadratic
scalar as a factor.” For L = 4 and L = 6 such states serve to
describe quadrupole and octupole nuclear vibrations.®!"
Rohozifiski and Greiner'? consider the extension of the
problem to higher even L.

Another application of generalized spherical harmon-
ics is the construction of missing label operators for any se-
misimple group G reduced to its SU(2) subgroup. Such a
missing label operator is an SU(2) scalar polynomial in the
generators of G, independent of the G and SU(2) Casimir
invariants. The G generators, reduced according to SU(2),
consist of an L = 2 tensor [the SU(2) generators] and a sec-
ond SU(2) tensor 7'which may or may not be reducible. Then
the missing label operators, and G Casimir invariants, corre-
spond precisely to the SU(2) polynomial tensors form from T
[a 2a-tensor from T'must be contracted with the 2a-tensor of
degree a in the SU(2) generators]. If T is a single irreducible
L-tensor, the missing label operators are enumerated by
F, (U,A); this is the case for SU(3) with L = 4, for O(5) with
L = 6, and for G, with L = 10. If T'is reducible the generat-
ing functions for the L ’s which comprise it must be combined
by a procedure described in Sec. 5.

Generating functions F, (U,4 ) based on the representa-
tions L = 4,8,12, ... are needed in the study of bifurcations
in the Bénard problem.'*™'®

2. THE GENERATING FUNCTIONS

The generating function for SU(2) tensors contained in
the symmetric product of an arbitrary number of identical
SU(2) tensors is defined in Eq. (1.1). With the methods out-
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TABLE L. Invariant exponents ny.

i 1 2 3 4 5 6 7 8 9 10 11
L

7 4 12 8 20 12

8 2 3 & 5 6 7

9 4 12 8 10 12 14 16

10 2 [ 4 10 6 14 8 9

11 4 12 8 10 12 14 16 18 20

12 2 3 4 5 6 7 8 9 10 11

13 4 12 8 10 12 14 16 18 20 22 24

lined in Sec. 4 we obtain, for L > 2,
A+k—2

F(UA)= 3 Nﬁ[(l —uat) ]

i=1

nL l~k+1 11
X(1=U") [ (1-U4%-%]| , 2.1
i=1

where / and A = L — [ are the greatest integers in (L — 1)/2
and (L + 2)/2, respectively. For k </ the numerators have
the form

I—k+1
Ni= ] (1+UA*"™ S BEU'AT (k<)
m=1
(2.2)
while for k =/,
{,=(1+U3 U“‘_(’)ZB% Ui
+(1+UA*-y) T BLU 47, (2.3)

=

The exponents nf and the 2 B[* U’ 4/ with k = 1 are
tabulated in Tables I and II. The remaining B ;* are tabulat-
ed in Tables III-VIL.'” The tabulation for k = / can be sim-
plified by two symmetry relations. First,

Bl oo, =BY (j=12,...,L -3 (2.4)
allows us to terminate the tabulation at j = L — 2 without
loss of information. Second, the B [ can be shown to have
reflection symmetry about some i = i,,'® that is,

B{Z[+ =B ﬁl— i (2.5)
A further simplification occurs for odd L. There, the expo-
nents of U and 4 must have the same parity so that i +j is
always even. We have therefore reduced the odd L tabies by

tabulating B ;* for even jand B* ; for odd j. This means
that 1 must be subtracted from the indicated ; when jis odd.

TABLE II. Summations appearing in first term numerators.

L E:B?;UlAJ

7 ul(1+ub)a

8 ua8

9 uB(1+ub)at
10 v (1403 (1+0°)at0
11 ul01+08) a0
12 ubal?
13 ul?(140%)al?
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TABLE III. B5* for L = 7. Subtract 1 from i for odd j.

k=2 k=3
\\i. 6 7 8 0 1 2 3 4 s
1
0 0 0 0 1 0 0 0 0 0
2 1 0 0 0 0 1 0 0 0
4 1 0 1 0 0 0 1 3 1
6 1 2 2 0 1 3 2 2 3
8 3 2 3 2 3 3 3 7 6
10 5 4 4 0 3 7 8 11 10
12 6 6 6 4 5 9 11 16 16
14 7 6 7 4 9 13 14 22 23
16 8 8 8 5 9 18 21 28 30
18 g 8 S 9 12 19 24 33
20 9 9 8 6 15 23 28 37 42
22 8 9 9 9 14 23 32 42 47
24 8 8 8 8 17 26 32 38 49
26 7 7 7 9 17 23 32 42 A4S
28 6 7 6 6 14 23 32 37
30 4 5 4 9 15 19 28 33 42
32 3 3 3 s 12 18 24 28 37
34 2 2 2 4 g 13 21 22 30
36 0 1 1 4 9 9 14 16 23
38 0 1 o Q 3 7 11 11 16
40 2 3 3 8 7 10
42 0 3 3 3 2 6
44 0 1 0 2 3 3
46 0 0 1 1 0 1
48 1 0 0 0 0

It is clear from (2.1) that there are exactly L denominator
factors, L — 2 in the scalar {4 = 0) part.

3. AN EXAMPLE

As a simple example of the use of the generating func-
tion F, (U,4 ), for L = 3, we interpret it in terms of an integri-
ty basis and find the algebraic form of the elementary ten-
sors. For tensor L = 4,6, the states describe quadrupole and
octupole nuclear vibrations and the integrity bases have been
discussed in that context.”"!

For L = 3 we have the generating function

F (UA4)
=(14+U43[(1-UY(1-U4>(1-U?4%)] !
(3.1)
for which the power series expansion is

TABLETV. B5*for L = 8.
k=2 k=3

-
[
-
(=4
o
~
o

e rRrloRr R o0

FlorRrFovRRoooc o
w

=
>~

R
~ oy b

H O OO0 COHPFMHOOOOOOOH
CCOOIOHRNNILRNNEEBIOO O OO
IO O NP NRONIEF NN OO
COoOOoOrRIFFPpDWERUVEDWLWNPFEREROOC

=
o]
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TABLE V. B [* for L = 9. Subtract 1 from i for odd J.

k=2 k=3 k=4
j 8 9 10 8 y 10 11 12 0 1 2 3 4 5 o

AN 7]

0 0 0 0 B 0 0 0 0 1 0 0 0 U ) 0 0

2 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0

4 1 1 0 2 0 1 1 1 1 Q 0 1 3 1 2 1
b 2 1 2 4 3 4 2 4 0 1 5 3 4 5 11 5{

e 4 3 3 11 6 11 8 11 5 4 8 9 1812 20 16

10 b m 6 25 18 23 15 22 4 10 25 21 33 29 53 38
12 11 8 g as 33 43 32 4u 17 21 3% 42 715 62 97 82 .
14 13 11 14 74 59 74 57 72 200 39 81 78 125 117 182 154
16 17 1% 16 115 9% 112 91 110 47 67 123 133 216 199 288 264 |
18 18171 18 159 136 158131 156 61108 199 209 318 314 454 420 |

20 1919 19 207 181 206 182 202 97 157 272 309 469 466 639 621

22 |18 19 18 251 230 249 226 245 120 215 378 430 620 648 874 862

24 1w 17 15 283 265 281 266 281 165 284 473 563 797 848 1106 1132

26 12 14 1" 300 291 300 293 297 189 353 580 70% 957 1053 1348 1407

28 7 1¢ 9 300 302 297 300 297 223 413 560 831 1109 1245 1549 1660

30 5 7 5 278 289 277 291 281 241 468 729 $34 1211 1401 1707 1869

32 2 3 3 242 263 245 264 245 254 499 762 1002 1270 1502 1784 2004

3u4 1 2 1 199 223 199 223 202 254 510 762 1028 1270 1536 1784 2050

36 2 0 1 149 176 152 176 156 241 499 729 1002 1211 1502 1707 2004

28 ] 105 129 109 132 110 223 464 660 934 1109 1401 1549 1869

40 68 88 70 88 72 189 413 5680 831 957 1245 1348 1660

4z 39 52 41 56 Uy 165 353 473 701 797 1053 1106 1407

4y 200 30 23 31 22 120 284 378 563 620 843 874 1132

46 1 14 9 16 11 97 215 272 430 469 643 639 £62

4y 3 g y g 4 61157 199 309 318 466 454 621

50 1 1 1 3 1 47 108 123 209 216 314 288 420

52 g 1 0 0 0 26 67 81 133 125 199 182 264

" 17 3% 39 75 75 117 97 154

36 4 21 25 w2 33 62 53 ez

o 5 10 8 21 18 29 20 38

") 0 4 S 9 5 12 11 16

62 1 1 0 3 3 5 2 5

64 ) 0 1 1 0 1 1 1

66 1 0 0 0 0 9 0 0

14+ UA>+ U424+ A9+ U4+ 4%+ 4°)

+ U1+ A%+ A+ AP+ A7)+ .
One reads that, for example, there are five tensors of degree
4, whose ranks are 0,4,6,8,12. The elementary tensors can be
read from (3.1); they are (1,3}, (2,2}, (3,3), and (4,0) in an ob-
vious notation. Any polynomial tensor based on L =3 is a
stretched product of powers of these; its highest component
is the product of highest components of elementary tensors.
The fact that only the first power of (3,3) appears in the ex-
pansion of the generating function implies a syzygy (polyno-
mial relationship) expressing its square as a sum of products
of powers of the other elementary tensors. In terms of ele-
mentary tensors, the tensors of degree 4 listed above are,
respectively, (4,0), (2,2)% (1,3} (3,3), (1,3)* (2,2), (1,3)*.

Since their degrees and ranks are known, it is straight-
forward to determine the analytic form of the elementary
tensors. Their highest components are, respectively,

(1,3)~as (2,2)~a? —Viaya_,,

3,3)~3V3aia_;—3Viaya,a_, + 2o,

(4,00~3V3aia® ; +4asa’
—6V3ia,a,a_,a_,+4ala_,— Viaia® |,

wherea,, a,, @ _,;, @_, are the components of the basic rank-
3 tensor. The highest components are related by the syzygy

(3,32 — 4(2,2))3 V3 (1,3%(4,0) = 0.
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For higher L the interpretation of F, (U,A4 ) is straightfor-
ward but more tedious.

4. CONSTRUCTION OF F, (UA)

The construction of the generating function F; {U,4)
begins with the generator for weights of symmetric products
of an arbitrary number of copies of a single SU(2) tensor of
rank L

GO =3 aby U= | [T (1= 07t
(4.1)

where at _ is the multiplicity of the weight m in a product of
u rank L tensors (the weights are double the spin projec-
tions). Of the a’,, weights m, some will arise from SU(2)
tensors of rank m while some will come from higher rank
tensors. Since these higher tensors each contain the weight
m + 2, the difference a%, — a%,, . , is just the number of
tensors of rank m contained in the symmetric product of u
rank L tensors. It is easy to see, then, that the desired gener-
ating function F, (U,7) can be obtained by multiplying

G, (U,5) by (1 — 7?) and retaining only non-negative pow-
ers of 77. Replacing 77 by 4 we have

rway=p,[0-a- / fLo-vat-)
- (4.2)
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TABLE VI. B ;*for L = 10.

k=2 k=3 k=4
j 10 12 10 12 14 0 2 4 6 8
i
0 0 1 0 0 0 1 0 0 0 0
1 1 i 0 0 0 0 0 0 [
2 1 1 ) 1 [ 0 0 1 0 1
3 2 2 1 0 1 0 } 0 2 1
4 4 2 1 1 1 0 0 3 1 4
3 2 3 2 3 0 3 3 5 5
6 6 5 3 4 A 2 2 3 8 n
7 7 3 8 8 7 0 7 10 13 13
8 8 8 12 11 1 4 8 16 20 28
9] 10 9 1717 17 A 15 21 34 40
01t n 24 25 24 7 20 35 45 59
11 |12 1 33033 03 8 28 45 &5 81
121 13 12 44 43 42 15 38 &V 87 114
13 ] 14 13 52 53 53 15 49 80 112 143
14 | 13 13 86 45 5 20 ) 162 142 182
Is 113 13 7777 7% 27 75 123 174 223
16 | 13 13 89 87 87 29 90 149 208 283
17| 12 13 98 99 97 35 105 175 243 314
18 | 11 12 108 106 108 40 119 197 281 357
19 | 10 10 115 114 113 44 132 224 309 402
200§ 9 120 118 Y19 47 147 242 340 432
21 7 8 122 121 122 55 154 260 354 471
22 ] 7 121 122 122 52 164 273 383 494
23 4 5 120 119 1y 57 166 284 391 509
24 3 4 114 113 113 56 172 280 400 512
25 3 3 198 105 108 57 166 284 391 509
26 1 2 96 98 97 52 144 273 383 4914
27 1 1 87 86 87 5 154 260 3464 471
28 1 [ 74 76 75 47 147 242 340 437

34 5172 17 20 61 102 142 182
35 10 12 1 15 49 80 112 143

36 7 & 7 15 38 &1 87 111
37 3 3 4 8 28 45 45 81
38 22 3 7 20 35 45 59
) ! ' 4 15 21 34 40

40 ! 0 1 ) 8 16 20 28
41 0 7 10 14 14

42 2 2 & 8§ 11

43 o 3 3 5 5

44 0 o 3 1 4

45 0 1 o 2 1

46 0 0 1 0o 1

47 6 o0 o 0 0

48 1 0 0 9o 9

where P, means non-negative powers part of. The quantity
in square brackets is the same as that for the case L — 2 but
with extra denominators (1 — U4 **). This allows us to
simplify the evaluation of (4.2) by use of a recursion proce-
dure described below which generates F;, from F, _,. The
derivation of this procedure is given elsewhere.'®

As the first step in determining F, we construct the
function

R (UA)=P, F_,(UA)/(1~UA"")

L~2

=3 rn(U)A'+ R, (UA), (4.3)

i=0
where the expansion of R, contains only terms with expo-
nent of 4 [denoted hereafter by EX{4 )] > L — 2. We use the
r; obtained above to construct

q(U)=(U?r; = Urp_,_,}/(1 - U?). (4.4)
The generating function F, is then given by
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L—-2
F (UA)= [RL(U,A)+ Pl q.-(U)A"] / (1—U4™)
- (4.5)

The solutions to this procedure are best put in the stan-

dard form
i A+ k-1

FUA)= 3 st| T (1-0%

i=2

I—k+1 11
x [0 (1—UAL‘2’;] , (4.6)
i=o
where
SE=Y stkuia. (4.7)
7

For k <! the range of EX(4 )in S} is

L — 1 <j< 24 + 2k — 4 while for k = we have

0<j<2L — 4. In addition, since F, (U,d)~U ~ %~ 'as
U— «, we find that / must lie in the range

0< i < (A + k — 1) — 2. The form (4.6) has the advantage
that when the k thterm of F, _, /{1 — U4 ~*)is splitinto
one term with no negative powers of 4 in its expansion and a
remainder term, the first term can be arranged to have
EX(4 )>L — 2 and will not contribute to the ¢; while the
remainder will have the same form as the (k + 1)st term of
F,_,/1—-U4 ")

Thek thtermof F; _,/(1 — UA ~*)plusthe remainder
from the reduction of the (k — 1)st term contains a factor
(1 — UA**%*~2-2)in the denominator which is not con-
tained in the (k + 1)st term. The (k 4+ 1)st denominator con-
tains the factor (1 — U %=1 = (1 ~ yAL+*=1-1)
which is not included in the k th denominator. To split the
k th term as described above we multiply and divide by this
latter factor and use for the numerator factor
(1— U2(L+k—l—1l) =(1—(UA —L)L +2k—2!—2)

+(UA -—L)L+2k—21-2
X(l—(.UAL+2k_2[_2)L). (48)

Some rearrangement is required to obtain EX(4 )>L — 2 in
the expansion of the first of these terms. After we have ap-
plied this procedure to the / — 1 terms of
F,_,/(1 — UA ~*) we will be left with a remainder having
factors (1 — UA“~?) (1 — UA —*)in the denominator. This
remainder can be split by the method described above into
one term whose expansion contains only non-negative pow-
ers of A and one with negative powers only. The latter is
discarded while the former is the only term contributing to
the ¢;. The result of this procedure is again of the form (4.6).
The form (4.6) is not yet the proper one for a generating
function. First, it may contain some negative coefficients in
the numerators. Second, the denominator factors (1 — U4 ")
for n <1 donot correspond to elementary tensors. Finally, it
may be possible to cancel some common factors between
numerator and denominator. Adjustments are easily made
which lead to the form of Sec. 2.

5. DISCUSSION

Sometimes one needs to enumerate and construct ten-
sors which are functions of the components of two or more
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TABLE VIL Bj*for L = 12.

k=2 k=3 k=4 k=5

~Ndo12 14 12 14 1ie| 12 14 16 1t J 2 4 6 3 10
i~

0 0 0 0 0 0 4} 0 0 0 ] 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 1 0 0 0 1 0 i 0

3 1 0 0 1 0 1 0 i 0 0 0 1 1 2 {

4 1 0 1 i i 2 2 i i 1 ] 3 2 2 3

5 1 1 2 3 2 4 3 [] 3 ! 2 M 13 8 9

6 1 2 3 4 5 8 7 7 8 3 4 10 11 17 17

7 2 2 8 8 7 15 14 5 14 4 10 17 23 29 35

8 3 3 14 1213 25 24 26 26 7 P4 3 38 53 61

9 4 L] 20 2 8 44 43 44 44 9 30 48 48 85 104

10 S 3 30 27 27 87 70 48 £9 17 45 78 105 137 164

11 5 6 38 37 3% 102 104 103 103 2l 73 113 183 205 254

12 4 & 51 44 47 147 149 147 130 34 102 170 234 303 368

13 [ S 40 60 95 202 204 204 204 45 148 235 338 423 524

L4 '3 5 72 48 47 2483 272 270 270 53 128 324 45 533 211

L5 5 5 78 7 74 236 346 344 348 By 264 424 408 764 944

16 4 4 8% 83 84 425 428 423 425 1110 332 551 773992 1209

17 3 3 84 8¢9 5 509 507 508 506 13 419 4683 971 1233 1519

18 2 2 a8 86 83 590 588  SB& 987 |148 501 838 1174 1509 1839

9.9 1 i 82 85 83 443 560 458 638 193 £01% 282 1398 1784 2190

20 0 i 777 80 723747 719 715|232 48% 1153 1407 2074 2529

21 0 86 7 7 766 758 760 757|254 783 1295 1824 2338 2864

22 58 97 62 788 781 782 779 293 85 1441 2005 2592 X158

23| 45 48 49 785 780 783 779 307 931 1549 2171 2792 3421

241 36 34 40 264 797 760 75 334 974 1645 2784 295 1603

25 25 28 28 18 207 747 715|339 1005 1691 2368 3043 3733

26| 19 18 21 658 657 45 636 J351 1017 1721 2383 3071 3765

274 1 13 13 585 U85 585 587 (339 1015 1891 2348 3048 3733

28 7 7 9 S03 506 506 506 3346 974 1445 2284 2999 34603

29 K] ] 4 A19 423 424 25 1307 931 1549 2171 2792 342{

30 2 2 2 1340 343 342 344|293 BS4 1441 2005 2592 3153

31 0 1 ! 264 27 266 270 256 783 1295 184 2338 UBAG

3 0 4 i 199 201 202 204 1232 486 1153 1407 207 2329

331 143 147 145 150 193 601 987 1398 1784 2190

341 99 102 102 103 1188 501 838 1174 1509 1839

35| 45 67 68 89 {13 419 683 971 1233 1519

36 42 A1 42 44 110 332 551 273 992 120%

37 24 29 23 26 8t 264 424 408 766 45

38 13 i3 15 14 63 196 326 455 583 711

2 Z 2 g A2 148 233 338 423 324

40 3 3 4 3 36 102 170 236 303 348

41 1 } 2 ] 21 73 1135 163 205 254

42 i 0 { 0 17 9 78 105 137 164

43 ? 30 46 48 85 104

44} 7 16 31 38 23 61

45 4 19 17 23 2 39

46 3 4 10 11 7 7

47 1 2 o} b a g

48 1 0 3 2 % 3

4 [ 0 i ! 2 1

50 0 0 1 0 1 O

51 0 0 0 0 0 0

52 1 0 i 9 9 9

irreducible tensors. Sylvester and Franklin'® gave generat-
ing functions based on two irreducible tensors of ranks L, L,
with L, + L,<10. They may now be constructed straight-
forwardly, in a “‘positive” form, by combining the generating
functions for L, and L, with the help of the SU(2) Clebsch-
Gordan generating function®®:

Fr o (UnUpd)=P, 4, Fr (UpA) Fy (Upd,)

X[1—47"'4;"

X(1—A7"4)(A4;,74)] " (5.1)
U, and U, carry as exponents the degrees in the L, and L,
tensors, respectively, whiel 4 carries the rank of the polyno-
mial tensor. Further base tensors may be introduced conse-
cutively by iteration of the procedure. Such states are needed
for interacting boson nuclear models, with bosons of differ-
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ent L. To construct Sp(2n) D SU(2) labeling operators, for
example, one needs polynomial tensors based on
L=26,...4n—2.

As mentioned in Sec. 1, the generators of G, decompose
under its maximal O(3) subgroup into tensors of rank 10 and
2. Hence, the generating function F|(U,4 ) enumerates and
defines an integrity basis for G, D O(3) missing label opera-
tors. The denominator factors [(1 — U?) (1 — U®)]~' corre-
spond to the G, Casimir invariants and should be ignored.
Atermc,, U“A“in the expansion of (1 — U%) (1 — U9
X Fo(U,4 ) implies the existence of just ¢,, linearly indepen-
dent labeling operators of degree u in the rank 10 tensor and
degree } a in the rank 2 tensor. The fact that there are eight
denominator factors accords with the known fact that there
are twice as many functionally independent missing label
operators as there are missing labels (four). Given their de-
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grees it is straightforward to construct these operators. Find-
ing four which mutually commute is, however, an unsolved
problem.

Two directions for extending the work come to mind.
One is the computation of polynomial (symmetric) tensors
for higher groups. The second is the calculation of tensors
with exchange symmetries corresponding to all representa-
tions of the permutation group; in principle one could find a
single generating function for tensors of all degrees and sym-
metries based on a given tensor.

A computer program has now been developed which
can assist in the extension of the results of this paper to arbi-
trarily high L.%!
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The Backlund-Bianchi method is employed to generate, in three spatial dimensions, the following
multiple solutions of Liouville’s equation V?a = exp a: The three-wave interaction function a;
and the five-wave interaction function.as. It is verified numerically that a, satisfies Liouville’s
equation to an accuracy of one part in 10", while o satisfies it to one part in 10%. The construction
of a; is conditional upon solving ten nonlinear constraint equations. We analyze the complicated
structures of a; and a5 with the help of a three-dimensional plotting routine. It is found that e, is,
surprisingly enough, only characterized by a single ring singularity, while a, exhibits three ring
singularities. It is speculated that the function tanh a, represents a ring soliton whose shape
appears to be preserved in the nonlinear superposition of similar ring solitons. The derivation of

Liouville’s solutions a, and a5 is intimately connected with the auxiliary functions 3, and £,
which solve Laplace’s equation. The latter are also derived and plotted in the paper.

PACS numbers: 02.30.Jr

I. INTRODUCTION

The powerful method of Backlund transformations
dates back over a hundred years to the pioneering work of
Lie, Bianchi and Bécklund, who investigated the transfor-
mation properties of certain surfaces, especially pseudos-
pherical surfaces, in a series of fundamental papers between
1873 and 1883." The reason for the revival of and sustained
interest in Backlund transformations during the past two
decades is fairly obvious: Judicious application of Back-
lund’s theory permits, in many instances, the solution of
physically relevant second-order nonlinear partial differen-
tial equations, among which the nonlinear Schrodinger and
Korteweg—de Vries equations and the sine-Gordon system
have been analyzed with particular zest and thoroughness.

Another nonlinear equation which is soluble by the
Bicklund technique and which has become prominent of
late is Liouville’s equation

(@,>+ 8,7y = k explay), 3,=0/3x, etc., (1)

with suitable boundary conditions on y, where y is a scalar
field and a,k are real constants. It was initially soived by
Liouville? in 1853 in two spatial dimensions and has since
been studied by several well-known mathematicians, includ-
ing Picard, Poincaré, and Bierberbach.’ Liouville’s equation
is known to possess significant applications in electrostat-
ics,* hydrodynamics,*~” and cosmology.® In recent years,
Eq. (1) has also attracted the attention of particle physicists
in connection with monopole theories.’

Liouville’s equation has been analyzed notonlyin 1 + 1
and 2 + 0 dimensions, '’ but also in 3 + 0 dimensions.'' One

' Present address.
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of the present authors employed a Backlund-like transfor-
mation to generate an exact three-wave interaction solution
of Liouville’s equation in three spatial dimensions,

Via=expa, V’=4d,°+4d,”>+3,% (2)

satisfying the boundary conditions a— — « and da/dr
—07, for r=(x* + y* 4+ 2%}/ + «. A plot of this three-
wave solution, labeled a, in Ref. 11, is given here for the first
time and will be discussed in Sec. 3.

The purpose of the present article is two-fold. (i) First,
we wish to verify numerically that the Backlund-like trans-
formation in 3 + O dimensions, originally derived in Ref. 11,
is sufficiently powerful to generate multiple solutions of (2)
beyond a,, namely up to and including as. This is no easy
task, since the construction of the five-wave interaction
function as(x,p,z) depends decisively on solving numerically
ten algebraic and transcendental constraint equations to a
high degree of accuracy. (ii) Our second aim is to present
three-dimensional graphical representations of both a; and
as. The result of this plotting exercise was somewhat surpris-
ing; the global, i.e., asymptotic, features of a; and a5 turned
out to be quite different from those normally expected from
the superposition of “single” solutions, as in the sine-Gor-
don theory, for example. In the latter case we know'? that
superposing two (four) single solitons in a nonlinear fashion
does not alter asymptotically the shape or direction of the
individual solitons. This is no longer true for Liouville’s mul-
tiple solutions; for instance, when the three lowest-order so-
lutions ,",1,2,3, are combined by the usual Bicklund—
Bianchi technique, the final structure of the resulting a; so-
lution has no resemblance to any one of the original a,’s,
even from a global perspective. A similar situation exists for
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as, implying that Liouville’s solutions do not represent soli-
tons of the conventional type.

The outline of our paper is as follows: In Sec. 2 we re-
view, for the sake of completeness and in order to establish
the nomenclature, the Biacklund transformation method for
Liouville’s system. In Sec. 3 we analyze and plot the three-
wave interaction function a,(x,y,z). Section 4 is devoted to
the auxiliary function 8,(x,y,z) which satisfies Laplace’s
equation V28, = 0in a certain domain &, and is essential for
the construction of the next-highest Liouville solution
as(x,y,z). The latter function, superposed from five “‘single”
solutions &, ,i = 1,2,...5, and subject to ten constraint equa-
tions, is examined in considerable detail in Secs. 5 and 6,
where we also give its graphical representation. The article
concludes with a summary and discussion.

2. REVIEW AND NOTATION

The “Backlund transformation” for Liouville’s equa-
tion {2) in three spatial dimensions was shown to be of the
form"’

K (iB — a) = V2 expl(a + iB)/2) expif.7,

K=I9, +ile,0, + 0:9,),." = 0, exp( — ila), (3)
where a and 8 satisfy Liouville’s and Laplace’s equations,
respectively,

Va = exp a, (4)

VB =0; (5)
0,,0,,04 are the Pauli matrices, 7 is the unit matrix and 6,4
(0£6<2m, 0<A<27)are the Biacklund transformation para-
meters. Asshownin Ref. 11, Eq. (3)is equivalent to eight real
scalar equations which, in turn, are subject to six integrabi-
lity conditions [cf. Egs. (5) and (6) of Ref. 11]. We may re-
place system (3) by two real matrix equations
3.+ 28

= V2[.% sind sin(B /2) — I cosO cos(B /2)] expla/2),

(6a)
1.8 — Pa
= V2[.% sind cos(B /2) + I cosf sin(B /2)] expla/2),
(6b)

where Z=0,d, + 0,0,.

Let us summarize the results for ,,8,, and a,."" Setting
B =B, = 0in Eq. (6a) we get the simplest nontrivial Liouville
solution

axy,2) =In(2/T?), i=12,.,5,

T;(x.p,2) = x cosf, + siné,{y cosd; + zsind;) + b, (7)
where b is a constant of integration (we took b = + 40), pos-
sessing the dimension of a length, while the index i in (7)
labels the five different , solutions which are needed in the
construction of a;. See Fig. 1. Observe that formula {7) is
equivalent to

tanh(a,"/4) = (V2 - T,)/ (V2 + T;)i=1,2,...,5, (8)

provided T;»0. Since tanh(a,'/4)—>1" asT,—0", we see
that a,"” develops a line singularity for T, ~0, as indicated by
Fig. 2.
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ay (M

FIG. 1. Extended Bianchi diagram showing the generation of @, solutions,
N = 1,3,5, of Liouville’s equation (4) and of B; solutions, j = 0,2,4 of La-
place’s equation (5).

According to Fig. 1, the next highest Liouville solution
is as,

tanh((a,'" — a,*)/4) = R, tan((B;,") — B,")/4),
)

Riy=—[(1+ 2L/ = 2L | Lsl<],

which is subject to the constraint equation
1422 1,8 53T 5 = (L) + (L) + (L)
with

L ,o=cosb, cosf, + sinb, sind, cos(4, —4,),
p»q integer, (10a)

and

V’a, = expa;, domain Z,. (10b)

FIG. 2. The function tanh{a,'”/4) in the domain
D\ = {(xp)| — 45<x<15, — 55<p<5]. The line singularity is clearly evi-
dent. Here ¢ = 80° and y = 135°.
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The auxiliary function B,'" satisfies Laplace’s equation
V28, =0, domain &, (11)
and is given by
tan((3," — B,)/4) = R, tanh ((a,") — a,?)/4),
Ri,=+((1+.2 /(1 — flz))l/z, |.L ) < 1. (12)

Figure 3 depicts a three-dimensional graph of sin 3,'".

3. ANALYSIS OF o,

To study the singularity structure of ;" it is conven-
ient to express Eq. (9) as

tanh((aS(” - al(Z))/4) = R|3N(x:}’,z)/D (xsy;z)’
|RsN/D <1, (13)

where

N=+ [RpT5+ )T, - T,) — R,(T, — T5)

X(T, + Tl)](T1T3T22)_]» (14a)
D=[(T5+ )T + T\) + Rp,R (T, — T)
X(T, — T)IT\T,T,%) ", (14b)

and to observe that for fixed z, both N (x,y,z) and D (x,y,z) are
quadratic functions of x,y. Eq. (13) implies that

exp((a,") —a,*)/2) = [1+ R;3N /D]
X{1—=R,N/D]Y, (15)

provided T,>0.

To help us identify the two types of singularities in sys-
tem (13)—(14), we have plotted tanh((a,"") — a,?)/4), as
shown in Fig. 4, and compared it with tanh ;' in Fig. 5.
The former figure suggests the presence of two singularities:
a ring-like singularity associated with a;'", and a line singu-
larity which is connected with o, and emerges in the limit
as T,—0™. The function tanh a,'", on the other hand, is
even more amazing; its ring-shaped structure implies that
a,'" contains only one singularity, the ring singularity de-
picted in Fig. 5. These results also follow from algebraic con-

FIG. 3. A plot of Laplace’s solution 8, in the representation sin 8,"". The
domain is 2, = {{x,y)| — 50<x< 10, — 65<y< — 5},
with ¢ = 60°,y = 135°.
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FIG. 4. The function a,'" in the form tanh({a; — &,"®')/4), the domain being
2 | (asin Fig. 2); ¢ = 65°and y = 135°.

siderations. What appears to have happened in this: the three
line singularities of a,'",a,'” and ," seem to have been
transformed by nonlinear superposition into one single ring-
shaped singularity which bears no resemblance to the origi-
nal a,’s.

As mentioned in Ref. 12, the function a,'" is a coplanar
solution of V?a,'"' = exp a,'! which has been solved subject
to the constraint

14 2.7, 538 5 = (L 12 + (L) + (L)) (16)

We have verified numerically that for points away from the
ring singularity, ,'" satisfies Liouville’s equation (10) to one
part in 10'* for the parameters (8,,6,,6;) and (4 ,,4,,45) listed
in Eq. (27). The constraint equation (16) for the .Z° s is satis-
fied to an accuracy of one part in 10%°. All numerical work

has been carried out in quadruple precision.

,ﬁx\\\\

FIG. 5. A plot of the function tanh o, in the domain & ,, for ¢ = 80" and
y =135
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4. THE AUXILIARY SOLUTION Ba(x.y,Z;61,...,04,/A1,--.,A4)

As seen from Fig. 1, the construction of a5 requires two
B, functions which must be solutions of Laplace’s equation

VB =0, i=12, domain Z,. (17a)
It can be shown that 8, may be represented by
tan((8," — B," " )/4) =R, ; tanh((e," — ;" * ")/4),

(18)
where
VRN =0, (17b)
while
Via,” = expa,'”, o=123. (19)
the coefficient R, , , , is defined by
R, =(—=1'"?*9R, |, pyg integer, p#g,
(20a)

Iqu| =((1 + qu)/(l - qu))llz’ Izpql <1,
with

& ,, = cosb, cosf, + sind, sin6, cos(d, — 4,). (20b)
The Bicklund parameters 6,4, are confined to the domains

0<8,<2m, 0<A,<2m. For each a,;j = 1,2,3[cf. Eq. (16)],
there is only one constraint equation, namely
1 +2Jj.i+1jj+l,j+2°gj+2,j
=(jj,j+1)2+(gj+u+2)2+(fprz,;)z’ (21)
while for each 8,%,i = 1,2, we have these four constraints:
1 + 231’.i+1ji+ 1,i+2"fi+2,i
= (yi,i‘;- 1)2 + (fw l,i+2)2 + gi+2,i)2’
1 + 23[,i+1gi+ 1.i+3fi+3.i
= (gi‘w 1)2 + (gw 1,i+3)2 + (fi+ 3,,‘)2»
1 + 231’4»1,i+2gi+2,i+3$i+3,i+l
= (gi+ 1,i+2)2 + (fi+2.i+3)2 + (gi+3,i+l)2’
1 + 2“’fi,i-kZ"yi+2,i+3°fi+3,1'
z(fi,i+2)2+fi+2,i+3)2+(gi+3,i)2' (22)
The function B,4(x,y,z = — 20), which depends on a total of
eight Backlund parameters, has been checked to an accuracy
of one part in 10'°. We note that system (22) is characterized
for each / = 1,2, by six distinct .Z’s which are functions of
the eight Biacklund parameters: (0,,...,04;4 15...,A4) fori = 1,

and (6,,...,05;4,,...,45) for i = 2. Figure 6 shows a plot of the
four-wave interaction 8,'".

5. THE INTERACTION FUNCTION as(x,y,2)

(a) It is easily demonstrated with the aid of Fig. 1 that
superposition of the single Liouville solutions
a,",i = 1,2,3,4,5 in the spirit of Bicklund-Bianchi, leads to
the five-wave interaction function as(x,y,z)

tanh((as — a312))/4) = R, tan((8,"" — 34(2))/4),

Ris= —((1+ ZL5)/(1 — L)' |-Zsl <1, (23)
with .75 defined bys Eq. (20b) and
Vias = expas. (24)
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FIG. 6. The function 8,!” in the form sin 8,'" for ¢ = 80" and ¥ = 135°in
the domain & |.

The function as(x,p,2;6,,...,05:4 1,...,45) will solve Eq. (24)
provided the following constraint system is solved consis-
tently for the ten Backlund parameters 6,,4,,/ = 1,2,3,4,5:

1427, 850 L = L0+ Lo" + L3507
1427 700 L0 =2L 0"+ L2 + Lol
142853 L 0L a=L3" + L3 + Lo
1+2g13334_29“=j132+g342+g“{
1+ 2'*7233353052 = ‘ipzsz + 3352 + fszzs (25)
1+2j34j45353=f342+f452+,2”532,
1+2$24j45j52=$242+_?452+_7522,
1422, L0558 51=L 0" + Lo’ + L5
1+2$13J35j51=j132+f352+,2”512,
1428 L 5L 51 =L 12+ Lo + Lo

As mentioned previously, '? the effect of these constraint
equations is to force a,,f,, and a; to become coplanar.

System (25) consists of ten equations in precisely ten
unknowns .7 |,,...,.Z 4s; it was solved to an accuracy of one
part in 10%° to yield:

£, =0.956 786 286 485 616 000 00,
Z15=0.721 114 935 626 545 100 00,
7 1a=0.593 187 193 522 227 000 00,
.5 =0.568 140 304 086 613 400 00,
%, =0.891 418 089 642 861 600 00, (26)
%54 =0.801 659 727 311 817 700 00,
%55 =0.782 890 829 596 234 700 00,
&4 =0.985 517 314 624 865 400 00,
£ 55 =0.979 834 261 020 515 000 00,
Z 45 =0.999 526 709 229 567 800 00.

The constraint equations (25) for the .#;’s were solved,
using quadruple precision, to give the following values to an
accuracy of one part in 10*° (the A ’s are in radians, the s in
degrees):
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A, =10.66 391 602 978 664 308 98,
A, =0.747 431 140 737 200 265 76,
A3=0.606 370 474 119 483 888 08,
A, =0.287 144 414 680 506 957 00,
As=0.725 240 492 717 253 436 05,
6

= 65.740 776 764 056 272 193 29", (27)
105.949 931 184 388 188 536 08",
97.561 341 430 862 637 974 37",
.= 77.670 945 869 960 531 352 14°,
0, = 104.683 428 006 073 160 110 62°.

As in the sine~Gordon case, '? it is essential that the 1 ’s
and 8 s be arranged in ascending order when the accuracy of
as, as asolution of Eq. (24), is being checked. Substituting the
values for ¢; and A; from (27) into the expression for R, in
Eq. (20), we find that

Ry, = + 6.729 160 761 177 823 000 00,

> D D
w
fl

Ry, = — 2.484 232 896 793 022 000 00,
Ri.= -+ 1.978 955 804 601 952 000 00,
R,s= — 1.905 553 389 405 890 000 00,
Ry, = + 4.173 640 423 411 595 000 00, (28)
R,,= — 3.013 914 531 328 807 000 00,

R, = -+ 2.865 650 959 983 701 000 00,
Ry, = + 11.708 797 397 936 890 000 00,
R,s= — 9.908 487 069 842 504 000 00,
Ry = +64.997 939 177 800 580 000 00.

Before examining the a5 function in greater detail, we
ought to mention that all our plots were obtained by fixing
the third spatial component at z = — 20, and allowing the
other two coordinates x,p to vary over the indicated do-
mains. Thus tanh ¢,"?,...,tanh &, are all plotted in the XY
plane. A change in z to z = 10, for example, merely causes a
translation of the original plot—it does not lead to a change
in structure. Moreover, our decision to plot tanh a,'" rather

_1

6u i — Uk

— U g T Uik — Uik T Wik 4

than ,'",sinB," rather than B,"", and so forth, was based
strictly on convenience.

{6} Numerical calculations: One of the major tasks of
generating the @ and /3 solutions is an accurate determina-
tion of the Backlund parameters. In order to do so, one has to
calculate the ., ’s from Eq. (25) and use them in Eq. (10a} to
obtain the parameters €, and A,. In both steps we are faced
with solving a system of ten nonlinear equations for ten un-
knowns. Let us briefly outline the method which was used to
obtain a solution to the above systems.

For the sake of brevity we assume that the system of
nonlinear equations is given by

FilXuXayxio) =0, i=12,..,10. (29)

This is equivalent to finding a vector (x,,X,,...,x ) which
minimizes the functional J, given by
10

J(x1X0 X 10) = > [ filE XX 10) ] (30)

i=1
A straightforward procedure to find a minimizer is to use the
steepest descent algorithm, which is an iterative technique
represented by

X, =X, —p,VI(X,) n=12-, (31)
specified. (32)

Here p,, is a measure of the step size; in our calculations it
was taken to be a positive, decreasing function of n. The
choice of X, is crucial for convergence of the algorithm. Qur
selection of X, was based on our knowledge of the eight
Bicklund parameters required to generate 3,."2

Once the ten parameters (9,,4,) have been calculated,
the accuracy of the a and S solutions is checked using a
seven-point discretization of the Laplacian operator which
has the symbolic form

Xo={x,°%,% %07

ik
Vu|y ~ —2

hZ

where
h=A, =4,=4,, and u=u(x,p,z).

In our calculations, & = 10~%, which is a reasonable value
for the “size” of the & and 3 solutions. All calculations have
been performed in quadruple precision on an AMDAHL 470/
V' 5 computer. Finally, the plotting was done with the aide of
a SYMVU package on a cALcoMP 770 plotter."

6. DISCUSSION OF tanh a5 PLOT

(i) Fig.7: This figure depicts the nonlinear superposition
of three a, solutions to produce as, whose functional depen-
dence reads as(x,p,z = — 20;0,,....05:4 ,...,15), where x,y lie
in the rectangular domain % ; = {(x,y)] — 30<x< 30,

— 55<y<5}. The altitude, or viewing angle ¢, is 80°,

while the angle of rotation in the X Y-plane, or the azimuth 3,
is 135° Since each &, solution is characterized by one “ring”
singularity, it seems reasonable that a, should contain three
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i1 (33)

FIG. 7. The five-wave interaction function as in the convenient representa-
tion tanh @ for ¢ = 80°and ¥ = 135 in the domain a5 = {(x,y)|
— 30<x<30, — 55<y<5i.
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FIG. 8. The function tanh «; in the domain & ; for ¢ = 80° and y = 90",

more or less circularly shaped singularities. The function
tanha; is seen to possess exactly three such rings. One of
these rings is clearly much smaller than the other two. It is
amusing to note (at least in retrospect!) that the small ring
didn’t even show up in our earlier plots; it appeared only
after we had managed to increase the accuracy of the Bick-
lund parameters 6,,...,65 and 4,,....45 to a sufficiently high
level.

(1)Figs. 8,9 and 10: The function tanha;, is depicted in
the same domain & ; as in Fig. 7, but at different altitudes ¢
and azimuth angles y.

(iit}Fig.11: This plot shows a cut view of tanha, in the
domain & = {(x,y)| — 30<x<30, — 25<y<35} at an azi-
muth angle of ¥ = 135° and an altitude of ¢ = 60°.

7. DISCUSSION

We have illustrated that the Béicklund-Bianchi method
can be employed to generate, in three spatial dimensions, a
most remarkable five-wave interaction as for Liouville’s
equation. Our analysis included (a) the mathematical deriva-
tion of a and its representation in closed form, (b) the
graphical analysis of a5 by means of three-dimensional com-
puter plots, and (c) numerical studies and accuracy checks.
Here are the principal results.

FIG. 10. The function tanh a; in the domain & for ¢ = 70° and y = 135".

(a) The mathematical derivation of a5 proceeds from a
Bicklund-like transformation containing two essentially
different functions a and 3; the a’s are solutions of Liou-
ville’s equation, while the auxiliary functions S must solve
Laplace’s equation. The construction of multiple solutions is
aided considerably by the Bianchi diagram in Fig. 1.

(b) As pointed out in the Introduction, our second aim
in this project was to employ three-dimensional plots to
learn what a; and a, really “looked like.” Qur graphing
techniques led to several surprising results, even for the rela-
tively simple three-wave interaction a,(x,y,z = — 20), re-
ported previously in the literature.'' The latter was found to
possess only a single singularity, a ring singularity, whose
amazing symmetry can best be displayed by plotting, instead
of a;, the bounded function tanh a;. We have also verified
numerically that a, is a solution of Liouville’s equation. Our
latest accuracy figure stands at one part in 104,

Let uslook now at as. In view of the ring structure of a,,
it should not be surprising to find that the five-wave interac-
tion a is dominated by three singularities which manifest
themselves as rings in the functional representation of
tanh a5. We shall continue our discussion of these ring sin-
gularities at the end of this section. Before leaving this topic

FIG. 9. The function tanh a; in the domain & for ¢ = 80° and y = 45°.
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FIG. 11. A “cut view” of tanh a5 in the domain
D¢ = {(x)| — 30<x<30, — 25<p<35}, ¥ = 135°, and ¢ = 60°.
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of 3D-plots, let us just reiterate that the above construction
of a5 is intimately associated with the auxiliary functions 53,
and 3, which have likewise been derived and plotted here.

{c) There is no doubt that numerical studies are indis-
pensable for projects of the present kind. This is particularly
true for the verification of a5 as an exact solution of Liou-
ville’s equation. The function a5 is so complicated, with its
nested dependence on trigonometric and hyperbolic func-
tions, that it is virtually impossible to deduce its detailed
structure from purely algebraic considerations. Using qua-
druple precision, we have been able to show that our
asx,p,z = — 20) satisfies Liouville’s equation to an accura-
cy of at least one part in 10°. While this figure may not seem
particularly impressive, it is nevertheless, remarkably good
when considering (i) that the construction of a5 is condition-
al upon solving ren nonlinear constraint equations [Eqs. {25)]
and (1) that accuracy checks on differential equations, hav-
ing an exponential dependence, are a priori trickier than
checks on equations with a sinusoidal dependence.

The accuracy of a5 hinges decisively on the attainable
values for the ten Backlund parameters &; and
A,i=12,.,5 in Eq. (27). To obtain the accuracy for a5
mentioned above, it was necessary to calculate the #’s and
A ’s to twenty significant figures and to solve these para-
meters from the .#’;’s to an accuracy of one part in 10°,
Subsequent numerical studies have convinced us that, given
enough computing time, the accuracy figure of 107° can be
improved consistently.

Finally, let us speculate for a moment on the possible
significance of the circular objects discovered in connection
with a; and as. While it is safe to say that Liouville’s basic
solutions a, do not represent solitons of the conventional
type—we recall that the three line singularities have “disap-
peared” in a4'—the “composite” solution “‘tanh a;”’ does
seem to portray some kind of stable entity, a type of ring
soliton, whose shape appears to be preserved in the nonlinear
superposition of similar ring solitons. This is certainly evi-
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dent from the graph of tanh a, in Fig. 7, which shows three
distinct ring solitons. It would be interesting to know, of
course, to what extent, if any, our tanh ;- and tanh a- solu-
tions are related to the monopole solutions arising in certain
gauge theories.”
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In this paper we generalize the projection of the representation space of the symmetry group
SU(2,2) X U(2) on the Minkowski space to arbitrary internal symmetries U{m). The procedure
involves certain restrictions on the coordinates of the representation space. Representations of the
symmetry group in the restricted space and in the corresponding restricted Hilbert space are

constructed.

PACS numbers: 02.40.Dr

The problem of projecting the representation space of
the full symmetry group of the physical system on the Min-
kowski space arises in attempts to provide a common geo-
metrical basis for internal as well as external symmetries'
(cf. also Refs. 3-5 for further literature).

Already the lowest nontrivial linear representation
space of the symmetry group provides such a basis. The
physical Minkowski space must be embedded in this repre-
sentation space in a way which is consistent with the group.
This means that transformations of the group in the repre-
sentation space should induce, via the projection, correct
transformations of the Minkowski space. In particular, the
last one should be invariant with respect to internal
symmetries.

We assume that the physical symmetry group G is the
direct product G = G, X G, of the external and internal sym-
metry group in accordance with a theorem by Coleman~
Mandula and Lopuszanski [cf., e.g., Ref. 6]. G is the confor-
mal group or its Poincaré subgroup whereas a sufficiently
general candidate for G, (internal symmetries) is U(m).

Since we shall be interested in the most economic exten-
sion of Minkowski space, we start with the lowest linear re-
presentation space of G which is C*”. The coordinates £,
{ae €Ca = 1,..,4,a = 1,...,m) of this space form a complex
4 X m matrix the elements of which transform with respect
to G = G, X G, according to

g =g\ bg? 5 55 (1)
Let us first consider the case when G, = GL(2,C) or one
of its subgroups [in the uninteresting case G, = GL(1,C), no

projection on M, exists]. In this case the solution is known.’
One first uses the Penrose projection C*—M 5?2

Ea (VTVM )abgb;z

Eaa Ly (1— 7’5)]ab§b;z ’
where the coordinates of a complex Minkowski space M §
appear as ratios of antisymmetric forms [(y, ), ® are Dirac
matrices, (y7)*® = — (y7),, is a transposition matrix raising
and lowering the indices according to (¥ %, )** = (" )*(y,,).*
and satisfying (y"),.(y")" = — &, (y7)*

= — ") 7. = — (¥"7,)*]. The notation used here

Z, =x, —iy, =id (2)

* On leave of absence from the Institute of Theoretical Physics, Wroclaw
University, Cybulskiego 36, Wroclaw, Poland.
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is explained in full detail in Ref. 8.

From (2) it is seen that the z, are invariant with respect
to G, = GL(2,C) because the antisymmetric forms in the nu-
merator and denominator of (2) are multiplied under
G, = GL(2,C) by the common factor det GL(2,C). It can also
be shown [cf,, e.g., Refs. 2—4 or 9] that conformal linear
transformations G, = SU(2,2) of the complex variables &,,.,
given by the generators

d= —liys,

p.=—4"'v"r,)

) Oyt =yl a ), 3)
k#= — Ay Vi,

My =4[V ],

(acting on the first index) induce the correct nonlinear con-
formal transformations of the complex Minkowski variables

Dz, =iz,

P.z; =igus @)
K,z = —ig, 2" +2iz,2,,

Myvz/l = - ig;ulzv + igv/lz;t

[A in (3) is a parameter with dimension of length].

It is seen from (4) that the real part x,, of z, transforms
with respect to translations (P, ) like a vector whereas the
imaginary part y,, is translationally invariant (behaves like a
coordinate difference). We are obliged, therefore, to identify
x,, with the coordinates of the real Minkowski space M,.

It can be shown*? that projection (2) is the only projec-
tion in terms of antisymmetric forms consistent with the
group Z X GL(2,C), where & C SU(2,2) is the Poincaré
subgroup of the conformal group. Consistency with the
whole conformal group is a consequence of consistence with
2 . It can also be shown ** that the two other projections in
terms of symmetric and Hermitian tensors are identical with
{2) in the case when these tensors are simple (i.e., when they
are represented by bilinear forms).

To approach the homogeneous space of the group in the
case when G, = SL(2,C) or G, = SU(2), we parametrize the
projection C®>—M,, provided by the real part of (2), by intro-
ducing the four real conformal invariants

r;,u: = (Up )dﬂé— :Jdbgbzﬁ’ (5)
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whereo; (i = 1,2,3)are Paulimatrices, o, = 1,and f**is the
Hermitian 4 X 4 matrix with eigenvalues + 1, + 1, — 1,
— 1, determining SU(2,2) [in representation (3)

f = i(ya)*(ys).®]. We first split the variables £, , into two
parts,

£+ =y*E, (6)
by means of the projectors
r= =41£7s) (7)

From (3) it follows that £ ~ is translationally invariant. It is
seen from (2) that

g EATE e + 0 0 i
' 26 (1% o
is a linear combination of £ * with coefficients depending on

£ 7. Relations (8) can be inversed with respect to £ *, and we
obtain

(8)

Er= —iA 7'y, 6. 9)
It is seen that we can perform a change of variables
{é‘a;a }——){xp ’y[t 7§ aTa } ( 10)

in which y, and £ ., represent the translationally invariant
parameters of the particular embedding of M, in C®.

It can be shown further that y, is connected with r,,
(from now on we use the semicolon whenever it is necessary
to distinguish vectors with respect to external and internal
symmetries) by means of an inversible relation

r, = —24 _'y“‘r‘” (11)

in which the coefficients 7, , depend on £ ~ only and satisfy
the orthogonality relations™®

ry;/l ru;;g = 4g;i§ |§ aTl (y’r)abg bTZ |2’
(12)

ry;/{ r;v;/{ = 4g;tv; |§ a?l (,}/T)abé' ij 12'
We obtain the desired parametrization by replacingy, byr,,
and £ an

LI Sl E Mol ¢ (13)

The submanifolds

S = lr,r* = const (14)
and

S 1=const, £, =r,=const,

P+ 0 (1)
of C? are invariant with respect to SU(2,2) X SL(2,C) or
SU(2,2) X SU(2), respectively. It is certain, therefore, that
they contain the homogeneous manifolds of these groups
and, if there are no other independent invariants, coincide
with these manifolds. They also contain in a consistent and
unique way the Minkowski space and provide therefore the
most economic embedding.

In the case when we restrict the conformal symmetry
SU(2,2) to its Poincaré subgroup, another invariant appears,
namely |£ - (y7)™€ ,, |>. We obtain, therefore, 14- or 13-
dimensional submanifolds of C® containing M in a way con-
sistent with the groups # X SL(2,C) or Z X SU(2),
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respectively.

Due to the fact that r,, is invariant with respect to a
phase transformation £—¢£ ' = "€, the above statements are
valid also in the case of G, = U(2).

Let us go over now to the general case G, = GL(m,C)or
one of its subgroups. Now, the representation space is C*"
and the coordinates £, form a 4 X m complex matrix. We
can, therefore, construct, according to (2), im(m — 1)
complex vectors

gon — A M

g 2 § aTa (,VT)ab b-;_/3‘
which, according to the statement made after formula (2),
transform in the correct way (4) if the £, undergo a confor-
mal transformation G, = SU(2,2). In fact, we have infinitely
many such vectors given by the basic antisymmetric forms
appearing in (16):
. aff T, ab
2,06 = i K Bu;i(V '};u)b é}ﬁ _ (17)
2 kP V) E g
Moreover neither (16) nor (17) are invariant with respect to
G, = GL(2,C) or its subgroups SL(m,C) or U(m) because the
antisymmetric bilinear forms

Sava,  Saya.
é‘al;a, ga;;(lg
provide a [(3) X (7)]-dimensional irreducible representation
of GL{4,C) X GL{m,C) and, therefore, the z,, («) transform
into each other like ratios of linear combinations of vectors
of such a representation. This situation is unsatisfactory be-
cause the physical space M, must be invariant with respect to
internal symmetries.

A way out of this difficulty is provided by imposing on
the coordinates §,., constraints which would reduce the re-
presentation space of G, and simultaneously, the variety of
z,,. We shall consider here 4(m — 2) linear independent
constraints

(16)

(18)

é-a.ag:a,al T

A, =0, i=34..m a=1,.4, (19)
where
/{ia = Ci“ga;a’ (20)

and C,;* are (m — 2)independent vectors. Conditions (19) are
invariant with respect to the group G in the sense that

A =C" % e =8 A, (21)
where

C'*=CAg? ")~ (22)
It follows from (21} that

Ay =0=1",=0. (23)

We shall prove in this note that conditions (19) imply
that all the points 2*#), a,B = 1,...,m, defined in (16} as well
as the points z, () defined in (17) coincide and are invariant
with respect to the group G, = GL(2,C) of internal symme-
tries. The proof is immediate, but we shall postpone it for
convenience to a later place, first deriving some general re-
sults concerning representations of G in the restricted space.

To this end, we introduce new variables
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A=1.2,

i=3,.,m.

Naa = baar 4= L4,

Aia =C% ey a=1,..4,
We can assume, without loss of generality, that the subdeter-
minant det {C,"} (i,4 = 3,...,m) of the matrix {C,}is dif-
ferent from zero

det{C,* }50. (25)
We can solve, therefore, Egs. (24) with respect to &, and
obtain

(24)

o = aa”ﬂm + b, (26)
where

a, =65 b,,=0, A4B=1,,

a:® = —b;'C% by = [det{C*}] 45, (27)

(B=1,2, i,d =3,.,m)
and 4 ;' is the adjoint determinant of order m — 3 corre-
sponding to the element C,* of the matrix {C,7}. The coeffi-
cients b5 satisfy the relations (following from general prop-
erties of determinants)

b7'CEF=6E, Clbz* =6 (28)
In a new coordinate system & /., = &, P€, 5, 8 € G,, wehave

Waa =8 anr

Aa=C"" 0q =Ais (29)
and the inverse relations

§laa = a(ga),*n's4 + b(ga8b)s Aias (30)

where a(ga),” and b (ga,gb ), are solutions of the equations

(ga)a “ = a(ga)a ’ (ga)BA’

(gb). = blgagh).' +alga).”(gh)s'" (31)
The coefficients @ and b satisfy relations

alhga) = a(ha(ga)),

(32)

b(hga,hgb) = hb (ga,gh) — a(ha(ga))hb (ga,gb),
which ensure uniqueness of the functions a(ga) and b (ga,gb )
defined in (31) on the group G, (we do not consider here the
external symmetries G, because the transformation proper-
ties of 7 and A under this group are obvious). One also easily
verifies that a(ga) and b (ga,gb ) are the same functions of C ', *
as g and b are of C,°.

From (26) and (29) we derive finally the relations be-
tween 7 and 7"

nla;A = (ga)A Bna;B + (gb )A l}'ia! ,1 'ia = ﬂ'ia’
(33)

Mo = (87 'a(ga)] 4 B77'a;8 + [g7'b(gagh)l ‘A s
This closes the system of mutual relations of the variables
£, and 17,,, A, in different coordinate systems. One has to
keep in mind, however, that all these relations are local and
valid only in the neighborhood of g = e for which
det{C' 4 }s0.

Imposing of the invariant conditions 4,, =0

(@ =1,...,4;i = 3,...,m) replaces the linear representation in
C*" by a nonlinear local representation in the space
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CEX €A™ =2 = €2+ 2 of the variables 7, , and a;” given
by
n’a;A = (ga)A Bna;B’ (34)
a'.* =alga),”.
Relation (30) now takes the form
§ ’a;a = a(ga)aAn’a;A = (ga)a Ana;A . (35)

Introducing this into (18), we prove both statements con-
cerning (16) and (17). We obtain first

5 Iab;aﬁ = (ga)aﬂ I277(11);12 . (36)
where
§ , L §Ia;a é”a;ﬁ 77 L 17(1;1 ”7a;2 I
abiah §'ba & "o ’ aniz Mo M2 ’
37)
a),’ a),’
(galy" = (ga) 1 (ga) A,
€a)s"  (ga)s
and consequently
§ 'ab;aﬁ/g ’cd;a/)‘ = nab;IZ/ncd;ll . (38)

From (38) the first part of the statement (coincidence) follows
for g = e and the second part (invariance) for arbitrary g
(satisfying condition det{C',* }£0)and a,8 = 1, 2.

By imposing additional invariant conditions on the ma-
trix {£,., } we have obtained a unique and consistent projec-
tion C*" * 2 M, in terms of the new variables 7, , and a
nonlinear local representation of G in the space of the varia-
bles ,., and a;”.

For applications, it is important to construct represen-
tations of G in spaces of functions which take into account
conditions (19) (first quantization). We start with the infini-
tesimal representation of G in L %(C*™), which is given by the
infinitesimal generators

J a
X%, X: =
aé_a;a a §b.a aé_a;n

for G, and G,, respectively, where X,” and X ' * are the cor-
responding generators in C*™.

To introduce condition (19), we carry out the change of
variables described in (24) and (26) and the corresponding
change in derivatives

X =

X 'aﬂé‘a;ﬁ’ (39)

g = J + J CiAs J = J CiA_’
aga;/i ana;A aﬂ' ia a§a;A_ aﬂ’ ia
(40)
8 _ 9 . 8 _ 8 ,.
ana;A aé—a;a all ia aga;a
to obtain
d a
X= X,%, X, 41
.., Moa + oL, e b (41)
[ a ' ' i
X = (X a)A Bna;B + (X b)A /lia
na;A Naza
(9 ' B a ’ k
+ = (CX'a)®n,5 + (CX'b), “Ary-(42)
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To restrict the representation to functions on the plane
A,, =0, it is convenient to use the relation

L, d P ,
C,X “ﬁg'c‘,E = -5 (CX ‘@), *Nan
= 9 cxb) M, (43)

ia
by means of which we can rewrite the generator (42) in the
form

d ; d
X'a), 20 +(X'b) A} —CX' P —.

po {(X'a) "1 + (X 'b)4 R} 307
(44)

The functions on the plane A,, = 0 can be written in the form

8 (m.c): =ff(§,m>ﬁ [61h)dh, = fla nn)  (45)

a=1i=3

X'=

[the integral representation does not involve the assumption
(25) and is, therefore, more general]. The generators (41) and
(44), when restricted to such functions, are

d

a:A

Xliio= Xabm;m

(46)

a
X'a),®n., —C°X' F—.
oy (X'a),"na aCc?
The dependence on C;“ of the function
& (m,¢} = f(a,*n,.4) occurs through the variables a;* and we
can put, therefore, for the last term in the second expression
(46)

XI{A:O =

J a
—C%X' F— =[(X'a)—(aX'a)] T —.
i a aCiB [( ) ( )]A aaA—B

Second quantization in the case of G, = GL/(2,C) or its

(47)
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subgroups was given a preliminary treatment in Ref. 10, in-
variant differential operators in the same case were investi-
gated in Ref. 7. The present construction is intended to pro-
vide a basis to extend those investigations to the physically
more interesting cases of SU(3) and higher internal
symmetries.
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Working with the extended framework of stochastic integrals recently discovered by It6, a
complex of stochastic processes inherent in quantum mechanics, the Nelson process, is
characterized in terms of sample paths. It is shown that the Nelson process belongs to a certain
class of two-sided continuous local semimartingales. Several basics of stochastic calculus in this
class are presented. Stochastic calculus of variations is applied in this class to construct the Nelson
process and to further illustrate some details of its sample paths. Examples are the bound states,
the two-slit interference, and the gravity in quantum mechanics.

PACS numbers: 02.50.Ey, 03.65. — w

INTRODUCTION

A mathematical formulation of quantum mechanics in
which the notion of stochastic processes plays an essential
role was first presented in its systematic form by Nelson.'™
It gave rise to a new quantization scheme which has been
called the stochastic quantization procedure and applied ex-
tensively to many physical problems.’~'® Conceptual en-
largements have been also taken into account.'’"*” Nowa-
days it can be understood as one of the representatives of
quantum dynamics.?* Unfortunately there seem to be some
elementary confusions arising from improper criticisms of
the use of stochastic processes in quantum mechanics. The
origin of the confusions is the conceptual gap between the
mathematician’s refined notion of stochastic processes and
the physicist’s classical notion of them. It is not so easy to
overcome this gap and to evaluate the stochastic quantiza-
tion procedure properly if one is used to the classical notion
of stochastic processes such as appear in macroscopic classi-
cal statistical physics. Therefore it seems meaningful to
make the mathematical characterization of the Nelson pro-
cess clear for the purposes of making the gap as small as
possible and facilitating the physicist’s understanding of the
stochastic quantization procedure.

In the present paper I will clarify the class of stochastic
processes to which the Nelson process belongs, working with
the extended framework of stochastic integrals recently dis-
covered by It6. It is a class of two-sided continuous local
semimartingales. This class provides a wide ring in which
the stochastic quantization in terms of the Nelson process
can safely play a role. (Sec. 1) Several basics of stochastic
calculus in this class are presented. (Sec. 1). Stochastic calcu-
lus of variations is applied in this class to reconsider the
Nelson process globally, which permits us to illustrate the
details of its sample path behavior. (Sec. 2). I will take the
bound state, the two-slits interference, and the gravity in
quantum mechanics as illustrating examples. (Sec. 3).

The final introductory remarks are the following: Al-
though I will classify and represent the Nelson process in the
modern language of martingale integrals, the essentials do
not differ otherwise from Nelson’s original analysis. It seems
surprising that Nelson’s observation and analysis were so
refined and close to reality as to still survive in the modern
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theory of stochastic integrals. Chronological order proves
this. In 1942 stochastic integrals were first discovered by It6.
Doob suggested the use of martingale theory approach to
stochastic integrals in his book of 1953. On the basis of the
work of It6 and Doob, Nelson developed his idea before
1966, just a sunrise epoch of the modern theory of stochastic
integrals (Fisk in 1963, Courrége in 1963, Kunita and Wa-
tanabe in 1967, and Meyer in 1967).

1. STOCHASTIC INTEGRALS AND TWO-SIDED
CONTINUOUS LOCAL SEMIMARTINGALES

This section will be devoted to an exposition of a certain
class of continuous local semimartingales in which the sto-
chastic processes appearing in stochastic quantization can
safely be treated. The framework is It&’s extended stochastic
integrals, and the main source for this section is his recent
paper.?®

Let (42, %, Pr) be a base probability space, where £2 is a
certain nonempty set and a g-algebra ¥ of subsets of £2 is the
domain of a probability measure Pr. A measurable mapping
from {2 to R" is a random variable. Its image of each element
wefl is a sample. A family of random variables indexed by a
continuous time parameter, X = {X,| — o0 <7< 0}

= [X,(w)|wef?, — o << »},1s a stochastic process. For
each wef? there is a family {X,(@)] — o << o« } which de-
fines a function X (@) from ( — oo, 0) to R”. This is called a
sample path or sample function. A stochastic process is thus
a complex of sample paths. A mathematical property of a
stochastic process should be understood as that of every
sample path Pr-almost surely. Here ““‘Pr-almost surely”
means ‘“‘except sample paths corresponding to Pr-null sets”
and will be abbreviated (a.s.). For example, a stochastic pro-
cess whose sample paths are continuous (a.s.) is said to be
continuous and one with sample functions of bounded vari-
ation on any finite interval (a.s.) is said to be of locally bound-
ed variation.

Let us fix a right-continuous increasing family of sub-o-
algebras of ¥, # = {#,| — o <t < o} such that #, con-
tains every Pr-null set. This is called a reference family or a
filtration on the time interval ( — o0, o ). Take an arbitrary g
in the interval ( — w,o0); then 9 = {2 W =2 |
0<t < oo | defines a reference family on the time interval
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[0,0). A stochastic process M ¥ = {M,?|0<t < o} is said
to be a local 79 martingale if there exists an increasing
sequence of stopping times, {6, }©_,, adapted to 29 such
that the stopped processes M (), = (M9 . 10<t< o},
k=1,2,.., are Z'% martingales, thatis, E[M?, , ,|Z,"9]
=M{], (a.s.), where E [-| %] is the conditional expectation
with respect to a sub-o-algebra & C 9. Now we reach an
important class of stochastic processes. A stochastic process
X ={X,| — o <t <} isacontinuous local Z semimar-
tingale (or & quasimartingale) if X9 = {X,9 =X, _,|

0<? < w |, for every q in the interval ( — o0, ), admits a
decomposition

X9=M94p9 p@=0, (1.1)

where M '9 is a continuous local 79 martingale and ¥ @isa
Z9.adapted process (i.e., ¥,?is 7 ,'9-measurable for each ¢
in [0, o0 )) of locally bounded variation. This decomposition is
unique and called a canonical Z % decomposition. The total-
ity of continuous local # semimartingales is denoted by
Q(Z). Let us denote by L{Z ,dX ) for each X in Q (%) the
totality of all & -adapted stochastic processes ¥ = (Y|
— o << o0 }’s such that (4|Y,9|({dM, )’ < « and
S81Y,9) |dV,"9| < oo foreverygin( — w0,00)and #in [0, ),
where (dM,'9)? is the Lebesgue—Stieltjes measure induced by
the quadratic variation of M 9, and dV¥, 9 is that induced by
the absolute variation of V9, Here we are in the position to
introduce the notion of stochastic integrals.

Let XeQ (Z), thenforany YeL(Z ,dX thestochastic 7
integral is defined by

? - J Y, dX, = P" - J CY.ax,”,

V]
= P -f_ 'Y, vam, + f_rYs"’st"’,
0 0
(1.2)

for any r<tin ( — o, ), where the first term of the right-
hand side is the usual #"-martingale integral and the sec-
ond term the sample-wise Lebesgue-Stieltjes integral.
The stochastic & integral (1.2) defines a stochastic pro-
cessZ = {Z,| — o <t< o} suchthat Z,¥ =7
- f9*'Y, dX,. Itis evident that Z belongs to Q(Z). If
s<u<yv, then

7 -fy,dx,+9> -fy,dx,=@ -fY,dX,.

(1.3)

There are other notions of stochastic integrals. A family
of sub-g-algebras # = {F,| — o <t < ] issaidtobea
time-reversed reference family if ¥ * = {F* =% _ |

— o << x} is a reference family. In other words, the
time-reversed reference family .% is a left-continuous de-
creasing family of sub-o-algebras of % such that %, contains
every Pr-null set. A stochastic process X = {X,|

— w << oo} is said to be time-reversed continuous local
F semimartingale if X * = {X*=X_,| — w0 <f< o} be-
longs to Q (F *). The totality of time-reversed continuous
local ¥ semimartingales is denoted by Q (). A stochastic
process Y = { ¥,| — oo << oo} issaid tobelongto L(F ,dX )
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ifY*={Y*=Y_,| — w <f< oo} belongstoL(F*dX*).
Let XeQ (), thenfor any YeL(.¥ ,dX ) the stochastic &
integral is defined by

—u

F f Y,dX, = F* f Y*dX*, (1.4)

—1
forany u<tin( — o0, ). Thestochastic ¥ integral (1.4) also
defines a stochastic process of class Q (F).

Let & = (#,F), Q(F) = Q(Z )@ (F), and
L(#,dX) = L{Z,dX )NL(F dX ) for XeQ (.F). If XeQ (%),
then X is called a two-sided continuous local semimartingale
on the interval ( — oo, 0 ). Now the most faithful notion of
stochastic integrals is ready. Let XeQ (%), then for any
Yel(.#,dX) the symmetric stochastic .% integral is defined
by

5 -jYSOdXS.—- %(@ -JY,dXS—? . fYSdXS)

(1.5)
for r<t, and by

7 - fYSOdX:= %(37 -stdXs—@ -JYSdXS)
’ (1.6)

for £<r.

The symmetric stochastic . integral (1.5) and (1.6) de-
fines a stochastic process Z = {Z,| — « <t < o } by putting
Z9=2L-g1+'YodX, . If # = F *, then Z belongs to
Q (). If F *isfiner than &, thatis, F* D 2, for every tin
(— o0,0),then Zbelongsto Q (Z). Zbelongsto Q (¥ )inthe
opposite case. The followings are some of the useful formu-
lae for the symmetric stochastic .% integrals. For XeQ (%),
Yell i dX)and r, t,uin ( — o0, 0),

S - J-IYSOdXS +57 - rYs°dXs =7 - quSOdXs,(1.7)
and so t

S - J‘IYJOdXS = -5 -erSOdXS. (1.8)
If Yis cr:ontinuous furthermo;e, then

d N
S - fYSodXS =lip. S4(¥, + Y, (X, ~X, )
, Naeoj: \ i Jot ¢l 7
(1.9)

for any r<tin(— oo, ), wheret, =r +jit — r}/N,j =0, 1,
2,...,N,isadivision of the interval [,z ] and L.i.p. is the limit in
probability. The last formula is extremely important for ex-
tending the symmetric stochastic . integral as also being
defined a little outside of @ (). If X and Y belong to Q (%),
then the limit in the right-hand side of Eq. (1.9) becomes

7 -fYJOdXx " —;-fdy, X, (1.10)

which will be denoted by Y °dX,, where the second term

(i.e., the quadratic variation) is defined by

d N
des dX, =1ip. Y (Y, - ¥, (X, ~X, ).(L1])

N0 /&

It6 calls Eq. (1.10) the forward symmetric stochastic integral
which is one of the extensions of the symmetric stochastic 5
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integral tothe region Q (7 )\Q {(&).The extensiox'l to theop-
posite region Q (¥ )\ @ () is also given by the right-hand
side of Eq. (1.9), resulting in

F -st dx, — %des ax,, (1.12)

which will be denoted also by §* ¥, odX,. This is the back-
ward symmetric stochastic integral of It5. Consequently we
have the cyclic equalities between different notions of sto-
chastic integrals if X and Y are restricted to liein @ (F).

7 -fYSOdXS=9’ -J.stXs+%dests
7 - JYSdXS— —;—JdYSdXS

N
= Li.p. Z %(Y,j + Y,/f D&, - Xz,, )
N—oo ;=
= (1.13)
The stochastic process Z given by the symmetric stochastic
% integral (1.13) on Q (%) by putting Z,' = %
- f2*'Y,odX, certainly belongs to Q (#). In other words,
Q (%) is closed under the symmetric stochastic %" integral.
Immediate outputs of those equalities are

J.d(XSYS)=j” . JYSOdXs +.7 - fXSOdYs,
' ' ' (1.14)

XY —XY =2 - jYSdX:—{»? - JXJ dy,

=5 - deXS+W -szdYs.
' ’ (1.15)
The last result (1.15) is a generalization of a theorem of Nel-
son;' notice that it holds for stochastic processes of class
Q (). Again Eq. (1.14) can be extended to the region
Q(2)4Q(F) = [@(ZN\Q(F)MQ(F )\ Q(S)]. Namely for
Xand Yin Q(Z)\Q(5)orthose in Q (F)\Q(5), we have

fd(Xs Y,) =f Y,odX, + JXSOdYS.

It is convenient to present here the basic formulae in a
differential form.

# - YodX, = ? - Y,dX, +dY,dX,

(1.16)

=% - Y, dX, —dY dX,, (1.17)
dX,Y,)=5 - Y,odX, + % - X,°dY,
=# - YdX, +% - X.dY,
=% -YdX, +% - X dY,. (1.18)

Now we will consider the mean Lebesgue differentiabil-
ity in a certain sense of continuous local semimartingales.
Let X = {X,| — o << o} be a stochastic process belong-
ingto Q(Z), then X9 = {X,9 =X, ,|0<t< 0] hasa
unique canonical decomposition X @ = V'@ 4+ M foranygq
in(— o0, 00). If ¥ is an absolutely continuous process for
any g in ( — oo, ), then X is said to be mean Z differentia-
ble. Let V9" be its Lebesgue derivative process and define a
stochastic process DX = {DX,| — o <t < o} such that
DX9 = {DX,"=DX, =V - w<t<w]foranyg

1579 J. Math. Phys., Vol. 23, No. 9, September 1982

in(— o0,00). DX isalocally integrable process adapted to 7
and called the mean (Lebesgue) & derivative. Let XeQ (%),
then X *, the time-reversed version of X belongs to Q (F *). X
is said to be mean .# differentiable if X * is mean .7 * differ-
entiable. The mean Lebesque ¥ derivative of X is defined to
be DX * with opposite sign and denoted by D. X. Thisis a
locally integrable process adapted to . Let us denote by
D(Z), D(F), and D(.¥), respectively, the totality of mean
2 -differentiable processes in Q (), that of mean .# -differ-
entiable processes in Q (%), and their intersection
D(Z)ND(F) in @ (F). It is straightforward to see that
lim,, |EX,, » —X,|Z,]— DX, h | = Oas.)ifXeD(Z)and
lim,,o|E[X, — X, _,|F ]—D.X,h|=0{as.)if XeD(F).
The formula (1.15) yields, for X and ¥ in D(.*), the formula
of integration by parts,

E [XlYt _XrYr] =E[f (YSDX: +XsD‘ Ys)ds]

=E U (X.DY, + YsD.Xs)ds],

(1.19)
for any r<tin { — o, o0). We have also

E[f’ ) JYSOdXS]=EU‘YX%(DXS+D.XS)ds].

(1.20)

Finally we reach a class of two-sided continuous local
semimartingales in which the stochastic quantization proce-
dure of Nelson works safely. Let us denote by N(.#} a sub-
class of stochastic processes in D) such that XeN(.*) im-
plies (XeD{.%), of course) DXeD(.¥ ) and D.XeD(Z). A
stochastic process belonging to N(.*) is called a Nelson pro-
cess. This choice of the name seems appropriate because Nel-
son considered such stochastic processes first, though his
class is wider than the present one. He worked with the
L ,(£2,Pr) and/or L,(£2,Pr) analyses, whereas we work with
the sample paths analysis. If X is a Nelson process, then
D.DXand DD, X are locally integrable processes. A measur-
able function F: R"—R" is said to be N admissible if F (X ), for
any XeN(.”), defines a locally integrable process. For exam-
ple, a locally bounded function is N admissible. Let X be a
Nelson process and £ be an N-admissible function; then the
equation

YDD.X + D.DX)=F(X) (as.) (1.21)

is well posed since this is a relation connecting two locally
integrable processes. Because the stochastic processes em-
ployed in the stochastic quantization are assumed to satisfy
the equation of motion of this type, the class N(.¥) is suffi-
cient to include them. A stochastic process XeN(.%) satisfy-
ing Eq. (1.21), though this would not be unique, is said to be
an F trajectory. The totality of Nelson processes X ’s such
that DX and D, X belong to D(.*) and DDX = D. D, X holds
(a.s.)is denoted by N'(.%). A stochastic process in this class is
called a locally probability conserving Nelson process, or
simply a Nelson process hereafter. This class was first no-
ticed by Etim.°
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2.STOCHASTIC CALCULUS OF VARIATIONS AND HOW
TO SEE THE SAMPLE PATHS

This section will be devoted to showing how one can
illustrate the sample path behavior of a Nelson process
which represents quantum dynamics by working with sto-
chastic calculus of variations.?*=! developed recently. First
we will present the stochastic quantization procedure in the
terminology of Q (). Second the basics of stochastic calcu-
lus of variations will be presented also in the framework of
@ (7). Then we will proceed to the main exposition of this
section.

Let us start with a differentiable dynamical system in

R", x = [X,| — o <?< 0 }. Together with Newton’s equa-
tion of motion
mx = F(x), (2.1)

where m is a mass parameter and a continuous locally
bounded function F: R"—R”" represents forces acting on the
system, it defines a classical dynamical system. A function of
class C?, +—x,, is said to be a classical F trajectory if it satis-
fies Eq. (2.1). If Fis integrable, that is, if there is a function V-
R"—R of class C ! such that F = — V¥ holds, the classical
dynamical system is said to be conservative, where V is the
gradient. A classical F trajectory x: ( — o0, c0 >R" of a con-
servative system can be characterized by Hamilton’s princi-
ple of least action

j [4m|X,|> — V(x,)] ds = stationary, (2.2)

foranyrandtin( — oo, o). Indeed the Euler equation equiv-
alent to the variational condition (2.2) becomes

mi= —VV(x). (2.3)

A family of hypotheses and substitutions is called a quanti-
zation procedure (or simply, a quantization) if it joins each
conservative classical dynamical system (2.3) and the Schro-
dinger equation

2
iﬁé—'p— =(— f—i—A+ V)l/’, (2.4)
ot 2m

where 7 is the Planck constant divided by 27, A is the Lapla-
cian. Once a solution ¥ = {¢/,eL,(R",C)| — o <t < 0} tO
Eq. (2.4} is given, the probability distribution of the system at
any time ¢ is assumed to be |1/, |* times the Lebesgue measure
provided that ||, || = 1 for every tin ( — o0, 00).

The stochastic quantization procedure originally pro-
posed by Nelson consists of the following hypotheses and
substitutions. First, consider the classical conservative dyna-
mical system in R" x = {x,] — o << o0}, subject to the
equation of motion (2.3). Second, replace it by a Nelson pro-
cess X = [X,| — o << ] subject to the equation.

im(DD.X + D.DX) = — VV(X). (2.5)
This may be understood as a minimal extension of Newton’s
equation of motion (2.3). Third, assume X belongs to N'(.%).
Namely, DDX = D. D. X holds (a.s.). Fourth, assume X to be
a Markov process and that there exist two functions b, b.: R”
X( — o0,00}—R" of class C? such that DX, = b (X,,t) and
D.X, = b.(X,,t )hold forevery tin( — oo, cc). Fifth, the qua-
dratic variation of X is assumed to be (fi/2m) times the Lebes-
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gue measure, that is,

A
2m
Sixth, the existence of the Lebesgue density of the probabil-
ity distribution is assumed, that is, Pr{{wef? |X,(w)ed "x})
= plx,t)d "x for every t in { — o, 0). Last, (b + b.) is as-
sumed to be integrable, that is, b + b, = (fi/m)VS for a cer-
tain function S: R" X ( — 0,0 }—>R. This procedure is
enough to reach quantum mechanics. These seven hypoth-
eses and substitutions are really equivalent to the Schro-
dinger equation (2.4) for the wavefunction ¢ = p'/°
X exp(iS)."™* It is worthwhile to notice that the third hypoth-
esis is not necessary since it comes from the fourth and fifth
hypotheses and the formula (1.9). They also yield b,
= b — (A/m)Vp/p and limy,e |[E[(X, — X,_,) *?.7 ]
— (A/2m)h | =0 (a.s.).

Next, we shall proceed to the exposition of stochastic
calculus of variations. In our original formulation of sto-
chastic calculus of variations we worked with the L,(¢2,Pr)
functional analysis.?**° Here we will present it in terms of
two-sided continuous local semimartingales and so work
with the sample paths analysis. This has the merit of defining
the action integral in a sample-wise way, whereas we had to
define it as a Bochner integral in the L,(£2,Pr} analysis. Let L:
(R"P’—Rbeafunctionofclass C ', and consider a functional /
on I}{.7) defined by

WmiE (X, — X)*2,] = S=h| =0 (as). (26
!

IX)=E UL (X.,DX,,D.X.)ds (2.7)

for any XeD(.”). If L (X,DX,D.X )= {L (X,,DX,,D.X,}|

— @ <1< o} is alocally integrable process, then I (X) is
well defined. If not, we simply put / (X') = . A typical ex-
ample of such a functional is the action integral

Iou(X)=E U [§(im|DX,|* +im|D.X,|*) — V(X,)| ds|,
’ (2.8)
where m and V are same as in Eq. (2.2). For X ’s in D{(.¥") such
that DX and D. X are locally square integrable processes,
I, is well defined. Let X and Y be two stochastic processes

belonging to D(.%). The ¥ component of the differential of
the functional 7 at X is given by

dI(X,Y)= 7‘1—1(X+ a¥)|, _o. (2.9)
a

The integration by parts formula (1.19) leads to
dl{X)Y)

o[[[ 3 -2 ) -os

aL aL 1

+E[( aDX. | D.x, )Y ] (2.10
if oL /dDXeD(.F ) and L /3D.XeD(Z). From now on we
assume that Y is a conditional stochastic process in
D(.#) such that ¥, = Y, = 0 (a.s.). For such Y"’s the second
term of the right-hand side of Eq. (2.10) disappears and we
get the fundamental theorem of stochastic calculus of vari-
ations: The differential of the functional I at XeD(.%) vanish-
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es if and only if X is subject to the equation

b2 )n(L)- L o
aDx aD. X ox
Such X makes the functional / stationary. This extends the
Euler equation in ordinary calculus of variations and will be
called the Euler—Nelson equation since it also extends Eq.
(2.5) proposed by Nelson. Indeed, the Euler—Nelson equa-
tion for the action integral I,,, given by Eq. (2.8) coincides
with Eq. (2.5). This will provide the possibility of reformulat-
ing the stochastic quantization procedure in terms of the
least action principle /,,,(X ) = stationary.

Let X be a conditional stochastic process in B{.%) sub-
ject to the Euler—Nelson equation (2.11) such that X,
= xeR" (a.s.), and Y be an arbitrary conditional process in
D(.”)suchthat ¥, = 0and ¥, = yeR" (a.s.). Then Eq. (2.10)
claims dI (X,Y) = E[(OL /dDX,) + (0L /dD.X,)|X, = x]-y,
and therefore we obtain

[ oL oL

DX, 3D.X,

(2.11)

X, =x]

=VE UL (X,,DX,,D. X,)ds (2.12)

X, =x].

For more about stochastic calculus of variations, see Ref. 29.

We shall now show how stochastic calculus of vari-
ations works in getting informations about the sample path
behavior of the Nelson process X. Because the seven hypoth-
eses on X of the stochastic quantization procedure are equiv-
alent to the Schrédinger equation (2.4), we may say that the
Nelson process representing the quantum dynamics is deter-
mined by the Schrddinger equation. Therefore, the wave-
function ¥ seems to contain some information about the
sample path behavior. Since the probability distribution
pix,t)d" x = Pr{{wef? | X, (w)ed” x}) does not help us to see
sample path behavior, we must look for it in the phase of the
wavefunction . It is quite interesting to see that the key
concept of quantum mechanics—the phase of wavefunc-
tion—has a close relation to the sample path behavior of the
quantum dynamics.

The stochastic quantization procedure can also be for-
mulated within the realm of stochastic calculus of variations.
The first, third, fifth, and sixth hypotheses remain un-
changed, but the second one (i.e., the dynamical assumption)
isreplaced by the least action principle I5,,(X ) = stationary.
The last one is not necessary, for it comes from this least
action principle. Indeed Eq. (2.12) yields

mifb (x,t) + ba(x,t)) = E [ f L(X.DX,,D.X.)ds |x, = x].

(2.13)

We see immediately that those six hypotheses and substitu-
tions are equivalent to the Schrédinger equation (2.4), where
the wavefunction ¢ is expressed explicitly in terms of sample

paths;
Yix,t) = plx.t)'"?
X = x] ]
(2.14)

Xexp[LﬁEU L (X,,DX,,D.X,)ds
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Here we have a program to visualize the quantum dyna-
mics as the sample path behavior of the Nelson process: Let
XeN(”) be the Nelson process completely determined by
the basic hypotheses of the stochastic quantization proce-
dure. Since XeQ (%), X" = (X" =X, . ,|0<t < = } be-
comes a usual continuous local semimartingale on the inter-
val [0, o ) and we can think of its sample paths easily. Almost
all sample paths X “(w)’s are chosen in such a way that the
basic dynamical assumption (2.5) holds. The sample path
behavior thus defined can affect the phase of the wavefunc-
tion through Eq. (2.14). Conversely the wavefunction ¢—a
solution to the Schrédinger equation (2.4)—provides the in-
formation about the sample path behavior through its phase.
This fact will help us to illustrate the quantum dynamics in
terms of the sample paths of the Nelson process.

3.SAMPLE PATH ANALYSIS OF QUANTUM DYNAMICS:
EXAMPLES
A. The bound state

Let us consider a solution to the Schrodinger equation
(2.4) of the form ¢(x,t) = u(x)exp( — idt /h), t > 0, where ue
L,(R",C) is an eigenfunction of the stationary Schrédinger
equation

(_ %Aw)u:au, (3.1)

and A is the eigenvalue. This solution represents a quantum
mechanical bound state and defines a cross-section X  of the
Nelson process XeN(.%) as a continuous local semimartin-
galeon theinterval [0, « ). Since b, b., and p given by # donot
depend on ¢, the cross-section X © is a stationary diffusion
process on the interval [0, oo ) with invariant measure

plx)d "x = |u(x)|*d "x generated by a diffusion equation

s _ ( v )
py b (x)}V + P a4 \f (3.2)
In such a case of the bound state, fortunately, we can con-
struct the Nelson process X directly from its cross-section
X ©. Namely the Nelson process X for the bound state u is a
stationary Markov process on the interval ( — o0, 00) with
invariant measure p(x)d "x = |u(x)|’d "x which has the same
transition probability law as the diffusion process X ©.2
Therefore we can illustrate freely the sample path behavior
of the Nelson process (i.e., the quantum dynamics) in the
bound state by applying the transition probability law of the
diffusion process (3.2}. The success of the recent probabilistic
approach to quantum mechanical tunneling and instanton
analysis certainly owes much to this fact.”-%2* As the func-
tion b (x)is a logarithmic derivative of the stationary distribu-
tion density in the bound state case, it may take an infinite
value. From a mathematical point of view, however, this is
harmless provided that the set { xeR"|b (x} = « } has vanish-
ing Lebesgue measure.? The stationary Markov process X
(i.e., the Nelson process for the bound state) can be generated
by the Dirichlet form approach of Fukushima even if the
probability distribution density p has nodal surfaces.?* We
can also investigate the sample path behavior of the Nelson
process for the bound state with nodal surfaces by Fukushi-
ma’s Dirichlet form approach. It has been shown quite re-
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cently that there exists a Pr-nonnuil set of sample paths
which go across the nodal surfaces depending on the degree
of zero.*?

B. Quantum mechanical interference

Let us consider the famous thought experiment of
quantum mechanical interferences. A quantum mechanical
particle (e.g., a nonrelativistic electron) is emitted from a
certain source at a certain time r, and it reaches a certain
point of a detecting film at a time ¢ certainly later than r.
Between the source and the detecting film one places an infi-
nite plate with two parallel slits separated by a small distance
a. Therefore at a certain time after r and before ¢ the particle
goes across the slits. The probability distribution of the parti-
cle on the detecting film, which can be obtained by succes-
sive emissions of the particles, shows the interference pattern
when the two slits are open and one does not know through
which one the particle goes. Once one knows that the parti-
cle goes through one of the slits, say the slit 4 (for example,
by closing the other one, say the slit B ) the interference pat-
tern does not arise. Here we present the interpretation of this
quantum mechanical interference with the use of the Nelson
process and its sample path behavior. Let V,, V,,and V
be the potential energies representing the existence of the
infinite plate with the slit 4 open and B closed, that with A
closed and B open, and that with both 4 and B open, respec-
tively. In each case there corresponds a Nelson process re-
presenting the quantum dynamics of the particle. Let
X, X% and X "8 be the Nelson processes for those three
cases, which make the action integral (2.8) with respect to
V., Vg,and V,g, respectively, stationary. They are differ-
ent stochastic processes in the class N(.*). Since we are inter-
ested in the case in which the particle certainly reaches some
point on the detecting film, we see only the sample paths
going through the two slits.

Case I1: The slit 4 is open and B closed. Let x be an
arbitrary point on the detecting film and 27 be the totality of
sample paths of the Nelson process X # which reach x at a
certain time ¢. By the formula {2.14) the wavefunction
¥, (x,r}1s given in the form

Yalxt)=p,lxt)'’?
Xexp[ % E* U L(X2,DX4D.X% ds] ]
’ (3.3)

where E 7[] is the expectation over the sample paths belong-
ing to 24, and p, (x,t )d "x = Pr{{wef? | X {(w)ed "x}) is the
probability of finding the particle in the vicinity of x. This
gives the detecting pattern on the film for the successive
emissions of the particles.

Case 2: The slit A4 is closed and B open. The wavefunc-
tion ¢, (x, ) is

Yplx,t)=pgix.t)

1/2

Xexp[ %EfU‘L (X5DXED.XE ds”,

(3.4)

where E 2[.] is the expectation over the totality of sample
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paths of X %, denoted by {2 2, reaching x at ¢ and py(x,t )d" x
= Pr{{wef? | X B(w)ed "x}). If the distance between the
source and the slits is long enough compared with that be-
tween the slits 4 and B, ¢, (x,t ) coincides with the wavefunc-
tion of case 1 shifted by a, that is,

Yplx,t) =t,(x —ayt)
_—'pA(x - (1,[]]/2

Xexp[ %E;ta UL (Xf,DX;‘,D.X;‘)ds”,

(3.5)

where a here should be understood as a vector parallel to the
film and the plate with norm a. The detecting pattern
pg(x,t)d"x also becomes a shifted one p, (x — a,t )d "x.

Case 3: Both 4 and B are open. Let £ £* be the totality
of sample paths of the Nelson process X “# which reach x at .
Then the wavefunction ¢ ,,(x,? ) becomes

tplx,t) =PAB(X”)I/2
Xexp[ % E;‘BUL (X 42 DX 8 D, X 15) ds] ]
' (3.6)

where E 7%[.] is the expectation over 22 4% and p ., (x,t }d "x
= Pr{{wef? | X #®(w)ed "x}). Notice that 2 *#

#0240 2. However 2 4# admits a decomposition 2 4%

= 21840 488 where 2 274 and 12 {"* are the totalities of
sample paths of the Nelson process X ** which go through
the slit 4 and the slit B, respectively. This decomposition can
be used to get another expression for the wavefunction ¢4,
(x,t ). Since we have the decomposition £2 £% = 2 {#4uf2 1%,
at a certain time s after » and before ¢ the probability distribu-
tion p ,(2,5), zeR", consists of two functions p’z, and pzs
€L ,(R") with nonoverlapping supports. At that time the
wavefunction ¢, 5(z,s) is therefore the sum of two corre-
sponding parts ¥ ,5,4(2,5) and ¢ 455 (2,5). The linearity of the
Schrodinger equation (2.4) claims, then,

VaplXst) = typa(X,) + Y ypplxt), (3.7)

where

VupaX:t) = pypalxt )”2

X exp[% E,‘;B’*[ f L(X#5,DX 42D, X %) a’s] ]

(3.8)

YapplX,t) =pABB(x’t)]/2

Xexp[é—EﬁB”[ J L (X" DX?"D. X" ds”,

(3.9)

Papalx.t) and pg5(x,1) are probability distributions of X 48
satisfying the initial conditions p ,z4(2,5) = plip4(2) and
D.155\2,5) = Pys(2), respectively, and E £ and E { are the
expectation over £2 % and (2 #?, respectively. By the sym-
metry consideration again, we know that ¢,z coincides
with ¢ .5, shifted by a,
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Yusp(X:t) = pq(x —a,t) 4
=PapalX — ast)llz
xexp| L £, [ [ruzmoxznp.xs ds] |
' (3.10)

The detecting pattern in this case is p 5 (x,f) = [¥,45(x,2)]?
which can be computed through Egs. {3.7), (3.8}, and (3.10),
obtaining

Pap =Pasa +Pans + 2 Pasabags)'” 086, (3.11)
where the phase difference O is given by
6—#" [Eﬁ“t[ f L (X5 DX 45D, X ) ds]
— E4B4, [ f L (Xf”,DXfB,D.X;B)ds] ] (3.12)

This gives the quantum mechanical interference. The phase
difference © can be manipulated by the formula (2.13) and
we obtain

0=1 l"ﬁ- (b (x,1) + ba(x, ))-a + ola). (3.13)

The present sample path analysis of the Nelson process
thus shows that the quantum mechanical interference ap-
pears when the slits are both open. It tells us also the interest-
ing fact that in any case the particle certainly goes through
either the slit 4 or B, since the sample paths of the Nelson
process all go through either 4 or B.

C. Gravitational effect in quantum mechanics

In classical mechanics the equivalence principle asserts
that the dynamics of a particle is of geometric nature and
does not depend on the mass. Indeed the classical F trajec-

tory for a gravitational force F = — mVV; satisfies New-
ton’s equation of motion
X= —V¥V;ix), (3.14)

in which the mass parameter does not appear. However, in
quantum mechanics, the Schrodinger equation (2.4) contains
essentially the mass parameter even if the gravitational po-
tential mV; is involved. Therefore it might be supposed that
the quantum dynamics of the particle in the gravitational
field is no longer a purely geometric one but depends on the
mass of the particle. We will soon see, contrary to this suppo-
sition, that the quantum dynamics in the gravitational field
is also of geometric nature as is the classical dynamics.

Let us consider two independent particles with different
masses m and m’. Let X and X’ be the Nelson processes in the
class N(.%) representing the quantum dynamics of those par-
ticles, respectively. Since the Euler-Nelson equations for X
and X' are of the same form,

YDD.X + D.DX) = — VV¢(X), (3.15)
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we conclude that their sample path behaviors are identical
and so their dynamics are. As the magnitude of their qua-
dratic variations are different, i.e., #i/2m and #/2m’, howev-
er, the probability measures defined on the sample paths are
different. This fact results in having the mass parameter in
the Schrodinger equation. Notice that the mass enters in the
Schrodinger equation only through a combination (#/m) in
the case of gravitation. Even in quantum mechanics, the
dynamics of the particle in the gravitational field is of geo-
metric nature, but the quantum fluctuation, that is, the path
probability measure, is not.
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On Jacobi’s decomposition of the motion of a heavy symmetrical top into the
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Jacobi discovered that the motion of a heavy symmetrical top can be decomposed into the motions
of two torque-free triaxial tops. In this paper we investigate the connection between the three sets
of the dynamical constants in the three top motions. The formulas connecting these constants are
found to be projective transformations (fractional linear transformations).

PACS numbers: 03.20. + 1

1. INTRODUCTION

The position of a rotating rigid body with one point
fixed is completely determined by three independent varia-
bles, for example, three Euler’s angles. Therefore, once the
Euler’s angles as functions of time are found, the further
computation of the orthogonal matrix whose nine elements
are the direction cosines of the moving body axes with re-
spect to the fixed space axes, may seem to be an unnecessary
tedious work without yielding any further new information
in it. However, Jacobi found that the orthogonal matrix M,
which describes the motion of a heavy symmetrical top can
be decomposed into two orthogonal matrices M, and M,,
each of which represents the motion of a torque-free triaxial
top."? Jacobi expressed the matrix elements of all the three
matrices explicitly in terms of the theta functions and em-
ployed the addition theorem of the theta functions in estab-
lishing the relation

M=MM, (1L.1)

where M, is the transpose of M,. The physical meaning of
Eq. (1.1)is that the motion of a heavy symmetrical top can be
decomposed into two motions of two torque-free triaxial
tops. Let us consider the motion of a heavy symmetrical top
M with the principal axes {x,, y,, z,) and the motion of a free
triaxial top M, with the principal axes (x,, y,, z,), both of
which are described with respect to a frame of reference
{x ,p, z) fixed in space. Then the motion of the torque-free
triaxial top observed from the fixed space is described by the
orthogonal matrix M, and the same motion when observed
from the frame of the heavy symmetrical top (i.e., the observ-
er moving with the heavy symmetrical top) is described by
the orthogonal matrix M,. The relative motion M, turns out
to be also representing the motion of a torque-free triaxial
top. But not only the dynamical parameters but also the kin-
ematical parameters (e.g., moments of inertia) of the two tri-
axial tops underlying the motions M, and M, are different.
In Sec. 2 we will give a summary of those aspects of the
rigid-body motions that are needed for our study. The pre-
cise description of the position of a rigid body at any instant
requires three transcendental constants: the modulus of the
elliptic functions, the time scaling factor, and the additive
constant in the argument of the elliptic functions. Klein and
Sommerfeld call these constants transcendental in contrast
to elementary physical constants which represent the energy
and angular momenta of the motion.” Among the three top

1584 J. Math. Phys. 23(9), September 1982

0022-2488/82/091584-05$02.50

motions M, M,, M, involved in Jacobi’s decomposition
theorem, the equality of the three time-scaling factors and
that of the three moduli are obvious because elliptic func-
tions with different moduli represent completely different
functions and the different time-scaling factors would make
the concordant repetition of the periodic motions of the
three top motions impossible. Jacobi found a simple addition
relation (including sum and difference) for the third type of
transcendental constants (the additive constants).

The purpose of our study is to find some simple rela-
tions between the three sets of physical constants of the three
top motions. The possibility of finding the simple relations is
suggested by the following two observations: (1) The squared
modulus & ? of the elliptic functions is the cross ratio of the
four physical constants and the constancy of the cross ratio
under a projective transformation [fractional linear transfor-
mationx’ = (ax + b)/(cx + d)]* gives a hint that these three
sets of physical constants may be connected by the projective
transformation which will ensure the equality of the moduli
of all the elliptic functions used in the description of the three
top motions. (2} The formula for the addition theorem of the
elliptic functions is fractional (the trigonometric functions
are special elliptic functions with zero modulus and the de-
nominator for the trigonometric addition theorem degener-
ates into unity).> The addition relation p = g, + g, disco-
vered by Jacobi for the third type of transcendental
constants when combined with the fractional addition
theorem of the elliptic functions also hints at the projective
relation between the three sets of physical constants.

We will show in Sec. 3 that the above two observations
indeed lead to the remarkable result: the three sets of phys-
ical constants in Jacobi’s decomposition theorem are con-
nected to each other by simple projective transformations.

The relative magnitudes of the physical constants of a
top motion must satisfy either increasing or decreasing se-
quential order in a particular way, and our result certainly
meets this criterion which we see in Sec. 4.

2. THE PERTINENT RESULTS FROM THE RIGID-BODY
DYNAMICS
A. A heavy symmetrical top

We denote the principal moments of inertia of a rigid
body by (Z,, I,, I;). For the motion of a symmetrical top
(I, = I,) with one point fixed under the action of the uniform
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gravitational force, we have
E=15(0%+¢%sin’0) + ;07 + Mglcos 6, (2.1)

where E is the total energy. 9, ¢, and ¢ are usual Euler’s

angles. w,_ is the angular velocity component along the axis

of symmetry. M is the total mass and / is the length between

the center of gravity and the fixed point. We rewrite (2.1) as
E' =E— Uw? =1I,(0*+ ¢*sin’ 6) + Mgl cos 6.

. 2.2

Now we introduce 2.2)
u={2E'/I,)'* and v=(2Mgl/I)"? (2.3)

where both  and v have the dimension of angular velocity.
In terms of « and v, the three dimensionless physical con-
stants of the motion of a heavy top will be

a =u/v. {2.4)
a = the angular momentum component along the axis
of symmetry divided by vI,. {2.5)

b = the angular momentum component along the space
z axis (antiparallel to the gravity) divided by vl,.
{2.6)
We will always divide any angular velocity by v to make it
dimensionless. The expression for the dimensionless angular
velocity & of the nutation is given by
#?sin? 0 = (1 — cos® @)@’ — cos 6)
—(b—acos8). (2.7)
We put x = cos 6. Then (2.7) becomes a cubic expression in
x,
x?=(1 —x}a — x) — (b —ax)?
=[x = x))lx — xo)lx — x3) = f{x), (2.8)
where x,, x,, x5 are the roots of the cubic equation f(x) = 0.
It can be shown that the three roots are all real,
x>l>x,>x,> — 1, (2.9)
and the physical range of x( = cos 8) is
(2.10)

The cubic equation f{x) = 0 has an interesting structure in it:
when @ and b are interchanged in (2.8) and if @' is replaced by
a which is given by

a=a—-b*+a,

Xy > X > X3

(2.11)

then the three roots x, ,x, x; will still remain unchanged. In
that case, Eq. (2.8) can be written

Slx)=(1—=xYa —x)— (a — bx)’

= = x,)(x — xo)(x — x3) (2.12)

with the same set of the three roots. It turns out that this
symmetric property of the cubic expression f(x) plays an im-
portant role in our analysis on the decomposition theorem.

From either (2.8) or (2.12), by putting x = + 1, we ob-
tain the following two expressions:

a—b= +[(x,— I —x)(1 —x;)]'7%, (2.13)

a+b=[x,+ 1)(1 +x)(1 + x,;)]"2 (2.14)
Further, from (2.8) we obtain

b—aa= t[x, —a)e —x,)a —x,)]'? (2.15)

ax;, — b=+ [(x} — l)ix, —a’)]"?, (2.16)
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b—ax,= + [(1 = x})a’ —x,)]"% (2.17)
Also from (2.12), we get

a—ba= +[x,—ala—xla—x]"%  (218)

bx, —a= + [(x} — l)jix, —a)]"? (2.19)
a—bx,= + [(1 —x})a—x,)]'"~ (2.20)
Since all the quantities in the above expressions are real and
we have the inequality condition (2.9), the expressions (2.16),
(2.17), (2.19), and (2.20) will give
X >a >Xy> X5,
(2.21)
X;>a>X> X5
All the above expressions (2.13) through (2.21) will be needed

later.
The period T of the heavy top motion is given by'

T =2K /n, (2.22)
when 7, the time scaling factor, is defined by’
n=ix, —x;]'% (2.23)
K in (2.22) is the complete elliptic integral
/2
= f _dy_ , (2.24)
o (1 — k?sin?y)!/2
where k is the modulus'
k? = (x; — x3)/(x) — x3). (2.25)

In order to express the Euler’s angles ¢ and ¢ as explicit
functions of time, Jacobi introduced the two constants g,
and g, which are expressed in terms of the three roots
through the elliptic function sn'

17112 - 172
sntigy) = 1| 2L, gy = [ 22|

— X, 1+ x5
(2.26)
Since cn? = 1 — sn” and dn? = 1 — k * sn?, (2.26) gives
] xl-xz]l/z ) _[1+x1]1/2
cn(ig,) = , enlig) = |—
(ig,) | x, (ig2) T+x,
(2.27)
_ _ 172
dn(lql) — [(xl x2)(l x3)] ,
(e — x3)(1 —xy)
172
dn(ig,) = [ L+ x2] : (2.28)
14 x,

where (2.25) has been used for (2.28). In accordance with
Klein and Sommerfeld, we call the constants # {the time-
scaling factor), k {the modulus), g,and ¢, introduced above
“the transcendental constants,””* while the constants a, b,
ala'), x,, x,, and x, all of which appear in the cubic expres-
sions (2.8) and (2.12) we call “the physical constants.”

B. A torque-free triaxial top

We denote the principal moments of inertia of the first
free triaxial top by (4,, B,, C,). Then the four physical con-

stants of the motion of the torque-free triaxial top will be®
R (2.29)
A, B, C, i

where /, is the magnitude of the total angular momentum
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and £, is twice the total energy (the kinetic energy). Each of
these has the dimension of angular velocity. In the decompo-
sition theorem, since the motion of a heavy top is connected
with the motions of two free tops, we divide each of the above
four constants by v which is defined by (2.3) to make it di-
mensionless as we did in the case of the heavy top motion.
Therefore it is always understood that the four physical con-
stants in (2.29) have already been divided by v and they are
dimensionless. For the sake of conveniency, we write the
four physical constants as

o=, =t oo s
11 Cl Al Bl
The period T, of the motion is given by®
T,=2K,/n,, (2.31)
where 7, the time-scaling factor, is defined by®
ny = [(so — sa)ls, — s3)]"% (2.32)
K, in (2.31) is the complete elliptic integral
/2 d
K, = f 24 . (2.33)
o (1 —k2?sin?y)!/?
k, is the modulus given by®
2 __ (S3 — 52)(51 — SO) (234)

1=

(5o — $2)ls7 — 53) '

Since two torque-free triaxial tops are involved in the
decomposition theorem, we write the four physical con-
stants for the motion of the second free top as

=2, g b g b g b g

1, C, 4, B,
Like the case of the first free-top motion, the period 7>, the
time-scaling factor n,, the complete elliptic integral X,, and
the modulus k, are given by

T,= 2K (2.36)
n,

ny = [ls5 —s3)is7 —s53)]"%, (2.37)

k2= (53 — sa)fsi —s0) (2.38)

(so —s3)(s —s5)

In order to express the Euler’s angle ¢, of the first free-
top motion as an explicit function of time, Jacobi® intro-
duced a constant p,

_ 172
sn(ip,) = i [M] : (2.39)
51— Sy
whence we get
e 112
en(ip,) = [Lﬁ] : (2.40)
5y — 8,
_ 1/2
dn(ip,) = [i—‘—i] , (2.41)
153

where (2.34) has been used for (2.41).
Similarly, for the second free-top motion, a constant p,
1s defined by

(2.42)

’ ’

s, —s5 172
3
S1— 3%

sn(ip,) = [
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whence we have

I
en(ip,) = [sf sz] , (2.43)
1 — %o
i — 5| — 5517
n(ip;) = | = o (2.44)
St — 5

3. DERIVATION OF THE PROJECTIVE
TRANSFORMATIONS CONNECTING THE THREE SETS
OF PHYSICAL CONSTANTS

Our goal is to find the connecting formulas between the
three sets of physical constants (x, x,, X3), (Sg 51, 52, 53), and
(S('), S; ’ Sé» S:’i )

Because of the concordance of the periodic motions of
the three tops, the periods of the three motions must be the
same and further the nature of all the elliptic functions de-
scribing the three top motions must also be the same, that is,
the three moduli must be equal. Then we must have

k=k, =k, (3.1)
n=n,=n, (3.2
The expressions of the three squared moduli,
k2=X2—%
X, — X,
k? = {53 — so)lsy — So)’
(So — S2)lsy — 53)
L 55— s3)ist —s)
T s —sllsi —s3)
indicate that they are cross ratios of (x,, X,, X3), (So» 51, 52, 53),
and (s, s}, 55, 53). There is a theorem which states that the
cross ratio of four numbers is invariant under a projective

transformation. Therefore, we try the projective transforma-
tion*

’

o Ax+ B , (3.3)
Cx+D

where 4, B, C, D are constants. The transformation (3.3)

carries the four numbers (o0, X,, X,, X;) into the four

numbers (s, 5;, 5,, §3) and automatically ensures the equality

of the two squared moduli k£ > = k. Since x = oo is trans-

formed into s,, (3.3) can be rewritten as

BC — AD A
§—8Sg= ——————, S= —. (3.4)
C(Cx+ D) o
Now from (2.32), (2.34), and (2.39)~(2.41), we obtain®
S| —Sp= tnm _‘% ’
sn(ip;)en(ip,)
5, — 5y = + n, Slipdnlp,) (3.5)
i en(ip,)
k i sn(ip,)
§3— 8o =

n—,
~ ' icn(ip,)dn(ip,)
where k > =1— k3.

Jacobi found the addition relation between the tran-

scendental constants p,, ¢,, ¢, all of which we have intro-
duced in Sec. 2. It is'

Pi=4q:+ 49 (3.6)
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We apply the addition theorem of the elliptic function sn to (3.6)°:

sn(ig,)cn(ig,)dn(ig,) + sn(ig,)cn(ig,)dn(ig,)

: (3.7)

sn(ip;) = sn(ig, + iq,) =

We substitute (2.26) through (2.28) into (3.7) to obtain
[ — (1= x3)]"2 4+ (x) = x)(1 —x3)"°

1 —Xx x4+ X, X3 — X5 X4

sn(ip,) =i

1 — k2 sn*(ig,)sn’(ig,)

_ Lo = 10 4 x0)(1 4+ X1 + [ + DT = x5)(1 — %))
[bey =+ I = )1+ 23)12 — [y — 1)1 4 x)(1 — x3)]""2

(1=x3\"? bx,—a
=i
x—1 a— bx,

in which we have used (2.13) and (2.14). Substituting (2.19)
and (2.20) into (3.8), we obtain

_ 172
sn(ip,) =i [u] . (3.9)
a—x,
Sincecn?=1—sn? dn®> =1 — k2 sn?, and
k?=(x, — x3)/(x, — x3), (3.9) leads to
_ 172
en(ipy) = [M] , (3.10)
a—x,
_ _ 172
dn(ip,) = [W] ) (3.11)
ey — x3)la — x)
From (2.23) and (3.2), we have
ny=n=\x, —x5]'2 (3.12)
From (2.25) and (3.1), we have
kit=k?=1-k>= "% (3.13)
X — X3
Now we substitute (3.9)~3.13) into (3.5) to obtain
si—sy= 2202 103, (3.14)
2o —x;)

where we have used (2.18). Comparing (3.14) with (3.4), we
can put

BC—4D  a—ba s—i

C({Cx+D) 2a—x) °T ¢’
Since this relation must hold for any x, we obtain

S5o=A4/C=5/2. (3.15)
Thus (3.14) can be written
_ — bx.
=2y azba a7 123,016
2 2a—x,) 2(a — x;)

where x, = o and it is transformed into s, = b /2. So the
transformation formula between the two sets of four
numberss; and x;{x, = o) can be written, dropping the sub-
script /,

s =(a — bx)/2(a — x),
which has the same form as (3.3) and we have obtained the
desired projective transformation between s, and x; with
i=0,1,2,3.

For the second free top motion, that is, the relation

(3.17)
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_ Lo = /%, 4+ 1] Pa + b) + [y + /6, — 1)1 %@ — b)
[(1 = x)/(1 +2,)1" @ + &) — [(1 + x)/(1 = x,)]" %@ — b)

(3.8)

|

between the physical constants s/ and x,, starting with the
relation p, = ¢, — g,, using (2.15)~(2.17) and employing the
same method used for the derivations of (3.14) and (3.17), we
obtain

b—ad

s’f_s’ = 318)
0 2(a’ — x;) (

, a

=2 (3.19)

o boax (3.20)

§f=—.
2{a’ — x)

X, = oo I8 carried into s by (3.20). If we recall (2.30) and

{2.35), the above results (3.17) and (3.20) can be written

L, a—bx, I,  b—ax,
A4, Aa—x) 4, 2a—x,)
L,  a—bx, I b —ax,
B, 2a—x) B, 20a'—x)
A _a—-bxy, L, _ b—ax
¢ 2e—-x) C 2 —x)
h_ b h_a

12 L, 2

Thus we have found that the two sets of physical constants of
the two free-top motions are connected to the physical con-
stants of the heavy top motion in the form of projective trans-
formation.

4. DISCUSSION

In the motion of a free triaxial top, if we denote the
principal moments of inertia by 4, B, C, twice the kinetic
energy by 4, and the magnitude of the total angular momen-
tum by /, it can be shown that for any possible motion of the
top, the parameter /4 // must lie between / /4 and ! /C for
A> B> Cor 4 < B <C, otherwise no physical motion is pos-
sible.® Observing (3.14) and (3.18), we note that all the nu-
merators in each set of the expressions are the same. Then if
we use the inequalities in (2.21), we can easily show
52>83>5,> 5, for a — ba > 0 and the opposite order of se-
quence for a — ba <0. s, > 55 >5{ > 5] for b — aa’ > 0 and
the opposite order of sequence for b — aa’ < 0. If we use
(2.30) and (2.35), the above argument can be written
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L L _hy .
Z > —El— > —IT > —CT or the opposite sequence,
(4.1)
LY > LY > hy > L or the opposite sequence.
A2 B 2 12 CZ
This result (4.1) certainly meets the criterion mentioned ear-
lier.
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A class of vector fields is identified which (locally) generate first integrals of a dissipative system.
The structure of these vector fields and of the corresponding invariants is studied. The
relationship with a previously proposed generalization of Noether’s theorem for nonconservative

systems, is pointed out.

PACS numbers: 03.20. +i,02.40. + m

I. INTRODUCTION

In this paper we will study a relationship between a
class of vector fields, defined on the extended state space of a
classical dissipative system, and the set of (local) first inte-
grals of that system.

In calling a system dissipative (or nonconservative) we
refer to the property that, in terms of a given Lagrangian .,
the equations of motion are of the form

4(9)_22

dt aq"‘)
with O, some functions which may depend on all variables z,
¢',¢'. Asis well known,' such a description does not necessar-
ily prevent the system from admitting a purely Lagrangian
description in terms of some other Lagrangian .#"’'. The no-
tion of dissipativity should therefore always be interpreted
relative to some given Lagrangian.

Recently, several papers>~ have been devoted to the
problem of finding transformations which, in some way or
another, generate an invariant of a dissipative system. A gen-
eral approach, based on d’Alembert’s differential variational
principle, has been presented in Ref. 2. More closely related
to the present paper is a generalized version of Noether’s
theorem and its converse, which applies to general noncon-
servative systems (see Ref. 3). This result has been further
extended to generalized mechanical systems (with .¥” and Q,
depending on higher-order derivatives),* whereas the field-
theoretical case has been treated in Ref. 5.

The method described in this paper arises mainly from
the geometrical description of a dissipative system in terms
of a nonclosed two-form of maximal rank. The existence of
such a two-form immediately allows for the identification of
a class of vector fields which generate first integrals of the
given system in an unambiguous way. To a certain extent the
present treatment will closely resemble the discussion of
Noether symmetries of a Lagrangian system (with Lagran-
gian .¥’), regarded as symmetries of an exact contact struc-
ture d6, where 0 represents the so-called Cartan-form associ-
ated with .%":

i=1,.,m, (1)

“Work supported bv a NATO Research Fellowship Grant.

® Permanent address: Ryksuniversiteit Gent, Instituut voor Theoretische
Mechanika, Krijgslaan 271-S9, B-9000 Gent, Belgium.

“Senior Research Assistant at the National Fund for Scientific Research
(Belgium).
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6= Ldt+ %—'?;(dq‘ — ¢dt), 2)
ql

(see, e.g., Refs. 6 and 7). Unlike the case of Noether symme-
try vector fields, however, the vector fields associated with
invariants of a dissipative system in general fail to be dyna-
mical symmetries of that system.

In Sec. 2 we recall some general concepts which we shall
adopt in this paper concerning the description of a dissipa-
tive system. In Sec. 3, we exhibit a set 2 of vector fields on
the extended state space, which can be related in a very pre-
cise way to the first integrals of the system under consider-
ation. Itis also shown that 7 remains invariant under a class
of dynamical symmetries. Section 4 is devoted to the struc-
ture of vector fields Ye?”, and a system of partial differential
equations for the components of Y is derived. In Sec. 5, we
analyze the structure of an invariant of a dissipative system
in terms of the components of the corresponding generating
vector field. Noether’s theorem for nonconservative sys-
tems, as presented in Ref. 3, is briefly reviewed in Sec. 6 and
its connection with the present approach is clarified. Before
concluding with a few general remarks we discuss, in Sec. 7,
aspecial class of dissipative systems for which one can imme-
diately associate a dynamical symmetry with each Ye?".

The following notations will be used. The sets of smooth
functions, vector fields and p-forms on a differentiable mani-
fold N are denoted by C =(N ), Z°(N ) and £2? (N}, respective-
ly. The Lie derivative of a p-form S with respect to a vector
field X is denoted by L, 3, while the inner product of X and 3
iswrittenas i,/ or, in caseSisa one-form, as (X,8 ). Finally,
for the Lie derivative of a function f with respect to X we also
frequently use the notation X ( f).

. DISSIPATIVE SYSTEMS

Let M be a real n-dimensional differentiable manifold,
representing the configuration space of a mechanical system.
Local coordinates on M will be denoted by (¢',...,¢"). Since
we will primarily be dealing with time-dependent systems, it
is convenient to introduce the extended state space
N = RX TM. The natural coordinates on VN are (¢, ¢',4').

A dissipative system will be characterized by a function
e C *(N), the Lagrangian of the system, and a semi-basic
one-form 4 on TM, which may be time dependent. While a
general discussion on semi-basic forms can be found, e.g., in
Ref. 8, it suffices for our purpose to point out that g will
locally be of the form
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= Q.dq’, (3)
i.e., without terms in dg’, but with the functions Q, depend-
ing on the 2n + 1 variables (t, ¢/,¢). Regarding /i as a one-
form on N in a natural way, we now introduce the following
two-form on V:

a=do+pahdt (4)
with 6 the Cartan-form (2) associated with .. For conve-
nience, we henceforth put 4 =gz Adr.

The further discussion will be restricted to those cases
inwhich .¥ isregular, i.e., the Hessian matrix (3 >.¥ /3¢' 3¢
is nowhere singular. It then easily follows that « is a two-
form of maximal rank, namely 2x. In particular, Ker a(p)

= {veT, N:i,a(p) = 0} defines a one-dimensional subspace
of the tangent space T, N at peN. We furthermore

assume that Ker o = u Ker a(p)), as a line bundle over N,

is trivial. This means that there exists a nowhere-vanishing
vector field Xe #°(N ) which generates Ker a(p) at each peN.
A straightforward computation (in local coordinates) reveals
that (X,dtr ) #0. This in turn guarantees the existence of a
vector field Ae Z7(N ) which is completely determined by
i,a=0, {Sa)
{(Adr)=1. (5b)
Using the local expressions (2) and (3) for @ and /1, respective-
ly, it can easily be verified that 4 is a second-order vector
field which, in terms of the natural coordinates on &, is given
by
8 . d ;0
s=2ig a2, (6)
8q 94’
where the functions A ‘ are uniguely specified by the
identities

2 2 2
FPL BT PL AL,
04'og ogd¢ | dgar  dg
i=1l..n (1)

Consequently, the vector field A defined by (5a and 5b) is
precisely the dynamical field associated with a dissipative
system whose equations of motion are locally given by (1}.

Before proceeding, we notice the following. Suppose the
one-form (i is such that du=d (& Adt) = 0. Poincare’s
lemma’ then assures us that g is locally exact. Since i is a
semibasic form, this leads to the following local expression
for u:

u= —d(Vom)Ads,

where ¥ is some function defined on {an open subset of)
R X M and 7R X TM—R X M denotes the natural projec-
tion. Hence, in this case the substitution
KL = ¥ — Vorimmediately provides us with a pure-
ly Lagrangian description of the system in terms of .’ (i.e.,
without dissipative terms). Unless explicitly stated otherwise
we henceforth restrict our attention to those cases whereby
da = dp#0, in this way narrowing somewhat the notion of
a dissipative system. If % represents the usual physical La-
grangian of a2 mechanical system (i.e., .#" = kinetic energy
— potential energy), the functions Q; can then be interpret-
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ed as the components of forces that are not derivable from a
potential.

In order to fix the terminology we now introduce a few
definitions.

Definition 1. Ye#’(N ) is a dynamical symmetry of
A iff [Y,4 ] = h4 for some function AeC “(N ). Dynamical
symmetries map integral curves of 4 into integral curves, up
to a possible change of parametrization.

Definition 2. Ye#’(N ) is a trivial symmetry of
A41ff Y = hA for some heC *(N ). The set of trivial symme-
tries is precisely the subset of dynamical symmetries which
consists of all smooth sections of Ker a.

Definition 3: YeZ’(N) is a conformal symmetry of
aiff L, a = ka for some keC (N ). In particular, Yis called
asymmetry ofa if L,a =0.

From these definitions, the definition (5) of 4 and the
observation that all smooth sections of Ker a form a one-
dimensional module over C *(N ), we immediately derive:

Corollary 2.1: Ye&’(N ) is a dynamical symmetry of 4iff
fya@=0.

Corollary 2.2: Each conformal symmetry of a is a dyna-
mical symmetry of 4. (The proof of Corollary 2.2 is based on
the formula® iy, @ = Lyija — iy Lya)

To close this section we now give some useful expres-
sions for certain differential forms on V, in terms of a specific
basis of one-forms.

Given a dissipative system with Lagrangian .¥" and se-
mibasic one-form £, a basis for the set of one-forms on a local
coordinate neighborhood UC N is provided by the forms:

dt, dg' — g'dt, dg' —A'dt, (i=1,..,n) (8)
whereby the functions A ‘are defined by (7). For any function

FeC =(U) we then have
dF = A (F)dt + -E?—Ff(dq" —qgdty+ a—F_(dqi — A'dr), (9)
dq' a¢'
and the local expressions for 1 and @ become
u=Q,dg — g'dt)N\dt, {10a)
> ;
d 'dt )\ (dg' — g'dt
= %49 q,( ¢ — ¢dt)\(dg' — ¢'dr)
3y A C
+ ——-?(dq Adt)N(dg — ¢dt). (10b)

lil. VECTOR FIELDS GENERATING FIRST INTEGRALS

For a given dissipative system with associated two-form
a, we consider the set of vector fields Y defined on N, or on
some open subset of N, which satisfy the condition

d(iya)=0. (11)
This set will be denoted by 7. Clearly, #” contains all trivial
symmetries of A. For each open subset UC N (regarded as a
submanifold of NV ) the corresponding subset of 77, consisting
of those vector fields which are defined on U and satisfy (11),
admits the structure of a linear space (over R). However, due
to the fact that da £0, 7~ will not be closed under the Lie
bracket, i.e., the vector fields in 7~ do not form a subalgebra
of #°(N ). Taking into account the definition (4) of @, we find
that Ye7 " iff
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Lya =iydy. (12)

If 4 were closed we would recover here the characterization
of Noether symmetry vector fields for Lagrangian sys-
tems.®” The following result is now straightforward:

Proposition 3.1: For each Ye”~ there exists, at least lo-
cally, a first integral G of 4 which is related to Y according
to'®

iya = dG. (13)

Proof: By Poincare’s lemma,’ condition (11) implies
that /. a is locally exact. Hence, a relation like (13) holds at
least in a neighborhood of each point {where Y is defined).
Using (5a) we then see that

0=(4,dG)=4(G). a

Conversely, we also have

Proposition 3.2: For each first integral G of 4, defined
on some open subset UC N, there exists a vector field
Ye &’ (U ) for which (13) holds (and hence, Ye?"). This result
is an immediate consequence of the following lemma.

Lemma 3.3: Let 3 be a one-form defined on some open
subset UCN. Then, (4,8) =0 iff 8= i,a for some
YeZ(U).

Proof: We prove the lemma for U = N. The sufficiency
immediately follows from (5a).

To prove the necessity we first notice that « induces a
vector bundle homomorphism p: TN—T *N, defined by
plv) = i,a(p) for veT, N. Simple algebraic considerations re-
veal that p(T,N) = {B,€T ¥*N:(4 (p),5,) = 0}. It then fol-
lows that for a given Sef2 '(N), satisfying (4,8 ) = 0, the
equation i,a = 8 admits a solution for ¥ in a neighborhood
U, of each point peXN. In order to obtain a global solution, we
use a partition of unity argument (see, e.g., Ref. 9, p. 122). Let
§ U, .f, ] be a partition of unity subordinate to the covering
{U,} of N. In particular we have £, f (p) = 1 at each point
p. It follows from above that for each A there exists a vector
field Y;e€27(U,) such that iy. (a|,,) = B|y,. Next, we de-
fine a vector field Y, €27(N) by

=/f,p)Y (p) for all pel,,
Y, (p)
=0 for all p€U, .

Putting ¥ = =, Y,, whereby the sum on the right-hand side
reduces to a finite sum at each point, we finally have

iva= 3 friv. lal) = (;AB) -5,

which completes the proof. O
In order to prove Proposition 3.2, it now suffices to
notice that G is a first integral of 4 iff (4,dG ) = 0. A few
remarks are in order here. First of all, it is clear from (13) that
for a given Ye?”, the corresponding first integral G is locally
determined up to a constant. Conversely, it follows from the
maximal rank condition for a that for a given invariant G of
4, the vector field Y satisfying (13) will be determined up to a
trivial symmetry of 4. Consequently, if we call two vector
fields in 7~ equivalent if they differ by a multiple of 4, it is
seen that there exists, at least locally, a precise one-to-one
correspondence between the resultant set of equivalence
classes of vector fields in 2~ and the set of first integrals of 4
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{(whereby two first integrals are identified if they differ by a
constant).

Moreover, it is interesting to notice that each invariant
G of A is also an invariant of the corresponding vector field
Ye?”. [This follows immediately from {13)].

Obviously, the invariants generated by trivial symme-
tries of A are constants. However, if 7~ contains a globally
defined vector field Ye 27(N ) which is not a trivial symmetry
of 4, and if moreover N would be such that its first cohomo-
logy class vanishes [i.e., H '(N) = 0], then (13) would provide
us with a global (nontrivial) first integral G. This follows
from the fact that if H '(N¥} = 0, then each closed one-form is
globally exact."’

So far, the situation described here is quite analogous to
the one encountered in the theory of Noether symmetries.’
In the present case, however, the vector fields Ye?" are in
general not dynamical symmetries of A. This can be easily
seen from

fiya @ =Lyisa—isLya
= —isiydu, (14)

whereby use has been made of (5a) and (12). Since the right-
hand side does not vanish in general,'? Corollary 2.1 tells us
that ¥ can not be a dynamical symmetry of 4.

A well-known property concerning symmetries and in-
variants of a dynamical system, is that the deformation L ,G
of an invariant G under a dynamical symmetry Z yields a
new (not necessarily independent) invariant. This result,
which is sometimes referred to as the related (first) integral
theorem,'* enters the present discussion as follows (taking
into account Corollary 2.2):

Proposition 3.4: If Ze #°(N ) is a symmetry of a, then it
leaves 7 invariant, i.e., [Z,Y ]Je” " for each Ye?". Moreover,
if G is a first integral of 4, generated by Y, then L, G is the
corresponding first integral generated by [Z,Y].

Proof: If L, = 0 and Ye”", we immediately obtain:

diizy @) =d(Lziya)=L,d(iya)=0.

Hence, [Z,Y ]e?”. Furthermore, we locally have [using (13)]:

Ly @=Lziya=d(L,G),

which completes the proof. d
We can extend this result slightly to conformal symme-
tries Z of a for which L,a = ca for some constant ¢. We
then also have that Z leaves 7" invariant and the related first
integral, generated by [Z, Y], will be given by L ,G — ¢G.
In Sec. 4 we will focus our attention on the local struc-
ture of a vector field Ye7".

IV. STRUCTURE OF VECTOR FIELDS IN >~
From (4) and (12) it follows that Ye 7" iff

L,d0= —di,pu.
Applying Poincare’s lemma,’ we find that locally
Ly0= —iyu+dg, (15)

for some smooth function g.

Within the local context to which we restrict ourselves
henceforth, we may contend that (15) represents the basic
equation for constructing a vector field Ye?".
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Suppose we are working in a local coordinate neighbor-
hood and put
9
Ui EYR
Using (2) and (3) we find that Eq. (15) splits up into a set of
partial differential equations for £ ,%,{ and g

d ;0
Y=¢(— f— 16
§az+§af+ (16)

) .
f“"_%%(a—?— "ﬁ):fi, (172)
g’ ¢ \d¢ a4’/ ¢
¢ J . 2 ¢ )
PR AN
dq' a¢ \dq' aq' dq'dq’
FPY . PY 3
b+ Tt Q=K (17b)
8q'o¢ ag'at dq'
& 4 (agf s ) 9.8 . ¥ ..
f_ el vt-SNNNNS -2 bl el '
ot * ¢ \ dt ot * ot tt aqu
2 2 ¢ 2 -
I By P g
96'9¢” 3¢ 3¢ ot
(17¢)

When Q; = 0, these equations are precisely the partial
differential equations for the components of the infinitesimal
generator of a one-parameter family of Noether symme-
tries.” Moreover, from (17) we can easily derive the so-called
generalized Killing equations for Noether symmetries of
nonconservative systems, as established in Ref. 3. Indeed,
multiplying (17b) by ¢, summing over /, and adding the re-
sulting equation to {17c) we obtain, together with (17a), a
system of n + 1 partial differential equations in £°,£, and g,
which precisely coincides with the system of equations de-
rived in Ref. 3. We will investigate this relationship more
thoroughly in Sec. 6.

In order to gain further insight in the structure of solu-
tions of (17), we return to relation (14). With A and Y given by
(6) and (16), respectively, we have in local coordinates:

(v4]= —A(§)b%+(77"—4(§‘))8%

(YA — Al
dg

Writing out (14) in terms of the basis of one-forms (8) and
using expressions (10a and 10b), we get by equating the coef-
ficients of d¢' — A ‘dt,

90
g

whereby we have introduced the matrix
(g¥) = (8*.£ /3¢'3¢/) . Consequently, the vertical compo-
nents 7' of each Ye " are completely determined by the hori-
zontal components &' and the time component . From (18)
we can also learn that the flow generated by Y will map
integral curves of 4 into curves on N which in general do not
arise from a natural lifting (and extension) of curves on the
configuration space M. For the latter to hold it would be
necessary that 7' = 4 (£) — §'4 (£), (see, e.g., Ref. 7).
Next, we recall that for each Ye?" the vector field
Y + h4 (with 4 an arbitary smooth function) again belongs
to 7" and moreover generates the same constant of the mo-

7' =4 ~da(§) +g'—HE"  — ¢, (18)
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tion. Since 4 has time component 1 it is clear that, in order to
find a vector field ¥ which generates a certain invariant of 4,
the time component § may, in principle, be chosen arbitrar-
ily (e.g., £ = 0). It is conceivable that in some cases this free-
dom of choice might enable one to reduce the complexity of
the system of Eqgs. (17).

V. INVARIANTS OF A DISSIPATIVE SYSTEM
Rewriting (15) we get
iyd0= —i,u+dg—(Y,8))

With (4) this becomes
iya=d(g— (Y.,0)).

Comparing this with (13) we may conclude that, up to a
constant, the invariant generated by Y is given by

G—g—(Y.0)—g— f§+i‘—j(§"—4"§)- (19)

Hence, whenever (£,%',¢,g) is a solution of (17), Eq. (19) im-
mediately provides us with a (local) constant of the motion.
(Notice the resemblance with the expression for an invariant
of a Lagrangian system, generated through Noether’s
theorem.)

Conversely, let us assume we are given a constant of the
motion G of a dissipative system. According to Proposition
3.2 there exists a vector field Ye?" for which (13) holds.
Using (9) and (10} and again representing ¥ by (16), we can
write (13) in terms of the local basis of one-forms (8), as

FyY  PLN\.. -
—_—— A d i .’d
(aq.,&/ Wq,,)(g J¢ Yidg' — ddr)
Frs . . o
— A dg' — ¢'d
+aq"'aqu ¢)dg' —q'dr)
iFry ) ; )
— (E/— FENdG' — A'd
%3 q,.(§ ¢¢ )ldg 1)
= —a—g,,(dq" —gidt) + a—(.;T(an"' — A'dr). (20)
dq dq

Hereby we have taken into account that 4 (G } = 0. Equating
the coefficients of dg‘ — A ‘dr in (20), we then obtain

Y ija_G I

&'—g¢ g % i=1,..,n. (21)

In view of the observations made in the previous sec-
tion, we may conclude that for a given constant of the motion
G, the corresponding vector field Y is locally completely de-
termined by (21) and (18), taking into account the liberty of
choice we have for §.

As a control, a simple but rather tedious calculation will
show that if £ ‘and %" are given by (21) and (18), respectively,
(e.g., with £ = 0), the remaining conditions which result
from (20) by equating the coefficients of dg' — ¢'dt will be
satisfied identically.

We illustrate the above procedure for linking a vector
field to a given invariant of a dissipative system, on the fol-
lowing example.
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Consider a mechanical system with Lagrangian
£ =137_ (¢’ — Vlg), and “gyroscopic forces”
0, = Q.(t,9,9), satisfying the condition Q,¢' = 0, (e.g., take

Q. = 7,(t,9)¢, with ¥, = — ;). The equations of motion
are'
- av .
g +——=0:t49.4) (22)
9q

As is well known, a first integral of (22) is provided by the
energy E =127_,(¢')* + V(q). From (21) and (18) we then
derive that the corresponding vector field ¥ (with £ = 1} is
given by

Y='§—+Qi:a.—<'
q

Note that, accidentally, Y here also represents a symmetry of
the Lagrangian (i.e., L. = 0). All other vector fields, gen-
erating the energy integral, are obtained by adding to Y an
arbitrary multiple of the given dynamical field

s .4 ( av ) 3
=_+ _+ __+ '
o Tag PYRE P

In Sec. 6 we will compare the generalization of Noether’s

theorem for nonconservative systems, as established in Ref.
3, with the method and results described above.

VI. NOETHER’S THEOREM FOR NONCONSERVATIVE
SYSTEMS

We first briefly summarize the main argument devel-
oped in Ref. 3.

Suppose we are given a dissipative system, described by
Egs. (1). One then considers an infinitesimal transformation
of the form

5t = €£(1,9.4),69' = €€ (£.4.9)-
5¢'=€lé'— ¢+ ¥itgg)l, i=1l..n, (23)

with € an infinitesimal parameter and where 5 ‘ and § repre-
sent the formal total time derivatives of £ ‘and £, respective-
ly, with

d_03 40 .0

dt 3 a3
By requiring the functions &, £/, and ¢ to satisfy the relation

9L y— 0"~ gt), 24)
g

it can be shown” that, whenever the corresponding transfor-
mation (23) leaves the form .¥dt gauge-variant, i.e.,

8.Z dt) = edg, (25)

(to the first order in €) for some function g{2,q,g), one can
assign to it a constant of the motion of the given system. This
constant of the motion, which can be expressed in terms of
L, £, and g, is precisely given by the expression on the
right-hand side of (19). Conversely, with each constant of the
motion one can associate an infinitesimal transformation
(23) for which (24) and (25) hold.

Condition (25) leads to a set of #n + 1 linear first-order
partial differential equations in £,£, and g
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oL 2L(E ) %

d¢' 3¢ \o¢ " a3¢) "
&,
AN ST
ot dq' at dq'
9.f (agf B Ot ..ag)
a7 \ar Va7 "% T s

+o it =B g%,

at aq'
the so-called generalized Killing equations. This sytem of
equations, henceforth referred to by (*), is precisely the sys-
tem one obtains from {17) by making a suitable combination
of (17b) and (17¢), as explained in Sec. 4.

Hence, whenever we have a solution (£,£ %) of (17), for
some function g, the n 4+ 1 functions (£,£ ) also satisfy (*). We
now claim that the converse also holds if 7' is defined by (18).
This equivalence between (17) and (*, 18), establishes the
link between the two methods for associating vector fields
(i.e., infinitesimal generators of certain transformations)
with invariants of dissipative systems, always under the as-
sumption that . is regular. The proof of the equivalence is
completely analogous to the one presented in Ref. 7, where a
similar equivalence has been pointed out between two ver-
sions of Noether’s theorem for classical Lagrangian systems.

First of all it should be noticed, however, that the infini-
tesimal transformation (23) can not be represented by a vec-
tor field on the extended state-space NV, because of the explic-
it —dependence of 8¢". (A rigorous interpretation of (23} in
fact requires the introduction of a higher-order jet space.)’
However, since the functions ¢’ do not appear in (*), nothing
prevents us from assigning, in a purely formal way, to each
(n + 1)-tuple (£,£ /) which satisfies (*), a local vector field on
N of the form (16), with the functions 7’ defined by (18).
Using the expression (2) for the Cartan-form 6, one can then
easily verify that (*) can be rewritten in a concise form as
follows:

J > .
—L.0—dg)\=0, j=1,..n, 26a
<a¢' y g J (26a)

(4.d(g — (Y,0))) =0. (26b)
With Y a (local) vector field on N of the form (16), the pro-
posed equivalence then becomes:

Proposition 6.1 Y satisfies (26a), (26b) with 7’ defined by
(18),iff L, 60 = —i,u +dg.

Proof: The sufficiency is trivial and in fact follows from
previous considerations (see also Sec. 4).

Conversely, suppose (26a), (26b) and (18) hold. From
(26a) it immediately follows that {3/d¢,i,d8 — dG ) = 0,
where G =g — (Y,0 ) is afirst integral of 4 in view of (26b).
This in turn leads to the relations

[ ij_aﬁ L
&' —4g'¢ g 54’_, i=1,.,n. (27)
On the other hand, we know from Proposition 3.2 that a
vector field Ye?” exists (with components £,£,m') which sat-
isfies (13), i.e.,

iy(d8 +pu)=dG. (28)
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The idea is now to prove that Y = ¥ — A4 for some function
h. It then follows that ¥ belongs to 7~ and, hence, satisfies
(15).

Since, by definition, u contains no terms in d¢g’, we de-
rive from (28)

<—q-¢,z',;d0 _ dG> —o,
EY

from which we obtain

e ;G

§'—¢f=—g Py
Comparing this with (27) itisseen that & — ¢’ =& — §'¢.
If we then define a function 4 by £ = £ — A, it follows that
£'=E—¢h. |

Finally, since both %’ (by assumption) and 7}’ (as shown
in Sec. 4) satisfy (18} in terms of (£,£ ‘) and (£,€ '), respectively,
an immediate computation gives

=4 ~¢h)—gAa(—h)

i=1,..,n.

80, -
+ gy+ k __ Lk
e £"—4¢)
— ,’71 _ hA i’
which completes the proof that ¥ = ¥ — h4. O

From the equivalence established in the previous pro-
position it follows in particular that in practical applications,
when looking for a vector field Ye7, it suffices to solve the
somewhat simpler system of equations (*) instead of (17).

As an illustration we now give an example which has
also been treated in Ref. 3.

Example: Consider a mechanical system whose equa-
tions of motion are

él + kg, + 2uqg, — pg, =0, (29)

9> + kg, + 2ud, + pg; = 0,
where k, i, and p are constants and where, for convenience,
we have denoted the generalized coordinates with lower in-
dices. The Lagrangian .7 and dissipative forces Q, are here
given by:

L =4dl +¢3) — k(g +a3),

Q1= —2ug, + pg»,

Q.= —2ug, —pq:.

A solution of the generalized Killing equations (*) is pro-
vided by (see Ref. 3): £ = 0,£ ' = (¢, + uq,);

£7 =eM(g, + pug)); with

g=e"l —kqg: +4i4. + (g2 —a1)]

From (18) we obtain for the vertical components 7' of Y-
n'= —e*(ug, + kg, + pq,),

7 = —e*(ug, + kg, — pg,)-

The first integral of (29), generated by Y, becomes [see (19)]

G= —e* (4192 + 11929, + 9.4>)
+kq\q; +p(qt —a3)]-

Although, as has been pointed out before, vector fields in 7~
in general do not represent symmetries of the given system, it
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is not excluded that in certain cases a prescription can be
found for assigning a dynamical symmetry to each Ye". In
the next section we will consider a special class of systems for
which such a prescription is immediately at hand.

Vii. A SPECIAL CASE

Suppose we are given a dissipative system for which the
associated two-form « is such that the dynamical field 4,
defined by (5a) and (5b), satisfies the condition

keC = (R), (30)

i.e.,, 4 is a conformal symmetry of a, with k at most a func-
tion of time only. Putting/ (¢ ) = exp (§'k (s) ds), it follows that
Proposition 7.1:For each Ye¥" the vector field /Y will be
a dynamical symmetry of 4.
Proof: First of all we notice that

A(l) =kl (31)

Taking into account (5a) and (11) we have

Lya=ka,

Lya@= —igaLya=liyiyda —A4(l)i,a. (32)
Combining (5a) and (30) we see that

iyda =ka. (33)
Substituting this into (32) and taking into account (31), we
finally obtain

s @ =(k—A4()iya=0,
which completes the proof, according to Corollary 2.1. O
We now analyze condition (30) which, in view of (5a), is

equivalent to (33). In a local coordinate neighborhood we
have, in terms of the basis of one-forms (8), and using (10a)

da =du =dQ, Adq' — g'dt ) \dt

= igf—(dq" — gdt)\(dq' — ¢'dt)N\dt
g
+ a—Qf(dq’ — A’dt)\(dq' — ¢'dt)\dt.
¢
Herewith, (33) becomes
9O g — ) Ndg — )
aq
Q. ; —
+ —(dg’ — A’dt ) \(dg' — ¢'dt) = ka.

o¢
With the expression (10b) for «, this leads to the following
relations between Q; and .¥":

80, 99, =k(a€:/ a4 )
d¢  oq 939¢  qdq
9% _ Iy

o 94y

Hence, condition {30) will be satisfied iff the functions Q, are
of the form

0, = kL _ Zyom),
a4  dq'
for some function V defined on an open subset of R X M, and
with 7:R X TM—R X M the natural projection operator. It
then follows that the given dynamical field A4 will be (locally)
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a Lagrangian vector field with Lagrangian
L' =1'(.¢ — Vor), where I’ =1 ' = exp( — f’k (s) ds).
If we introduce the Cartan-form

’

0'=L'dt + E?“—?;(dqf —g'dt),
aq'

we will therefore have i ,d6 ' = 0. Moreover, it can be shown
by a straightforward computation that, for each Ye?”, the
vector field /Y will satisfy the condition L, d6’ = 0 or,
equivalently,

d (i,yd6') = 0.

Consequently, /Y turns out to be a Noether symmetry vector
field of the given system,” with respect to the new Lagran-
gian .. This also confirms the result mentioned in Proposi-
tion 7.1. A typical example of a system for which (30) holds,
is provided by the damped harmonic oscillator:

g+ v§+w’qg =0,
with

L =Yg’ — &)
and

. 3
Q= —v4g= —r——
oq

Vill. FINAL REMARKS

It is by no means our intention to recommend the meth-
od described in this paper, above others, for the detection
and construction of first integrals of dissipative systems.
However, in studying these systems it might be useful, at
least from a theoretical point of view, to gain further insight
into the relationship between vector fields and invariants, as
established in Sec. 3. In particular, it would, for instance, be
nice to find criteria for the existence of a precise connection
between the vector fields defined by (11), and symmetries of
the systems under consideration (as illustrated by Proposi-
tion 7.1). For that purpose it would probably be interesting
to look at special classes of dissipative systems, such as, e.g.,
systems with a Rayleigh-type dissipation’® (a special case of
which has been treated in Sec. 7).

Finally, it should also be noticed that the above treat-
ment applies equally well to the Hamiltonian description of
classical dissipative systems. One then simply has to replace
abyaef2 *(R X T *M ), which in canonical coordinates is giv-
enby @ = dp, Adq' — dH \dt + Q,dg’ Adt,with H the Ha-
miltonian and Q, = Q,(t,q,p) the phase-space components of
the dissipative forces.
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The slow-fluctuation technique for integrating autonomous, conservative, nonlinear, near-
resonant oscillatory systems of many degrees of freedom requires uitimately no more than the
study of a certain polynomial. It is shown that a paritylike property can be attributed to the roots
of this polynomial, which proves helpful in even the most complex situations. It aids to classify the
solutions of the equations of motion in terms of “representatives” which involve only one-half of
the integration constants, the other half being rather unimportant physically, and it allows one to
start up the representative motions from representative initial conditions. It also leads to a
characterization of phase behavior which in particular describes not only the constant-amplitude
motions but also their dynamical neighborhoods, and in many cases it explains gross features of

the motion such as the occurrence of Lissajous-like patterns and orbit reversals.

PACS numbers: 03.20. + i, 46.10. 4+ z,02.30. 4+ g

I. INTRODUCTION

In two previous papers, hereafter referred to as SF' and
STAB,? we have developed the slow-fluctuation method in
its primary mathematical aspects' as an integration and ap-
proximation technique for conservative, autonomous, non-
linear oscillatory systems of several degrees of freedom (d.f.),
and in its application? to the dynamical stability of constant-
amplitude (c-a) motions. The next task in the general devel-
opment of the method should be the qualitative description
and classification of motions with variable amplitude.

The method rests upon a complete integration of the
equations of motion by quadratures involving ultimately
only one polynomial, called f( 7,) in the previous notation."
Most qualitative properties of any particular solution of the
equations should be derivable more or less directly from that
polynomial. In the present paper, we show how an inconspi-
cuous property of the roots of f can help in the classification
of the solutions. We call it “parity.” In many cases, various
gross features of the system motion depend on nothing but
root parities.

The sequence of quadratures in the solution process is
such that we are led in general to relate the integration con-
stants to given initial conditions in a particular way which
singles out “representative” solutions depending on only
one-half of all integration constants. The other constants are
all additive; they are merely phase shifts and a shift of the
zero of time, with little potential for complications. Thus
each representative stands for an entire class of solutions
which differ amongst each other only by these relatively un-
important shifts. The integration constants which determine
the representatives are also those which determine the po-
lynomial £; as a consequence the special initial conditions
pertaining to the representatives are also connected with the
parities of the roots of f.

In order to illustrate our general observations we shall
repeatedly refer to details in two completed studies of specif-
ic nonlinear systems by means of the slow-fluctuation tech-
nique.**
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The subject is crisscrossed by overlapping classification
criteria, and studded with exceptions and special cases, in a
rather dismaying way. Such is the variety of nonlinear pro-
cesses. The concept of root parity, despite its simplicity,
seems to possess practical usefulness even in awkward situa-
tions. Still, our presentation does not strive for utmost gener-
ality, but only for emphasis for what we have come to regard
as fairly typical. Momentum-dependent couplings are not
mentioned at all, for sheer brevity [root parity can readily be
defined, but the analog to the all-important phase synchroni-
zation (2.10) becomes less incisive].

il. INITIAL CONDITIONS
We begin with the Hamiltonian SF (2.8):

S(53) =3 0B, + B(B) + F(B) cosl gy + - + &Gy
1
(2.1)

where B and F 2 are polynomials, and theg; areintegers. This
may be the exact Hamiltonian of some model system, or it
may be the slow-fluctuation approximation to the Hamilton-
ian SF (2.4) of an oscillatory system having the internal reso-
nance

810+ + 8w, =€ (2.2)

(where g, > 0 by a numbering and sign convention). In the
latter case the variables p,§ normally arise from original Car-
tesian variables p,q by the canonical transformation SF (2.1),
(2.2); therefore, we always call p and g amplitudes and
phases, respectively.

The amplitudes 5,...,p, arising from the transforma-
tion of a physical, oscillatory system are necessarily non-
negative. Still, there is no reason why the Hamiltonian (2.1)
should not be studied without regard to the signs of the ca-
nonical momenta. We shall accordingly not introduce the
restriction p; >0 until later, in Sec. III C.

The system defined by (2.1) is completely integrable by
quadratures, as described in SF. When there are only two
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d.f,, the integration process is straightforward in p,, 5,,4,,4»;
see Refs. 3 and 4 for explicit examples. In three or more d.f.,
however, various relations become quite clumsy in the
barred variables. For conciseness, double-barred variables
are therefore introduced by the canonical transformation SF
(3.1), (3.2):

glql+"'+gnan =61, 1—7|=glﬁb
9, =G:, p;,=8D +p fori=2,..n (2.3)
The Hamiltonian (2.1) then takes the form

S5(p3) =€+ S o +B(p)+F(pcosG, (24)
2

and we use this in the following.

Initial conditions will consist of values of the 2# canoni-
cal variables prescribed at some time ¢,. Since the barred, the
double-barred, and the original variables are connected by
1-1 transformations, they are interconvertible without ambi-
guities, and we usually need not distinguish between differ-
ent sets of initial values specified at ¢,. The important task is
to connect the 2» initial values, whichever set may be given,
to the 2n integration constants with due regard to simplicity
and transparency of the resultant classification of all solu-
tions.

Since §,,...,§, are cyclic in (2.4), the quadrature process
begins with

p; =const=a; fori=2,..,n “(2.5)

These n — 1 constants are clearly independent. The phase
equations §, = 35 /Jp, yield n more, independent constants
g:(t,). In order to integrate these equations in their explicit
forms SF (4.2}, (4.3) one needs to know 5, (¢ ) explicitly. Using
the amplitude conservation laws (2.5) the equation of motion
P=— c?S/HT], can be written in the form SF (3.8),

Pl = (Pl,a) sin g, (2.6)
from which g, can be eliminated by means of the obvious
S=S=const=E 2.7)
together with Eqgs. (2.4) and (2.5); the result is SF (3.9),
B =F(F), (2.8)

where fis a polynomial which contains a,,...,a, and also E.
The general integral of this equation is

[f(ﬁl)]_l/zdl-’ﬁ (2.9)

Bulto)

it conveniently brings in the initial time #,, and also contains
the initial value p,(¢;) in the role of another integration con-
stant.

If we organize the quadrature process in this manner,
the 2n integration constants J,(2), @a,....,, » §y{tolse-rGn (2o)
areidentical with the given initial values, and E merely plays
the role of an auxiliary which is easily calculated from Egs.
(2.4) and (2.7) by insertion of the n + 1 values p,(t,),....§,(Zo)-
Moreover, the other n — 1 initial values §,(t,),-.-,g,, (£,) are
simply additive phase constants, corresponding in physical
systems to simple shifts of carrier oscillations cos , () under
fixed amplitude modulation curves, and which we may well
regard as physically trivial. Thus we have effectively ob-
tained an (n + 1)-way classification of solutions (excepting

t—ty=
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the n — 1 phase shifts) directly in terms of initial values p,(¢,),
5,5, , §4(2). Nothing could be simpler, or better suited for
numerical computations, yet an n-way classification can be
devised which yields better insight and links up much more
readily with all formal developments.

The appropriate change of viewpoint derives from the
physical fact that the n phase functions g, (¢ ) are in general
synchronized. We noted this in passing in SF Sec. IV, and
gave detailed examples in two d.f. in Refs. 3 and 4. We now
develop the idea in full.

Consider the system at some time ¢ = ¢, such that 3, is
at an extremunm, i.e., 5,(z,) = 0 holds. We include here all
motions, even if at constant amplitude, or aperiodically mod-
ulated and reaching an amplitude extremum only for

= 4 « (see Ref. 4, Sec. 3 F, for an example). Whichever
the case, Eq. (2.8)implies that f( 5,} = Oholdsatz = ¢, . Inthe
earlier form (2.6) of this equation there are two distinct fac-
tors. It is entirely possible that the first of them, £, has a zero
simultaneously with /. Now Fisin general not a polynomial,
but F?alwaysis. If the root of fatr = 7, isa multiple root of
F? thenthe explicit form of fin SF (3.9) [repeated in a simpli-
fied way below in Eq. (3.4)] shows that the root of fis also
multiple; consequently the motion is a c-a Case (), the phase
behavior of which may require separate study, as we discuss
exhaustively below in Sec. I'V. If F'* has only a single root at
t = t,, then the explicit form of Fin STAB (3.2) [repeated
below in Eq. (3.5)] shows that p, goes through one of those
exceptional low-amplitude conditions which require special
treatment because the phase equations become singular, cf.
SF Sec. VI and the complementary discussion in Sec. IV E
below. If on the other hand F 0 at ¢ = t,,then j, can vanish
if and only if the second factor sin g, in Eq. {2.6) vanishes, so
that g,(¢,) must be a multiple of 7, as stated in SF (4.4). We
summarize this trichotomy in the

Theorem: Atany time ¢, such that the amplitude modu-
lation p, is at an extremum, either exceptional low-ampli-
tude conditions hold with attendant phase singularities
which may require separate study, or the motion is a c-a Case
(I) whose phase behavior may also require separate study, or
F #£0 holds and for the extremum it is necessary and suffi-
cient that

q.lt,) = rm, (2.10)

The vast majority of extrema clearly belongs to the
third type, which is characterized by Eq. (2.10). The associat-
ed property that F 40 at ¢ = ¢, will repeatedly be used in
later sections; in passing, note that it also covers all c-a mo-
tions which are Case (II) but not simultaneously Case (1), see
SF Sec. V. In the remainder of this section, we deal only with
this type, except where explicitly stated otherwise.

According to the transformation (2.3), the meaning of
the condition (2.10) is that the n single-barred phase func-
tions g, (¢ ) are at any amplitude modulation extremum time
t, synchronized to each other in the linear combination g,.
The consideration of an arbitrary initial time #, against this
background of synchronization times 7, leads us naturally to
deal first of all with the special case ¢, = ¢,. We may then
regard a motion with ¢, = ¢, as the representative of a class of
motions which is generated by time shifts #, — 7., with ¢,

r integer.
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arbitrary, treating ¢, like an integration constant. Indeed, a
representative motion with ¢, = ¢, has its phase constants
tied by the synchronization condition (2.10), so that one inte-
gration constant is pre-empted by the need to ensure that 5,
is at an extremum, i.e., p,(¢,) = R, aroot of the polynomial /.
The class will thus consist of all motions which differ only by
1, and have the same values of all other integration constants.
It remains to be seen how these others are most conveniently
chosen.

In order to standardize the representative solutions, we
may take ¢, = ¢, = O without loss of generality. If in order to
shorten the notation we set

9,(0) =4,

g:(00=g;,(0)=6, fori=2,..,n, (2.11)
we may write the constraint (2.10) as, say,

8y =rm/g) — (80, + - +8,6,)/8,, (2.12)

with §, dependent on the other n — 1 phase constants whose
freedom of choice continues unrestricted. Since these re-
maining phase shifts appear physically not very important,
we may disregard them to start with, and adopt the special
initial conditions

b, =rm/g, 8,=-=65,=0 (2.13)

which give rise to what we call for brevity a “§ = O state” of
motion. Again, each such state can serve as the representa-
tive of an (n — 1)-fold class of motions which are generated
by n — 1 shifts of carrier oscillations cos g, (¢ ) under fixed
amplitude curves, subject only to the constraint {2.12). Note
that this class is similar to, but not quite identical with, the
phase shift class left over by the previous classification in
terms of # + 1 initial values at an arbitrary ¢,

So far, the constant E still plays the role of an auxiliary
which must be calculated from the initial values. The proce-
dure is unlogical, for E arises in the elimination process be-
fore the p,(¢,) in Eq. (2.9) is introduced, and before phase
relations play any role. It is proper, therefore, to replace p,(0)
by E, and accordingly to characterize the representative mo-
tions by the parameters a,,...,a,, , E. Now we have essentially
the mentioned n-way classification, with each representative
solution standing for an n-fold class of solutions which is
generated by a time shift of the entire motion and n — 1
independent phase shifts of carrier oscillations, subject to
{2.10).

Since E doesin general not depend monotonicallyonp,,
we pay for the formal clarity of the new classification by a
certain complication in determining inversely the proper
P.(0) from the given a,,...,a,, E. The polynomial f calculated
from these values can have several suitable pairs of roots, and
afteronepairhasbeenchosen,say R "and R ”,eitherR ‘orR ”
may still be taken as the 5,(0) of a representative motion. Nor
is it immediately clear what value of r should be associated
with the root which is chosen. Thus, for any given set
ay,...,a, , E there may be several (distinct) representatives
associated with different pairs of roots and/or different val-

ues of .
It is helpful to characterize these differences in terms of

“representative initial conditions” which set up the repre-
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sentative motions. We deal with this largely practical matter
in Sec. II1 E.

The remaining question is technical: Given arbitrary *
initial conditions at some time #,, how do we find the explicit
solution if we know only § = O states calculated beforehand
fort, =1r, =0, with §, = r7/g, and possibly several values
of , of which the right one is not at once obvious? We give
the answer in the form of a complete procedure.

Since we are always free to choose the zero of the time
scale, we may regard ¢, at first as indeterminate to the extent
of a zero adjustment. As a preparatory step, if @,,...,a, are
not given directly, calculate them from the initial values to-
gether with the conservation laws (2.5). Then calculate E
from Eq. (2.4). Likewise calculate 2 P1(fo), if not given directly.
If applicable, check the value of F for an exceptional low-
amplitude condition and treat the motion accordingly, or
else go on. Calculate fand find its roots. If 5,(t,) should be
identical with a multiple root of £, treat as Case (I) or (II) c-a
motion and stop there. Otherwise select the two roots R ' and
R ” which enclose p(t,). Go to Eq. (2.6) and determine by
means of the initial values whether 5, (¢,)20; then call R ' that
oneoftherootsR ', R " from which 3, evolvesawayat z,. IfR ’
is single, calculate first by obvious adaptation of Eq. {2.9),

Plta)
n,:f [F1B] " dp., 2.14)

.
with the given initial value as the upper limit and the sign of
the square root + or — according as p, increases or de-
creases from R ' onwards; in this manner the shift ¢, is defined
uniquely so as to be non-negative and less than half a modu-
lation period in duration. Next, for every / = 2,...,n calculate
8, from

(71’(’()):5:' + {[?i(t)]repr}l:l.,’ (2.15)
where on the left stand the given initial values and on the
right the given phase functions calculated forr, =0, for R,
and for zero phase constants, but taken at the instant ¢, cal-
culated from Eq. (2.14). Lastly, determine r from

g\(to) = rm/g, — (86, + -~ +8,6,)/8,
+ {[?I(t”repr }t*l.,!

where the notation is as in Eq. (2.15) (with the phase function
calculated for a zero phase constant), and the §; have the
values calculated above. Evidently the representative solu-
tion, if phase-shifted by the calculated §,,...,8, and by §, as
determined from Eq. (2.12), will at the calculated instant

t = ¢, fulfill the given initial conditions. Finally, adjust the
zero of the time scale such that 7, takes a prescribed value, if
any. If R ' is multiple, modifications are necessary which are
fairly obvious and can be omitted. The procedure is awk-
ward but feasible in principle; we presented it here in order to
demonstrate that the classification of solutions by means of
representatives leaves no gaps.

(2.16)

1l. ROOT PARITY

In the full classification of all representative solutions
and initial conditions one needs the numerical values of the
integer r generated by the synchronization condition (2.10),
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but for many other purposes it suffices to consider only the
parity of r. For instance, in the study of Case (II) c-a motions
the distinction between even and odd types is enough for a
general theory; see STAB. We now show that a paritylike
property can be associated directly with every root of the

polynomial f.

A. Definition of root parity

By means of the conservation laws (2.5) and (2.7) the
Hamiltonian (2.4) can be written as a hybrid conservation
law,

n

E_' Za),»ai —6[-)1

2

— B(p,a)=P(p,aE)

=F{@,a)cosg,. (3.1)

With the explicit notation B = X 6,5 from STAB (3.5) we
can write the polynomial P as

P(PraE)=c, —(€+b)p, — ~ — b, B\", (3.2)
where

=E— iwiai—bo
2

this new constant ¢, is the only one which contains the qua-
sienergy E.

When the motion is at an amplitude extremum p, = R,
with F(R,a)5£0, then §, = rm holds, the cosine in Eq. (3.1)
equals + 1 or — 1, and

P(RaE)= +F(Ra), ro (3.3)

follows. The existence of this twofold algebraic constraint is
the physical origin of the importance of the parity of 7. By a
slight change of approach the idea can yet be generalized.

If g, is eliminated between Egs. (2.6) and (3.1) by squar-
ing and adding, the equation of motion results in its final
form (2.8) with

flB)=F*—P>=(F+P)F-P). (3:4)

It is seen that at any root of f'either one or the other relation
(3.3) holds, or both in case F = 0 (and only then). We are thus
led to the exhaustive

_ Definition: A root of f with F#0is called even if

P= 4 Fandoddif P= — F. A root with F = 0 is called
skew.

This applies to all roots including the negative and the
complex ones which are not necessarily associated with
physical motions. The new term “‘skew” is a generalization
which also helps in the classification of solutions; according
to the theorem of the preceding section, a motion at a skew
root is either “exceptional low-amplitude” or Case (I}, and
conversely every Case (I) [even if it is simultaneously Case
{II)] takes place at a multiple skew root.

An obvious question is: Given £, how many roots are
even, odd, and skew, respectively? There is no general an-
swer because the possibilities are unlimited, but at least one
partial result can be stated in worthwhile generality. It fol-
lows directly from the factorization (3.4) as the

Theorem: If F is a polynomial, and if Fand P are of
different degree, then half the roots are even and half are odd
(if each root is counted according to its multiplicity, and if a
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skew root is counted as both even and odd with equal multi-
plicities).

If Fand P happen to have the same degree this would
not always be true because cancellation could take place and
leave F + Pand F — Pat different degrees. Still, even in that
case no skew roots of odd multiplicity will be possible, for
instance.

If Fisnota polynomial, everything seems possible, be-
ginning with odd-order skew roots. For example, in STAB
Fig. 2 the polynomial fis cubic, point B represents a third-
order odd root, and the p, axis represents a single skew root,
as is easily shown from the details given there.

B. Conservation of root parity

Since the parity of a particular root is a discrete at-
tribute we should expect it to be conserved under small var-
iations of the parameters a.,...,a,,, E; a change of parity
should only be possible at the ends of certain parameter
ranges where singular conditions arise, or where a con-
fluence of several roots with a kind of barter of parities takes
place. This is indeed so, but the possibilities proliferate as
system complexity grows. We therefore discuss only some
principal cases.

In the assumed Hamiltonian (2.1), B andiF (P are
given as polynomials. From these we derlve the P and the F
of Eq. (3.1) through the substitutions (2.3), (2.5), and (2.7)
together with the extraction of square roots. These opera-
tions are continuous in every respect, hence Pand Fare both
continuous functions of p, and of the parameters «,,...,a, ,E.

If we choose a continuous curve in a complex p; plane
and map it into a complex w plane by means of + For Pata
fixed set of values a,,...,a, ,E, the map curves will be contin-
uous. Moreover, if we restrict the chosen curves to the interi-
or of a suitably bounded domain of the p, plane, the map will
be 1-1 and the entire plane can be covered by such domains.

The roots of fare also continuous in a,,...,&, JE, afactof
which much was made in STAB. If we vary these parameter
values through a continuous #-dimensional sequence, a root
R will trace out a continuous curve in the p, plane. Callita
root curve. Two root curves may intersect or touch. A root
may also abruptly appear or disappear at certain parameter
values, but only if at these values the degree of f changes.
This is an exceptional case which would always need special
study, cf. STAB Sec. III A, so we exclude it by a suitable
restriction on the parameter variations.

Now choose an arc of some root curve and map it triply
into the w plane by means of + F, — F,and Pataset of
parameter values which is associated with a particular

= R lying on the chosen curve. R will be even or odd if the
map of either + For — F, respectively, intersects with P,
and conversely; it will be skew if and only if all three maps
intersect at one point (which must be the origin of the w
plane). Under a change of parameter values to another set
associated with an R ' nearby on the same root curve, inter-
sections off the origin in the w plane cannot jump between
the + Fand — F maps, because only continuous deforma-
tions of the maps are possible. There may also be an intersec-
tion {or contact) of the given root curve with another one; by
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continuity, there will be corresponding multiple intersec-
tions of the + F maps or the — F maps with the P maps.
From this all-round continuity alone we conclude the

Conservation Theorem: Throughout some open neigh-
borhood of a set of values a,,...,a, ,E, a root of f{ 5,) of even
or odd parity keeps this parity, or splits into, or coalesces
with, roots of this same parity.

Thus, a change of parity between even and odd, or a
mixing of parities, can only occur through an intermediary
skew stage.

C. Sign conventions

An arbitrary sign reversal of F would turn even roots of
finto odd, and vice versa. Thus, when the system (2.1) is
defined in the abstract, with F2 given as a polynomial, the
square root leading to the eventual F needs to have its sign
fixed by a convention in order to fix the parities. On the other
hand, when the system is defined in terms of physical proper-
ties, then Fand with it F will usually have their signs unmis-
takably defined within the range of amplitude values permit-
ted in the system, but there may be doubt as to the
continuation of F beyond this range, and hence, a sign con-
vention may again be needed if we want to discuss the pari-
ties of roots which are not associated with physical motions.

The explicit form of F is always as given in SF (3.2):

;‘(ﬁl!a) = C(glﬁl)ll/z( g: P :’ a,
(8, P1 +a,)""Q(Fra), 3.5)

where C is a system constant and C 0, Q is a polynomial,
and the /; are positive integers or zero, with /, #0 by number-
ing convention. If for physical reasons, say, p,>0 is pre-
scribed, do we continue F to negative p, values, say, by writ-
ing |p,| everywhere in (3.5)? The same doubt might exist in
regard of the continuation of P, and hence, even of f.

The basic conservation laws (2.5) become, after the sub-
stitutions (2.3),

&b +a, =p, i=2,.n (3.6)
[In conjunction with g, 5, = p,, this is what makes the elimi-
nation from (2.1) to (2.4) possible, and what causes the struc-
ture of the factors in {3.5).] It is seen that a zero of Fimplies
the vanishing of one or more p,, or a root of Q, or both. The
observation is as general as it is trivial, but it leads to a much
sharper distinction when the given system is a physical one
of coupled oscillators having non-negative amplitudes.

I£p, >0 for i = 1,...,n is thus prescribed, then also
D1 = P,/g:>0 holds and Egs. (3.6) imply that

—&i ﬁ1<ai, i=2,.,n. (37)

This means an upper or lower bound to p, according as g; is
negative or positive. In STAB Sec. III C we called the (closed
or right-infinite) interval from the least upper bound to the
largest lower bound (including p, »0) the “domain of 5,”. No
physically possible motion can take place outside the do-
main. If now a g, {with g; £0) vanishes, it follows from Eq.
(3.6) that the bound (3.7) is actually reached by this p, ; the
vanishing therefore occurs exactly at an endpoint of the do-
main, and F vanishes at this endpoint, too. On the other
hand, F can vanish inside the domain only if the equality sign
in (3.7) does not hold for any /; then a root of  must be

)I,/Z
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responsible. This can happen only in systems which have a
(nonconstant) Q-polynomial. For reference purposes we de-
scribe the main features of the situation in the

Theorem: A skew root of finside the domain of p, is due
to a root of Q and has even multiplicity.

Of course, a root of O could also by coincidence occur at
a domain endpoint. If so, one of the bounds (3.7) must be
reached at the same time so that the resultant zero of Fisofa
higher order than the root of Q.

At any rate, except for this occasional possibility of a

root of Q inside the domain, skew roots can occur only at the

domain endpoints, together with a vanishing of one or more
P, and beyond the domain. Accordingly, changes of root
parity by passage through a skew stage will in general take
place at domain endpoints. It becomes all the more impor-
tant to be definite about the signs of F, etc., on both sides of
the endpoints. We shall henceforth employ the

Physical Oscillator Convention. P, Q, and F * being given
as polynomials over the domain of p,, they will be continued
as polynomials beyond the domain. Even-/, factors in F will
likewise be continued as polynomials, but odd-/; factors will
be continued as positive square roots.

The immutable sign of the square roots has the conse-

quence that the rule {x X yx = x does not hold where x can
be negative, i.e., precisely outside the domain within which
all the arguments in the parentheses of Eq. (3.5) are non-
negative; we must write | x X yx = Jx? = |x| instead. For
example, when there is a confluence of two zeros of F which
are both of order | (and equivalent to “‘exceptional low-am-
plitude conditions™), the graph of F will have a kink. Such a
confluence can only occur in special systems, as in the case of
the “three interacting waves’”” of STAB Fig. 6b, where the
looped curve happens to be (apart from a numerical factor)
the graph of -+ F with the upper and lower halves corre-
sponding to the two signs, and kinks at the confluence

a, = a;.

This sign convention is entirely natural and simple. In
systems with negative momenta, different conventions are
possible, of course, and could conceivably appear more na-
tural.

D. Change of root parity

We now discuss a few typical instances of parity
change. We assume the physical oscillator convention and
speak only of real roots, but the generalization to complex
ones will be obvious where appropriate.

Let I"be real and F(I",a) = 0. Such a I'is generally not a
root of fbecause it need not be a root of P.However, from the
explicit expression (3.2) it is seen that E is an additive con-
stant in P, hence there exists exactly one E = E- such that
P(Ia,E,)=0. This E does not have to be a physically
possible system energy; it is merely a (real) parameter value
such that P and F at the given set of values a,...,a, . E
vanish for the same §, = I', which is therefore a skew root of
/. For brevity, we now write the polynomial (3.2) in Taylor
series form

=E—-E;)+K(p—T)+ . (3.8)

Assume first for discussion that F vanishes near I as

M. F. Augusteijn and E. Breitenberger 1600



on

FIG. 1. The formation of a single skew root in accordance with Egs. (3.8)

and (3.9). As drawn, I" is a lower endpoint of the domain of p,; K, > 0 has

been chosen for definiteness, but it makes no essential difference if K|, <0 or
even K, = 0.

F=K\p —I)" (3.9)

with some K, > 0. Then 7" is a single root of F?and a double
root of P for E = E -, hence it is a single, skew root of / for
the parameter values a,,....a, . Er. If E is increased slightly
over E -, the graph of P will intersect the graph of + F to the
right of I at some j, which is then an even, single root of f,
see Fig. 1; decrease of E yields an intersection with the graph
of — F and therefore an odd root. Thus, as E is varied, the
root parity changes between even and odd by a passage
through skew.

Equation (3.5) shows that a single skew root can only be
oftheform I'=0or " = — «;,/g; for some i: it is therefore
real. According to the Theorem of Sec. III C it cannot lie
inside the domain of p,. Under a variation of the ; as well as
of E the single root of fevolving out of I and back must also
be real, for a complex root can only approach I jointly with
its conjugate. The only way this argument could be vitiated is
that under the parameter change I'" itself coalesces with some
other root and becomes multiple, but by continuity this is
only possible for sufficiently large changes. In fair generality
we may therefore state the

Theorem: A single skew root I” is real and does not lie
inside the domain of p,. For sufficiently small parameter
changes a root of definite parity evolving out of I"is real and
single, and changes parity when passing through I".

Next, assume instead of {3.9) that near I” we have

F=Kyp —T) (3.10)

with some K, > 0, and take also X, > 0 but K, #K,,. Instead
of Fig. 1 we then have the two graphs of Fig. 2, according as
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FIG. 2. The formation of the simplest type of double skew root in accor-
dance with Egs. (3.8) and (3.10), when both P and F exhibit locally linear
behavior (with different slopes). Depending on the steepness of the graph of
P, the c-a motion at I will be (a) orbitally stable, or (b) unstable. /" may be an
upper or lower domain endpoint, or may lie inside the domain of p,.

K, =K. Here I'is a double, skew root of f for E = E, and if
the graph of Pisshifted upordownby achange of E the skew
root is seen to split into an even and an odd one. Characteris-
tically, the two new, single roots of f'straddle the skew one in
Fig. 2(b) but lie to one side of it in Fig. 2(a). If we write the
inequality K,2K, as

JF /3p,20P /Jp, = — (€ + B /3p,), (3.11)

with all the derivatives taken at the value p, = I, the crite-
rion STAB (3.12) shows that the Case (I} c-a motion at the
doubleroot R = I (ifit is physically possible} will be orbital-
ly stable or unstable, respectively, in the two situations. The
skew root can here be regarded as the confluence of two roots
of oppostte parity, and can only split into such an even—odd
pair. Reference 4 contains clear examples.
Third, assume instead of (3.9) that

F=Kyp, —I)"? (3.12)

with some K|, > 0, and also assume K, > 0, see Fig. 3. With I
now a triple root of F > but still a double root of P, itis again a
double, skew root of /. Under a decrease of £ the skew root
splits into a real, even—odd pair, much as in the orbitally
stable situation of Fig. 2{a), but an increase of £ evidently
yields a pair of complex roots which again must be of oppo-
site parity, since of the two factors on the right-hand side of
Eq. (3.4) neither can have a double zero in the vicinity of 7,
by continuity.
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FIG. 3. The formation of a double skew root in accordance with Egs. (3.8)
and (3.12). As drawn, I" is a lower endpoint of the domain of 5,; K| > 0 has
been chosen for definiteness, but it makes no essential difference if K, <0,
and the c-a motion at I” is always orbitally stable, a Case (I) with p,=1".

The row of examples (3.9)-(3.12) can readily be contin-
ued. We may also in the Taylor expansion (3.8) admit
K, =0, and so on, to explore the behavior of complicated
higher roots. The principle of the argument is always the
same, and no further instances are needed.

Double skew roots deserve particular attention because
of their frequent occurrence. If real, their properties are de-
scribed by Figs. 2(a) and 2(b) and obvious generalizations of
these. However, a first-order zero of F, which is the least we
must have, can also arise in certain systems as the confluence
of two zeros of order | (i.e., exceptional low-amplitude condi-
tions are reached simultaneously by exactly two d.f.). If it is
also a double skew root, the latter can split into two single
roots which may be of any parity, or skew. Figure 4 explains
the situation. Considering all the possibilities, we have the

Theorem: A real, double, skew root can only split into,
or result from the confluence of, two single roots of opposite
parities; except if it occurs as a confluence of two exceptional
low-amplitude conditions, when it can split into two single
roots which may be of any parity, or skew.

A word of caution: These results hold for variations of
the parameters only. Under other changes parity may be sig-
nificantly affected. In particular, parity can change under
the (degenerate) coordinate transformations which often are
allowed in systems with intrinsic symmetries. Thus, Ref. 4
contains clear examples of straight-line c-a motions which
convert between Cases (I} and (II) under 45° rotations, with
conversion of double roots between skew and even.

E. Representative initial conditions

The representative § = 0 motions which start out with
P, at one of the roots of f depend on the root parity by Eq.
(2.13). Since an entire range of 27~ must be available for §,,
2g, values of » will be admissible. For instance, if g, = 1, then
no more than the values » = ' = 0,1 (say) come into ques-
tion, but if g, = 2, then r = ' = (,1,2,3 (say) are admissible.
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FIG. 4. Schematic representation of the confluence of two single skew roots
I\, I, into adouble skew root " at which F graphs as a kinked straight line.
The motions in the neighborhood of the c-a motion at I can be of entirely
different types. Assuming that P graphs as a straight line and that I, is an
upper endpoint of the domain of p: {1) shows three possibilities of neighbor-
ing motions in the orbitally stable case, one even Case (IT} c-a, one even—even
and one even—odd modulation; (2) shows one unstable possibility (slope of P
less than the slope of the kink at I'").

And so on. Thus the representative initial conditions which
set up the § = O states come with a multiplicity which de-
rives from the multiplicity of values . Furthermore, this
multiplicity depends on the g-coefficient of the phase shift
for which we solve Eq. (2.10). In Eq. (2.12} we solved for §,,
but there is no need for that, we might solve for any §; if only
g; #0. (In fact, in both Refs. 3 and 4 the choice j = 2 was
made for simple reasons of convenience.) Evidently, in a giv-
en system, for different choices of j (or what may amount to
the same, for different numberings of the d.f.) the representa-
tive initial conditions, and consequently the sets of represen-
tative solutions, can be substantially different. Usually it will
be best to choose a d.f. with the smallest available g; to be
assigned that phase shift which depends on the others. As
there can be no universal rule we assume for the following
that a firm convention has been made, and that the specific
numerical values »' of 7 have been selected.

The initial conditions are most easily understood in a
physical oscillatory system with all g, >0 when the motion is
translated back into coordinate oscillations by means of the
canonical SF (2.1),

)'72 cos g,,
)1/2

q: = (2p;/m;w,

pi = —[2m,w; p; sing;. (3.13)
Using Egs. {2.3), (2.5), {2.11), and {2.13), together with the

notation p,(0) = R ', we have first
q:(o) = [2( gsR ' + a; )/m{w{]l/zr

p:(0)=0, (3.14)

The n — 1 d.f. with the independent phase constants §; = 0
are therefore always released from rest at ¢ = 0; to be precise:
From canonical rest in the p,q phase space, see Ref. 3, Sec.
X1, for an example of the distinction.

i=2,.,n
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On the other hand,
q,(0) = (2g,R ’/mlah)”z cos(r'm/g,),

p0)= —2mw, g R )2 sin(r'm/gy) (3.15)

depends on g, and the choices of 7. Let g, = 1;thenp,(0) =
and we again have release from rest, while ¢,(0)>0or <0
according as 7' is even or odd, so that parity distinguishes
merely between release over the two halves of the g, axis.
Reference 3 is a type case. If g, = 2 and we choose

r =0,1,2,3 as above, then the even 7’ = 0,2 are seen to corre-
spond to release from rest over the two axis halves, but the
odd ' = 1,3 yield ¢,(0) = 0, with p,(0) <0 and > O, respec-
tively, a condition which in the type case of Ref. 4 we called
“transverse launch.” If g, = 3, release from rest is still ob-
tained for ¥ = 0,3 but other values require transverse launch
at certain coordinates ¢,(0)50. And so on.

Regardless of the various conventions made, these links
of root parity with physical features of the system motion are
seen to rest mainly upon the g coefficients. That is, they arise
from the nature of the resonance in the Hamiltonian (2.1)
rather than from the physical coupling terms Band F. The
corresponding patterns of motion can claim physical interest
as well as classification usefulness.

Still, the coupling terms determine the structure of /( p,)
and hence, the number and location of its real, non-negative
roots. When several such pairs of roots R, R " coexist, re-
lease from rest in one region of space will lead to a root of one
pair, release in another region to a root of another pair, and
similar for the other g-dependent initial conditions. Refer-
ence 4, Fig. 2, isa type case. A general discussion is better not
attempted because of too much variety in the possible cou-
plings.

1V. ROOT PARITY AND THE PHASE FUNCTIONS

The evolution of g,(¢ ) between two roots of f( p,) must
depend sensibly on whether they have equal or opposite pari-
ties. This aspect of the synchronization (2.10) can be exploit-
ed variously to put the concept of root parity to practical use.

A. The main result

Lemma: At aroot 5, = R of f{ B,) with F(R,a)#0 the
slope of f satisfies

f'= +£2Fq, 1y (4.1)

Proof: Ataroot of definite parity, the cosine in Egs. (2.4)
and (3.1) is stationary at + 1. From the definition of fin Eq.
(3.4) we have in general

& _ —2P E ;

ap, ﬁl dap,’
if we specialize to 5, = R we can first eliminate both Pandits
derivative by means of (3.1) to yield

ra(€ e )

ai;l d1=)l

and here the bracket is seen from the equation of motion

G, =05/3p, tobe + the value of 7, at R. Q.E.D.
Corollary: At a root of definite parity, if 7, is stationary

then the root is multiple.
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Consider now an amplitude modulation between two
single roots R ', R " of definite parities {even or odd). The
phaseq, startsoutat R, say, with the value 77, and necessar-
ily with §, #0. As , evolves towards R ”, but before R " is
reached, §, cannot change by as much as + 7or — 7, or
return to the value 77, because according to the equation of
motion (2.6) that would imply an extremum of 5, between R’
and R ”, contrary to hypothesis. When R “ is reached there
are consequently two possibilities.

Either g, is back at its initial value rr7; then R " is of the
same parity as R '. Also, the sign of ?], must be opposite to
what it was at R ', otherwise g, would again have a zero
between R 'and R " .Inessence, g, issinelike, with zeros at the
modulation extrema and nowhere else.

Or we have g, = (¥ + 1) at R ”; then the root parities
are opposite. The rate of change g, must have the same sign
at R " asat R ', otherwise g, would also go through the value
(r + )7 or (r — 1)7 somewhere in between. Thus g, could be
described as an unbroken straight line which rises or de-
scends by 7 per half-period of modulation, with a superim-
posed periodic function having simple or multiple zeros at
the modulation extrema, and possibly others; the sum of the
two is not necessarily monotonic, although the straight line
is. In short summary we have the

Theorem: In amplitude modulation between simple
roots with definite parities, the combined phase obeys

0<|g,lt) =gt} <m (4.2)
in every open interval between successive modulation ex-
trema. If the parities are equal,  remains constant; g, is pure-
ly periodic with simple zeros at the extrema, and has no
other zeros. If the parities are opposite, 7 goes through con-
secutive integers; g, at the extrema is positive or negative
throughout according as r increases or decreases, but g, is
not necessarily monotonic in between two extrema.

As an immediate application, consider the representa-
tive initial condition for motion between roots of equal par-
ity. Since r remains constant, one single type of condition
suffices, e.g., release from rest, with certain regions of space
corresponding to the two roots of the pair. Quite different for
roots of opposite parity; the pertaining monotonic change of
r presents a cycle of 2g, possible, representative initial condi-
tions. One of these will have to be chosen by convention, for
definiteness. In fact, a § = O state will not have the phases
backtog;(f.) = 8, at the next extremum ¢, #0 because of the
lack of synchronization between modulation and carrier os-
cillations; in other words, the representative solutions are
rather different for different choices of zero time.

Note that, occasional graphic language notwithstand-
ing, this entire section is independent of the Physical Oscilla-
tor Convention.

B. Orbit patterns in configuration space (roots of
definite parity)

For ease of discussion, let us take a physical system of
oscillators and return into the space of the configuration co-
ordinates ¢; by means of the transformation (3.11). Assume
two d.f.; assume both normal frequencies positive, and a
near-resonance g,o, + g-w, = €. Since g, > 0 by convention,
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it is necessary that g, < 0; we write g, = — g5 with g; > 0.
Now consider only motions between (or at) roots of definite
parity; if, in particular, a representative & = 0 motion at

= ¢, = Ois set up, the constraint equation (2.12) yields with
8, = 0 and the specific choice » =/,

8, =ru/g, (4.3)

for the initial phase difference.

Our aim is to compare the orbit in the ¢,,¢, plane to
Lissajous figures. As this term is commonly understood, it
applies to the closed paths which a complex vector ¢, + ig,
will map out if both real and imaginary part are purely har-
monic with constant amplitudes, while the two frequencies
are commensurate, say #n,42 and n,{2, where n,, n, are inte-
gers which we take to be relatively prime to avoid ambigu-
ities. For each frequency ratio n,:n, there is an infinity of
such figures, depending on the initial phase difference
between the two harmonic motions,

g, =A,cos{n, 2t +d,), q,=A,cos(n {2t +d,). (4.4)

Note that the arguments of the two trigonometric functions
satisfy the almost trivial identity

ny(n 2t +d\) = n\(n2t + dy) + (n,d, — nyd;)  (4.5)

at all times.
Our system motion is

g, =A,co8q,, ¢q,=A4,cosq, {4.6)

We may compare it to (4.4) provided 4, 4, are constant; this
will be the case, at least to a good approximation, for some
time interval around a modulation extremum time ¢ = ¢,
when the amplitudes are stationary. If in these circum-
stances the motion were to be an exact Lissajous figure, it is
necessary first of all that the two phase functions satisfy an
identity

nyq, — ng, = nyd, — n,d, (4.7)

in analogy to (4.5), at all times during some subinterval of the
said interval.

Equation (4.7) resembles the synchronization condition
(2.10),

3.(t.) = gg,lt.) — g3@.(t.) = rm, rinteger. (4.8)

Here g, and g3 are not necessarily relatively prime, in con-
trast to n, and #,, but if we divide (4.8} by d, the greatest
common divisor of g, and g3, then the two relations can be
equated term-by-term with the result

n,=g/d, n,=g,/d, n,d, —nd, =rw/d. (4.9)

The last of these three identifications shows how the
two phase functions in Egs. (4.4) must be synchronized in the
particular Lissajous figures which may arise from the mo-
tion (4.6). The two phase constants d,, d, are tightly connect-
ed; for instance, in a 6 = Ostate withd, = 0, we see from (4.9)
that d, = r7/dn, holds at t = t, = 0, consistent with (4.3).
Given this link between d, and d,, we shall henceforth regard
our Lissajous figures as determined, not by the phase differ-
enced, — d, in Eqgs. (4.4), but by the value r7/d of the linear
combination n,d, — n,d,, which is a kind of “weighted rela-
tive phase” and unambiguously determines the simple rela-
tive phase d, — d, as soon as one of d,, d, is given in any
manner whatever.
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For an exact Lissajous figure to emerge it is further-
more necessary that g,, §, have proportional rates of growth.
Hence, if the instantaneous frequencies happen to be exactly
commensurate at the modulation extremum under consider-
ation,

§:(te)Galt.) = nyiny, (4.10)
then the motion must begin as a Lissajous figure having the
frequencies and phases specified by the relations (4.9); in par-
ticular, the frequency ratio will be n;:n, = g5 :g,. Because of
4, = 8,9, — 89> the condition (4.10) will be met exactly if
g = 0; according to the Corollary of the preceding section we
are then at a multiple root, and so we have simply a Case (I1)
c-a motion, and an orbit of permanent Lissajous shape. At a
single root, according to the same corollary, §,(z,) #0 holds
so that the frequencies cannot be exactly commensurate at
the ratio g; :g,, nor can they remain at any constant ratio for
long. Still, the ratio g; :g, will hold approximately for some
time, and the orbit will still resemble a Lissajous figure for a
while. We may speak loosely of a ““Lissajous pattern,” mean-
ing a curve which is not necessarily closed or exactly period-
ic, but still lies in the neighborhood of a specific Lissajous
figure for some time. As time passes, the pattern may be lost
rapidly, depending on the evolution of amplitudes and
phases. At the next modulation extremum, however, the am-
plitudes are again stationary and another phase relation (4.8)
is in effect; hence in general the orbit alternates between Lis-
sajous patterns which are most clearly recognizable near the
modulation extrema. Depending on conditions, a pattern
may also persist, of course; typical are the motions of an
elastic pendulum in the vicinity of a cup or cap c-a motion
which never lose their approximate cup or cap shape.’ On
the other hand, in between extrema, a well-formed pattern
can hardly arise, both amplitudes and periods being variable.

Suppose now that we have amplitude modulation
between two roots of equal parity. Then r remains the same
throughout, » = 7, and with it the weighted relative phase in
(4.9) remains the same, whether or not g, and g; are relative-
ly prime. The pattern near a half-period = 7'/2 of the modu-
lation must consequently be the same as near =0, only it
will be traced at a different amplitude ratio.

With modulation between roots of different parities,
suppose for definiteness that we start at the even root and
with ¥ = 0. At ¢t = T /2 we must have g,(T /2) = + 7, and
the Lissajous pattern will obviously be different. Continuing,
we shall have g,(T) = + 2, but does the orbit return to the
original pattern it had around ¢ =~0? Noting that g, and g, are
determined only mod 277, we must conclude that the weight-
ed relative phase n,d, — n,d,, t0o, is determined only mod
27 and not modulo some /esser multiple of 7. If it changes by
27, then the combined phase g, goes through a correspond-
ing change by 2d7, but if conversely , changes by 27, then
n,d, — n,d, changes only by 27/d. We must, therefore, dis-
tinguishd = l and d #1.

Ifg, and g, are relatively prime, the pattern at 1= Twill
be the same as at £ ~0 because the weighted relative phase
has remained unchanged (mod 27). At t=~37T /2 the pattern
will be the same as at £~ 7"/2, and so on. Thus there is a pair
of different, typical, alternating patterns for each even—odd
modulation.
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Quite different if d £ 1. At 1=T, g, has changed by 27,
but n,d, — n,d, only by 27/d so that the pattern cannot be
the same as at = 0. Similar for the odd patterns occurring at
T /2,3T /2 and so on. Thus now there is an alternation of 2d
patterns, until n,d, — n,d, has run through a change by a
full 277. The modulation period is still 7, but the recurrence
time of the orbit patterns will be 2d7.

How many distinct patterns are possible in a given sys-
tem will depend on the pair of integers g,, 83, 1.€., on the
resonance but not on the coupling. If g, = 1 so that only two
values ¥ = 0,1 are possible, there are obviously just one even
and one odd pattern. In the elastic pendulum,® these are
simply cup- and caplike, respectively. If both g, g; are
greater than 1 but relatively prime, there is still only one even
and one odd pattern; the different possibilities for » then
correspond to different points on the pattern where the mo-
tion is started up at # = 0. If d # 1, there are more patterns,
however. For example, in the simplest caseg, = g; = 2, with
r = 0,1,2,3 possible, there are two even patterns in the form
of straight-line motions like the arms of a St. Andrew’s cross,
and two odd patterns in the form of the same ellipse de-
scribed in opposite senses. Reference 4 is an example (with an
added symmetry degeneracy leading to a X cross and a cir-
cle).

Many Lissajous figures are not closed loops but curved
line segments with motion reversals at the two ends. At such
endpoints the phases g, and §, go simultaneously through
multiples of 7. Release from rest necessarily takes place at an
orbit endpoint, whatever the pertaining value of 7, cf. Sec.
IIT E. Of course, the phases of a § = 0 state, even if it has
been set up by release from rest, do not remain precisely
synchronized to the amplitude modulation later on, so that
at a later amplitude extremum the orbit will only exception-
ally backtrack precisely on itself, but whenever both phases
go nearly through multiples of 7 near an extremum, there
will be a cusplike or looplike return motion with, character-
istically, a reversal of the sense of motion around the origin.
Such reversals are possible because the restoring force in the
system is in general not exactly central. Angular momentum
about the origin is then not conserved and can indeed change
so much that the angular velocity reverses as described. Ref-

erence 4 contains typical examples.
When a system has more than two d.f. there are general-

ly no closed orbits. Arguments similar to the above can still
be valid for two-dimensional projections of the orbit, how-
ever, given that c-a motions usually still exist and will induce
two-dimensional patterns.

C. Approach to stable c-a motion at a double root

We return to an arbitrary system of any number of d.f.

When initial conditions are changed such that the mo-
dulation range between two single roots R, and R, tends to
zero, the motion gradually approaches an orbitally stable c-a
motion of Case (I) or (II) at a double root. Between the roots,
the polynomial fcan be approximated by a parabola opening
downward, say

f(ﬁl) = K(ﬁl — R )R, ‘51), K>0.
The integral in the formula SF (3.11) for the modulation
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period then becomes elementary and yields at once
T=2/K. (4.11)

In the limit R,—R,, K becomes in essence the curvature of f
at the top, and this is finite.

The limit process is thus straightforward for two simple
roots of equal parity: Going towards a Case (11), the modula-
tion does not become infinitely slower; it only narrows to
zero while g, (¢ ) tends to the constant value #'7 (and in a phys-
ical oscillatory system of two d.f. the orbit would tend to a
stable Lissajous figure).

For roots of opposite parity, §,(¢ ) must still change by 7
in every interval T' /2, with 7 remaining finite. It is not to be
seen immediately how such a steady variation of the com-
bined phase can go with constant amplitudes. The approach
to a Case (I) motion thus requires special attention. It will be
clarified in the following section in Theorems 3-6.

It is also possible that a Case (I) motion at a double skew
root be reached as the limit of motion between a single root of
definite parity and a single skew root. Equation (4.11) still
applies, but a single skew root marks Lipschitz-singular con-
ditions of exceptional low amplitude which demand special
study; we must defer this exceptional case until Sec. IV E.

D. Motion at and near a multiple skew root

For ease of discussion we generally assume that the giv-
en system is one of physical oscillators, and we use the sign
convention of Sec. III C.

1. Phase equations

For c-amotion p,=R at amultipleroot R of /; then — 1
phase equations SF (4.1) become

g =uo+u,c08g, i=2..n (4.12)
where
Uio=0; + ——aB(p"a)} , (4.13)
9a; |5 -z
L= M‘ , (4.14)
da;

Pi=R
with all u,,, u;, therefore constant in time. Likewise the
equation of motion for the combined phase becomes

§,=05/3p, = v, + v, c0s §,, (4.15)
where
3B (5,.0)
V= € + —— L0 , 4.16
0 3‘51 at R ( )
o= Bl (4.17)
a=| at R

with v, v, constant.

Any nonresonant d.f. with g; = O (but i 1 because of
the numbering convention g, > 0} also have the phase equa-
tion (4.12), but do not take part in the combined phase G,;
therefore, their integrated phases g; cannot be tied to the
resonant phases by some synchronization condition. Their
amplitudes are necessarily constant, regardless of phase
variability; see SF Sec. IV. If such an amplitude should be
zero, it could also nullify the entire nonlinear coupling in
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some systems. It is to be understood that the language in the
following excludes the possibility that F =0 for all 3,.

In a Case (II), the cosine is constant = + 1; the phases
are then seen to be linear functions of time, with all » periods
g, constant and given by SF (5.7) together with SF (5.8),
which is merely the synchronization condition (2.10) in dis-
guise. The periods of any participating nonresonating d.f.
are also constant, only unrelated.

Case (I), with F =0 as a function of time, is quite differ-
ent. The (resonant) phases are not necessarily synchronized,
as the discussion leading up to the theorem with the condi-
tion (2.10) clearly shows. The phase behavior can, in fact, be
understood only with proper regard to both root parity and
orbital stability of the motion. In SF we did not yet possess
the requisite concepts; thus, in some places the preliminary
discussion of Case (I) [but not of Case (II)] given there needs
to be amended, as will be mentioned explicitly after Theorem
6 below.

The possibility of frequency variations in Case (I) c-a
motion evidently depends on the vanishing, or otherwise, of
the coefficients v, in Eq. (4.15) and 4, , in Egs. (4.12). It so
happens that these coefficients can vanish only in patterns
which depend markedly on the multiplicity of R as a root of
F? (which can be higher than its multiplicity as a root of f;
depending on the multiplicity as a root of P ). Thus the phase
behavior of a Case (I) turns out to depend sensitively on the
type of coupling which operates in the given system.

2. Higher-order roots

Assume first that R is a root of F 2 of the third or higher
order. A glance at the explicit Eq. (3.5) shows that in this
case, either one /, equals at least 3, or Q has a root of at least
the second order at R, or a confluence of zeros of sufficiently
high order takes place. In any event, a derivative of F with
respect to either p, or any one of the @; must still vanish at R;
hence B

Theorem 1: If R, a root of £, is a root of F?of at least the
third order, thenv, = Oand u; , = Oforall/ = 2,...,n (includ-
ing the nonresonant d.f.).

It follows from Eqgs. (4.12) that in the c-a motion at such
an R the d.f. g,,...,q, move harmonically with the frequen-
cies u, o, which Eq. (4.13) shows to be identical with SF {5.3).
One or more amplitudes may vanish, of course. The com-
bined phase (4.15) obeys

3, =84+ +8.4, =V (4.18)
where the definition (2.3) has been used. Thus q, also moves
harmonically, with its frequency g, determined from Eq.
(4.18) by the value of v,, as stated in equivalent terms in SF
Sec. V. Since v,70 in general, integration of Eq. (4.18) will
normally not yield a result equivalent to Eq. (2.10); there is
no such synchronization now, except, of course, if the Case
(I) is simultaneously a Case (II), with R being a root of f of
order at least three, in which case it is seen from Eqgs. (4.16)
and SF (5.5) that indeed v, = 0 holds, and also vice versa. In

summary _
Theorem 2: If R, a root of f, is a root of F? of at least the

third order, then the c-a motion at R is purely harmonicin all
d.f, the frequencies of the resonant d.f. are always related by
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Eq. (4.18), but phase synchronization as in Eq. (2.10) is ob-
tained if and only if the motion is simultaneously a Case (I1).

This theorem completely describes all Case (I) c-a mo-
tions at roots of f of order three and higher, including the
behavior of nonresonant d.f. Note, however, that it also de-
scribes motions at those skew roots of [ which are only dou-
ble but are still at least triple roots of F2. Such motions are
necessarily orbitally stable, according to STAB (3.12); see
also Fig. 3 above. Their special interest is that they may be
Liapunov-unstable in a higher approximation only, as we
showed in STAB Sec. IV by an argument which rested deci-
sively on the c-a frequencies’s being constant (and equal to
the linearized w, because also B =0).

We have not attempted in Theorem 2 to characterize
the phase behavior of motions in the neighborhood of the c-a
motion at R, because there are too many possibilities of high-
er-order roots and of ways of approaching them. Each case
will have to be studied on its own terms. Lemma (4.1) and
Theorems 5 and 6 below point to suitable procedures. The
only conceivable mathematical difficulty is an exceptional
low-amplitude condition, and we deal with the main features
of that in Sec. IV E.

3. Lowest-order roots

We are now left to treat double roots of F 2, which can
only be double (skew) roots of /. Referring again to Eq. (3.5),
it is seen that a first-order zero of F at R can arise because
{; = 2for one particular/, say / = j, or because é has asimple
zero at R. However, this is not all.

In certain systems, according to the Theorem at the end
of Sec. III D, there also exists the further possibility of a
confluence of two exceptional low-amplitude conditions,
Le., a confluence of two zeros of order | in Eq. (3.5). If thisis a
root of f, the corresponding c-a motion again needs special
study. Its dynamical neighborhood, as is demonstrated by -
Fig. 4, can in general contain a medley of different motions.
First, there are orbitally unstable motions with two ampli-
tudes having their lower bounds at zero, and therefore with
Lipschitz conditions not guaranteed. Then there are stable
motions of the three kinds listed in the previous section.
They may take place between two roots of equal parity, in-
cluding limiting Case (I1I) motions when the two roots co-
alesce, and then they have a constant or almost constant
combined phase g,(t ). They may also take place between two
roots of opposite parity, and then they have a combined
phase which changes by 7 in each half-period of the modula-
tion. They may even occur between a single root of definite
parity and a single skew root, with the combined phase be-
having as will be discussed in Sec. IV E. To some extent these
complications are academic precisely because of the low am-
plitudes: When two amplitudes tend to zero, then in the limit
of the c-a motion with both of them identically zero the be-
havior of the combined phase becomes irrelevant if only the
phases of the other (nonvanishing) d.f. behave in an unexcep-
tional manner. Still, one may wish to understand the ap-
proach to the c-a motion in some detail. Any particular ap-
proach is equivalent to some (continuous) path in the space
of the parameters a,,...,a, ,.E. It stands to reason that not
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every geometrically possible path is necessarily allowed in
any specific, given system which may possess its own, specif-
ic, restrictive properties. Thus, no general statement seems
possible, and we leave these cases to be studied ad ~oc when
they arise. -

To return to the other double roots of F2, suppose to
begin with that there is one resonant d.f. (having g; 7 0) with

(g P +a;)' =0 forp,=R= —a;/g (4.19)

ifj#1, or simply R = 0if j = 1. As in Sec. III C, using Eq.
{3.6), we conclude that 5, = 0. Since R is to be a double root
of f, we even have p; =0. Furthermore, from the inequality
(3.7) we conclude that R is an endpoint of the domain of 5,
(upper or lower according as g; <0 or > 0). Vice versa, if R
lies at an endpoint, then (4.19) must hold for some resonant
d.f. withj#1, or R =0 withj=0. _

We need all the derivatives (4.14) and (4.17). Note that Q
in Eq. {3.5) cannot vanish at R because the given zero (4.19}is
single, by hypothesis. Now if j# 1, it is seen directly from the
definition (3.5) that #;, #0 while u;, = O for all resonant d.f.
with izj; if we write F =5,""*( g, B, + a;) G (), we find
by differentiation with respect to 7, that simultaneously
v,70 holds. Ifj = 1, then R = 0, and if we write
F=p,G(p,«a), we find that all resonant &, , = 0 while again
v, #0. In either case, the nonresonant d.f. with g; = 0 have
u;, =0.

On the other hand, if R lies inside the domain, none of
the resonant d.f. can have a zero amplitude and we must
have O (R,a) = 0. Conversely, azeroof Q, if it is asimple zero
of F, cannot lie at an endpoint of the domain because addi-
tionally either (4.19) or R = 0 would be required, in order to
reach equality in one of the bounds (3.7). As for the deriva-
tives of F at R, begin with v,. If in Eq. (3.5) we differentiate
factor by factor with respect to p;, at R each resultant term
containing Q vanishes, and only the term with dQ /dp, needs
tobe considered. This can vanish if and onlyif Q hasa double
zero at R, contrary to hypothesis; thus always v, 0. As for
Uyyse--sH, 1, any or all of them may vanish or may differ from
zero, for resonant and nonresonant d.f. a_l'ike; it all depends
on the given K, especially the structure of Q, and hence on the
interplay of different resonant terms in the nonlinear inter-
action governing the given system.

In summary
_  Theorem 3: Let R be a root of fwhich is a double root of
F? and does not result from the confluence of two exception-
al low-amplitude conditions. If R lies at an endpoint of the
domain of 7, then in the c-a motion at R exactly one reso-
nant d.f. is at rest, say p,=0, while v, #0 and also u;, #0 if

Jj# L;allotheru,, = 0.IfR liesinside the domain, then in the
c-a motion at R no resonant d.f. can be at rest; v, %0 holds
always but u,,,...,4, may or may not differ from zero, de-

pending on the given F.

4. Phase integration, general

By Theorems 1 and 3 the behavior of the coefficients
Vysldzy,.-54, ¢ I8 Tecognized to be unexpectedly complex. We
proceed to integrate the phase equations explicitly for the
cases covered in Theorem 3.
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The integration of Eq. (4.15) is slightly complicated by
the existence of a singular integral

(4.20)

Stability also enters the picture. From the criterion STAB
(3.12) itis seen that c-a motion at the given R will be orbitally
stable iff

Vol > [vi], (4.21)

and unstable for the opposite sign (with equality impossible
atadouble root R ). Since in the physical system the cosine of
a phase cannot be larger than 1 in amount, the singular inte-
gral cannot apply in the stable case, but will have to be consi-
dered if c-a motion at R is orbitally unstable.

In the stable case (4.21) the (elementary) integration of
Eq. (4.15) yields

cos §, = — vy/v, = const.

UO_"_vll?_tan [%(v(z) — )2~ to)]].

(4.22)

g,(z) = 2 arctan {
g,(7) 2 — v%

This is evidently periodic with full period
T = 2m(v? — v?)~"/? [which is finite, and must be equivalent
to the value (4.11)]. It changes monotonically from zero at
t=t,to + 7 or — s half a period later; from there, mono-
tonic change continues because under the condition (4.21}
the derivative in Eq. (4.15) cannot change sign, and so g,
exhibits precisely the behavior required by the Theorem of
Sec. IV A for the combined phase of a motion between two
single roots of opposite parity.

In the unstable case, condition (4.21) with the sign re-
versed, integration of Eq. (4.15) yields

= v, + v 2
7.(t) =2 arctan ﬁ/—z— tanh[ 4o} — v3)"/3(r — 1,)] ]
1~ Yo
(4.23)
This is a monotonic function with asymptotes at
= v, +
tanlg,(+ )= + (vf—l-—t%f‘T' (4.24)

By means of the trigonometric formula cos x
= [1 — tan*(x/2)}/[1 + tan?(x/2)], (4.24) can be converted
to

cos §,( + o) = — vy/v,, {4.25)

which coincides with the singular integral (4.20). Which of
the two integrals applies at an unstable R, (4.23) or the singu-
lar (4.20), will depend on initial conditions.

With unstable c-a motions one has in addition the con-
ceptual difficulty of never quite knowing how to set them up
operationally. At best, they should be regarded as limiting
cases of neighboring motions. For any unstable R there must
exist some other root R ' such that f( 5,) > 0 for p, lying
between R and R ’; cf. STAB Fig. 1. Consider now a motion
with an initial amplitude in this range, and with the ampli-
tude evolving towards R.

When p;(t >R, the desired c-a motion will result after
infinite time. During the approach to R the coefficients v,, v,
in the phase equation (4.15) are not yet rigorously constant so
that the singular integral (4.20) is not valid, but to a first
approximation the combined phase should be represented by
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the integral (4.23) during some time interval and with some
t,. After a while, the approximation will have to be renewed,
of course, but the process clearly tends to the singular limit
(4.25).

It is still unrealistic to try and set up a modulation
evolving towards an exact double root R. The faintest inac-
curacy in meeting the initial conditions will split R into two
single roots R, and R,, say, with R lying between R, and the
above R '. The modulation will then evolve towards R, very
slowly, with the combined phase again representable by
{4.23) and therefore again evolving toward the limit (4.25).
Close to R, relatively rapid phase change will take over in
accordance with Lemma (4.1), and consistent with the syn-
chronization (2.10) required as p, passes through R,. This
phase change will proceed monotonically towards an as-
ymptote of (4.23), which then remains valid approximately
for some time as the amplitude still remains close to R, dur-
ing its subsequent evolution towards R '. Except for this time
interval around f(R,) = Othe phase is again approximated by
the singular value (4.25), as long as the motion remains in the
dynamical neighborhood of the c-a motion. For reference,
we summarize the salient feature of this neighborhood thus:
_ Theorem 4: Let R be a root of fwhich is a double root of
F? and does not result from the confluence of two exception-
al low-amplitude conditions. If the c-a motion at R is orbital-
ly unstable, every motion in its phase space neighborhood
tends towards the singular behavior (4.25) of the combined
phase, for p, either approaching R, or approaching one of the
single roots from which R is being formed by confluence, or
developing away from such a root, except for relatively short
time stretches while p, is passing through such a root.

5. Neighborhoods of motions at lowest-order roots

We now turn to a root of the type covered by Theorems
3 and 4, and assume first that it lies at an endpoint of the
domain of 5,. Without loss of generality we may assume that
itis R = 0, and hence, that ¢, (or p,) is the one d.f. that must
remain at rest. Indeed, if the resonant d.f. at rest is some
other g; (or p;) with j# 1, and which also has u; , #0 accord-
ing to Theorem 3, then we may simply renumber the d.f. so
that this g, becomes the new number one, and in the process
the old u; , becomes the new v, whereas all the new »; , must
vanish because no resonant d.f. ¢; (or p;) vanishes besides the
new ¢, (or p,).

It now becomes clear how a stable Case (I) c-a motion
with j,==0 can arise through the coalescence of two single
roots of opposite parity: All d.f. apart from g, approach har-
monic motion at constant frequencies u, ,, while g,, owing to
v,#0, takes on the entire variability required to make the
combined phase §, vary by 2 per period as it should. The
resultant ¢,{z) is thoroughly anharmonic but becomes
progressively irrelevant asits amplitude 5, = g, p, shrinks to
zero. In the limit of root coalescence the phase synchroniza-
tion (2.10) also becomes irrelevant, again on account of the
vanishing amplitude p,, and leaves the remaining n — 1 d.f.
to follow their harmonic motions with the frequencies u;
unrelated, and with arbitrary phase constants, as stated in
equivalent terms in SF (5.3).
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In the unstable case, the approach to the c-a'motion is
subject to Theorem 4. When the motion is close {in phase
space) to the exact c-amotion, itis again only ¢,(¢ ), which can
have a notably variable phase, and only during the relatively
short time stretches while the modulation 5, goes through a
minimum at a single root R ; since R, is by hypothesis very
close to an R, (of opposite parity) with which it is to coalesce
into R = 0, this phase behavior again becomes irrelevant in
the unstable limit R, = R,. The other d.f. again move har-
monically as long as 5, remains close enough to zero. In
summary:

_ Theorem 5: Let R be aroot of fwhich is a double root of
F? and lies at an endpoint of the domain of 7, but does not
result from the confluence of two exceptional low amplitude
conditions. The c-a motion at R, with exactly one resonant
d.f. vanishing, is purely harmonic in all remaining d.f. In the
course of the approach to the c-a motion the phase function
of the vanishing resonant d.f. assumes in the stable case the
entire variability required to account for the behavior of the
combined phase (4.22), whereas in the unstable case it tends
to harmonic behavior and remains approximately synchro-
nized to the other resonant d.f. by the condition (4.25), ex-
cept for relatively short stretches of time while the pertaining
amplitude modulation goes through a minimum close to
zero with attendant phase synchronization (2.10); in either
case this phase becomes irrelevant when the c-a limit is
reached, and then all other phase constants are arbitrary.

These results go beyond the statements made in SF in-
asmuch as the approach to the exact c-a motion is clarified.

Secondly, let R lie inside the domain of p,. Since in the
¢-a motion at R according to Theorem 3 no resonant d.f. can
be at rest, and always v, #0, at least one resonant d.f. has an
anharmonic phase function, and so have all d.f. with u, , 540,
resonant or not. We can eliminate the cosine between Eqs.
(4.12) and (4.15) to yield

UG, — 0§ = U Vo — Ui, = — W,
and integrate to
v1q; = u;,§, + w;t + const, (4.26)

where g, must be of the form (4.22} or (4.23). Thus the phase
functions of all d.f. with u; , #0, and possibly of ¢, have
essentially the same time dependence; in the stable case they
are anharmonic with the superimposed period 7 of the func-
tion (4.22), whereas in the unstable case the most important
feature is again the tendency towards almost harmonic be-
havior described by Theorem 4. In short:

_ Theorem 6: Let R be aroot of fwhich is a double root of
F? and lies inside the domain of B, (and is therefore a single
rootof Q). In the c-a motion at R at least one resonant d.f. has
an anharmonic phase function, and so have all d.f. with

u; , #0, by Eq. (4.26); the remaining d.f. move harmonically.
In the course of the approach to the c-a motion none of the
anharmonic phases becomes irrelevant, but in the unstable
case approximately harmonic behavior occurs in accordance
with Theorem 4.

These “double skew root inside the domain” motions
are thoroughly exceptional. We overlooked their existence
in SF. They are the one and only exception to the statement
made there that al/ c-a motions are purely harmonic, and to
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the implication that in Case (I) the phase functions are al-
ways unrelated.

A motion with constant amplitudes but a nonlinear
phase evolution is, of course, not stationary in the customary
sense. Suppose for the sake of illustration that we have only
two d.f., that we have one of these double skew roots inside
the domain, and that also u,, = 0. Then at this root g, moves
harmonically, but because of §, = g,9, + 8,9, the phase g,
consists of a linear part together with either a periodic part
(4.22) or a monotonic but nonlinear part (4.23). We may
paraphrase: ¢, moves at a constant frequency but with a (pe-
riodically or monotonically) changing phase constant. Thus,
in the Lissajous picture the orbit will start as a particular
pattern which gradually evolves through other patterns as
the phase difference d, — d, in Egs. (4.4) runs through its
{periodic or monotonic) evolution. When such a motion is
observed in a real system it need not stand out amongst the
usual amplitude-modulated motions and may go unrecog-
nized despite its mathematically different character.’

E. Phase behavior at a single skew root

A single skew root is a single root of F2 and therefore
entails that in Eq. (3.5) one of the /;, equals 1. It lies at an
endpoint of the domain of p; see Sec. III C. Hence, when the
modulation p, reaches this root, the d.f. in question has its
amplitude going through a zero. In SF Sec. VI we discussed
in detail what happens in a real oscillatory system with a
nonlinear coupling involving one d.f. to the first power,
when the amplitude of that d.f. drops to zero. The main
result was that the phase went through a 180° jump and in
addition changed quite rapidly in the vicinity of the ampli-
tude zero. For completeness we now demonstrate the exis-
tence of an analogous phase jump in all systems with Hamil-
tonians of the type (2.1).

Thus, let F behave as in Eq. (3.9) at a I" which is also a
root of P {of at least the first order). From the conservation
law (3.1) we conclude that

cos§, =P/F=F(P/F? (4.27)

aslongas F 0. If now p,—T, then P approaches aroot of at
least the same order as the root of F'2, whence P /F % remains
bounded and

limcosg, =0 asp,—rI.
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It follows that
(4.28)

I is an extremum of the modulation 5,. The derivative p,(¢)
must therefore have opposite signs before and after the pas-
sage through I, but in Eq. (2.6) the factor F' does not change
sign, hence sin §, must change sign, and it can only do so in
accordance with (4.28) if g, jumps by 7. Thus,

sing,(t, —) = — landsin g,(t, + )= + 1ortheother way
around, depending on the sign of K, and on /" being a mini-
mum or maximum of p.

The equation of motion for g,(¢ ) is of the form (4.15), and
if we at once eliminate the cosine by means of (3.1) it becomes

Goey OB EE

T E T B F
Here the derivative of F has a square-root singularity at I,
and formally no Lipschitz condition holds, but in analogy to
the manipulation in (4.27) we can write

- =
5 —er 9B LI P
aﬁl 2 aﬁl F :

and conclude that § q, remains safely bounded as D,—T, be-
cause both B and F2 are polynomials and P /F? is bounded.
Except for the 180° jump, g, is therefore entirely regular;
however, its transient behavior right and left of the singular-
ity depends strongly on the coupling terms in the given Ha-
miltonian, as Eq. (4.29) indicates.

Under these circumstances, the phase behavior in each
given case will require separate study. The elastic pendulum
is typical; for a detailed comparison of phase transients in the
real system and its slow-fluctuation approximation, see Sec.
X of Ref. 3.

limsing, = +1 asp;—I.

(4.29)
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In Segal’s approach to linear Fermi quantum systems, a one particle picture with linear
symmetries (e.g., with a linear dynamics) can be quantized very straightforwardly when a
complexification is given for the (real linear) one particle picture. We examine how the symmetries
that are embodied in the one particle picture can determine the structure of the family of the
possible complexifications. Among other results, we prove that if the symmetries can be
represented in a suitably irreducible way then the complexification is essentially unigue. Also,
when the one particle space is a generalization of the one defined by the Dirac equation, we prove
that there are many complexifications, and inequivalent too as they generate inequivalent
representations of the canonical anticommutation relations; however, we find two criteria that

single out the “physical” complexification. We use the general results we prove to discuss a few
familiar models.

PACS numbers: 03.65.Bz, 03.65.Ca, 11.10.Cd, 02.20. + b

1. INTRODUCTION

In Segal’s approach to linear Fermi quantum systems,
to quantize a system means to represent the coordinates and
the conjugate momenta of a “‘one particle” or “classical
phase space” picture in a C *-algebra (sometimes called the
Clifford algebra of the system) in such a way that the canoni-
cal anticommutation relations hold.' The one particle pic-
ture that underlies this approach can be represented by a
triple (M,S,T ), where

(a) the pair (M,S ) is an even finite or infinite dimensional
real Hilbert space, i.e., M is an even finite or infinite vector
space and S is an inner product on it,

(b} T'is a group homomorphism from a group G into the

group of the orthogonal transformations of (M,S).
The picture described by (M,S,T ) is quantized when a repre-
sentation of the canonical anticommutation relations (c.a.r.)
over (M,S}is given, i.e., areal linear injection R from M into
the self-adjoint part of the Clifford algebra (which need not
be a concrete algebra) such that Vm,m'e M,

[R (m), R (m")) . =R (m)R (m") + R {m")R (m)
=S (m,m’).

Indeed, once R is given T also is quantized, since for each
element g of G a unique automorphism 7, of the Clifford
algebra exists such that Yme M

7o(R (m)) = R(T (g)m).

Although the quantization of linear Fermi systems can be
discussed in this purely algebraic framework,” we examine
here the well known straightforward quantization proce-
dure called “second’ or “‘Segal” quantization,® in which the
Clifford algebra is realized as an algebra of operators on a
(complex) Hilbert space and the automorphisms 7, are im-
plemented by unitary operators on this space. Indeed, we
examine in this paper “how many” Segal quantizations exist
for a given one particle picture. For a discussion about the
one particle picture as a kinematical description in which a
symmetry group is also defined (which can embody a linear
dynamical evolution), see Ref. 4. For a discussion of Segal
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quantization versus general algebraic quantization, see Ref.
5. Actually, Bose systems are examined in Refs. 4 and 5.
However, the discussion to be found there can be easily
adapted to the Fermi case treated in the present paper by
replacing symplectic spaces with real Hilbert spaces, sym-
plectic transformations with orthogonal transformations,
Weylsystems with representations of the canonical anticom-
mutation relations, Weyl algebras with Clifford algebras,
and symmetric Fock spaces with antisymmetric Fock
spaces.

Segal quantization of (M,S,T) can be performed when
there exists a complex Hilbert space structure on M that
embodies the real Hilbert space structure already existing on
M and such that T (g) is a complex unitary operator for each
element g of G (of course, this “one particle” complex Hil-
bert space is not the complex Hilbert space where the second
quantized quantities are defined). The existence of such a
complex Hilbert space structure is equivalent to the exis-
tence of a linear operator J on the real Hilbert space M
satisfying
(C1) J is an orthogonal operator on M, i.e., Vmm' e M

S (Im,Jm’) = 8§ (m,m’),

(C2)J* = — 1 (the identity operator on M ),

(C3)VgeG, [Tg)J]) =TV - JT(g)=0.

In fact, if the complex Hilbert space exists, J is simply multi-
plication by the imaginary unit. If conversely J is given, a
complex Hilbert space M ” with the required properties is
constructed defining on M a complex scalar multiplication
as

Va € C,Vm e M, am=({Rea}l + (Ima}J Jm
and a complex inner product as
Vmm' e M, (m|m'),=S(mm')+iS{JIm,m’).

We call an operator J on M with the properties (C1), (C2),

and (C3) listed above a complexification operator of (M,S,T’)
and denote the set of such operators by C (M,S,T'). Different
elements of C (M,S,T ) lead to different Segal quantizations of
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(M,S,T). Notice that in this very precise sense, a variety of
“Fock quantizations’ may exist, corresponding to the vari-
ety of elements of C (M, S, T'); each of them is a Fock quantiza-
tion in its own right and is determined by an element of
C(M,S,T). They are comparable, though, as quantizations
over the same real Hilbert space, and some criteria exist
which may be used to check whether the Hilbert space repre-
sentations of the c.a.r. over (M,S) they contain are unitarily
equivalent. As we will see, in the cases we are concerned with
the representations of the c.a.r. that arise are all unitarily
inequivalent.

In Sec. 2 we show how the structure of C (M,S,T'), when
this set is not empty, can be determined by the structure of 7.
In particular, we find the condition for 7 that makes
C(M,S,T) contain a unique (up to the sign) complexification
operator, if any. When a choice among many admissible
complexification operators is possible, it will also be shown
that all the corresponding (Fock) representations of the c.a.r.
are unitarily inequivalent, thus making meaningful the prob-
lem of singling out one of them. It is worth mentioning that
Weinless too proved a uniqueness condition for complexifi-
cation operators, which is, however, quite different from
ours; indeed, he proved that if G is a Lie group and T'is
strongly continuous, then in C (M,S,T) there is at most one
complexification operator with respect to which the self-ad-
joint generator of a fixed (but generic) one-parameter sub-
group of T'is positive (Lemma 1.6 in Ref. 2). A few more facts
about C (M,S, T )are worth mentioning. First, at most unique-
ness up to the sign can hold, because if an operator J is an
elementof C (M,S,T),sois — J.Second, when G = Rand T'is
strongly continuous, a condition for C (M,S,T ) not to be emp-
ty was found by Weinless (Theorem 5.5 of Ref. 2). Finally,
the discussion of the one degree of freedom case, which is
interesting for Bose systems (see Ref. 4), is not really instruc-
tive for Fermi systems. In fact, for M = R? there is just one
{up to the sign) operator that satisfies conditions (C1) and
(C2) above.

In Sec. 3 we use the results obtained in Sec. 2 to discuss
nonfamiliar features of a few familiar models.

2. STRUCTURE RESULTS

In this section we show what operators are contained in
C(M,S,T)inthecasethat C (M.,S,T)isnonempty and T satis-
fies particular conditions. Of the four results we prove, the
first one is a uniqueness condition for the complexification
operators and the third one bears a uniqueness condition as
an easy consequence. The statements of the first three results
have the following common pattern. If J is a complexifica-
tion operator and T" has some properties as a unitary repre-
sentation of G in M ’, then C (M,S,T ) has some structure de-
termined by J.

Before the lemmas and the results, it may be useful to
notice explicitely that, if / and K are two complexification
operators, a (real) linear operator B on M is a (complex) linear
operator from the complex Hilbert space M ” into the com-
plex Hilbert space M ¥ if BJ = KB, it is antilinear if

BJ = — KB.In particular, Jbeing a complexification opera-
tor, a (real) linear operator in M is a (complex) linear (or
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antilinear) operator in M’ if it commutes (or anticommutes)
with J. As to the notation, remember that M’ denotes M
“complexified” by a complexification operator J. Also, we
denote by T’ the (complex) unitary representation of G that
is defined by T in the complex Hilbert space, M /, namely
VgeG

T'(g)=Tlg)
where the difference between the left hand side and the right
hand side is just the difference between M ” and M.

Lemma I:LetJ and K be elements of C (M,S,T') and let
the (complex) unitary representation 7" be (complex) irredu-
cible. The following statements hold true.

(a) A real number + exists such that [/,K], = ¢1.

(b) Ym e M,||[J,K]_m|* = (4 — &3)||m||*, where & is
the number that appears in (a).

(c) If[/,K]_ =0,thenK = +J.

Proof: (a) Because of property (C1) of the complexifica-
tion operators, JK + KJis a bounded real linear operator on
M. 1t is also complex linear on M ’ because
[VK + KJ,J]_ = 0asaresult of (C2). Therefore, JK + KJ is
abounded complex linear operator on M’ which commutes
with 77, because of (C3). Thus, by Schur’s theorem, a com-
plex number ¢} exists such that JK + KJ = 1. Moreover
VmeM

Im((JK + KJ)m|m), = — S (Km,m) — S (KJm,Jm) =0,
since
S(Km,m)=S(K’m,Km)= — S (m,Km)= — S(Km,m),

where use is made of (C1) and (C2). Hence & is real. (b) A
straightforward calculation, in which use is made of (C1),
(C2), and of the result (a} proved above, shows this equality.
(c¢) This result is an easily proved consequence of (a) above
and of (C2).

To state our first result, we need a remark which is used
also in the proof of Lemma 2. Indeed we observe that if a
{complex) unitary representation of a group is irreducible,
then its antiunitary commutant either is empty (if the repre-
sentation is not self-contragredient, i.e., it is not antiunitarily
equivalent to itself) or contains just antiunitary operators
that differ from one another by a phase factor. This is a direct
consequence of Schur’s theorem. Therefore, all the squares
of the antiunitary operators that commute with the represen-
tation have the same value, which can be called the square of
the antiunitary commutant of the representation.

Result I: Let J be an element of C (M,S,T'). If the (com-
plex) unitary representation 7" is (complex) irreducible and
either of the following two conditions holds, (1) T is not self-
contragredient, (2) the square of the antiunitary commutant
of T”isnot — 1, then C (M,S,T) contains only the operators

+J.

Proof: We show that, ifin C (M, S, T ) there is an operator
K # + J, then an antiunitary operator A exists on M ” that
commutes with 7 and such that 4 > = — 1, which contra-
dicts both (1) and (2). In fact, if such a K exists, take

A=4-93""JK]_,
which is a well defined (real) linear operator in M because of
{b)and (c) of Lemma 1. Using (a) of Lemma 1 and (C2) we can

F. Gallone and A. Sparzani 1611



see that 4 2 = — 1. This directly implies that the range of 4
is M. Moreover 4 is isometric because of (b} of Lemma 1.
Finally, 4 is an antilinear operator in M “since [4,J ] , =0
follows from (C2). Therefore 4 is an antiunitary operator on
M’ and commutes with T because of (C3). This ends the
proof.

Notice that—for an irreducible unitary representa-
tion—the case not covered by the result above is that the
representation is self-contragredient through an antiunitary
operator whose square is — 1. Such are, for instance, the
continuous unitary irreducible representations of SU (2). Re-
sult 2 shows that in this case there is not (up to the sign)
uniqueness for the complexification operator, in contrast
with the situation dealt with by Result 1. We prove now a
lemma that we need in the proofs of both Results 2 and 3.

Lemma 2: Let J be an element of C(M,S,T) and A4 an
antiunitary operator on M ’ that commutes with T and such
that 4 2 = — 1. If a, B,y are real numbers such that
a’® + B*y* =1, the (real) linear operator J, 5., defined by

Jwpp=aJ + pA + yJA

is an element of C (M,S, T ). Moreover, the (complex) unitary
representations 77 in the complex Hilbert space M 7 and
T/57 in the complex Hilbert space M " are unitarily
equivalent if @ # — 1, antiunitarily equivalentifa = — 1.

Proof: Notice that 4, as a (real) linear operator on M, is
anelementof C (M,S,T )and therelation[/,4 ], = Oholds. A
straightforward calculation in which use is made of this anti-
commutation relation and the properties (C1) and (C2) of J
and 4 shows that Vm,m' e M

S (J(a,ﬂ.r) m, J(H,B,T)

i.e., the condition (C1) holds for /i, ; ,,. Direct computation,
in which use is made of [/,4 ], = 0and the property (C2} of J
and 4, alsoshows thatJ, ,.,* = — 1,1.e., the condition (C2)
holds for J, ;. Finally, {C3) obviously holds for J, 4, since
it holds for both J and 4. This ends the proof of the first
statement of the lemma. For the equivalence between 7/ and
T?«2n consider first the case @ = — 1; this means

Jwpyy = —J and the identity map on M is an antiunitary
operator from M onto M ~“ that commutes with 7, i.e.,
that transforms T” into 7 ~”. Taking now a# — 1, define
the (real) linear operator ¥ on M as

V=020 +a) """ (1 —JiupnJ)
The range of the operator V'is M, since the equality
(1 —JapnI N1 +2a +Jup,J) =201 +a)

can be shown by direct computation, making use of

[/,4 ], = 0and of property (C2) of J and 4; further, using
these properties of J and 4 and also (Cl), it is possible to see
that ¥ is an orthogonal operator on M, and therefore it is
isometric; finally, Vis (complex) linear from M “ onto M i
since

(l - J(a.B.V)J)J =Jl<x.ﬁ’.rb(1 - ‘]laﬂ.rl'])

holds as a consequence of (C2) for both J, 5,, and J. There-

fore Vis a unitary operator from M ’ onto M Yiesn and com-
mutes with T since both J, 5, and J do. This completes the

m')=S(mm’),
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proof of the lemma.

Result 2: Let J be an element of C (M,S,T ). If the {(com-
plex) unitary representation 7’ is (complex) irreducible and
self-contragredient through an antiunitary operator 4 on
M such that A2 = — 1, then these two properties hold for
T ¥ for any KeC{M, S, T'). Under these conditions, the set
C(M.,S,T) coincides with the set of the operators

Jwppn=at + A + yJ4,

for a,B,y real numbers such that &® +8° + ¥* = 1.

Proof: The only thing we must prove is that for any
K € C(M,S,T |therearerealnumbers @3,y with the property
a’>+ %+ y* = lsuchthatK =J,, 4,,. Whenthisis proved,
the result follows as an easy corollary of Lemma 2. Take then
KeCM,S,T). If K = + J, then of course
(a, B,y) =+ 1,0,0). If K # + J, as in the proof of Result1l
we can consider the operator (4 — ¢ 2)~'/?[J, K]_, whichisa
(complex) antiunitary operator on M “ that commutes with
T. Owing to the uniqueness up to a phase factor of an opera-
tor with these properties, which stems from the irreducibi-
lity of T, two real numbers ¢, and £, with the property
&1+ &3 = Lexist such that

VK]- =(4—9%"%0 + (A

Summing this equality with the equality [J,K'], = 91 (see
Lemma la) and using the property (C2) of J we obtain

2K =3+ (4 -3 T - 1A

Therefore K =J , 45,,, witha = — 18, 8=10,(4 — 22,
y=—4}5@4 ¢ 2)'[2. This proves the result.

It is worth pointing out explicitly that, if we chose in-
stead of 4 another operator in the antiunitary commutant of
T/, the family of operators J, 5, would not be affected. So it
must be for the statement of Result 1 to make sense and so it
is because another operator would differ from A4 by just a
phase factor. Also, notice that the conditions of both Results
1 and 2 are conditions for (M,S,T ) and not really conditions
that hold for a particular complexification operator only.
This is explicitly stated in Result 2 and immediately seen in
Result 1 (since 77 and T~/ are antiunitarily equivalent
through the identity map on M ).

We prove now our last structure result for C (M,S,T). In
contrast with Results 1 and 2, the representation T is not
requested to be irreducible here. Indeed, this result is suited
for discussing the one particle picture that is defined by the
Dirac equation.

Result 3: Let an element J of C (M,S,T) exist such that
the (complex) unitary representation T decomposes into a
(complex orthogonal) direct sum of two (complex) unitary
irreducible representations. Suppose these two representa-
tions are mutually antiunitarily equivalent and unitarily ine-
quivalent. Then there is a unique (up to a phase factor) an-
tiunitary operator A on M’ that commutes with 7" and such
that 4 2 = — 1. Moreover, the operators

Jwppn=al + BA + vJA,
with @,3,y real numbers such thata® + 8 + 7° = 1, areele-

ments of C (M,S,T) and the only operators of C (M,S, T ) that
are not of this form are + J,, with
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Jo=J (P, — P,)

if P, and P, denote the (complex) projections from M ” onto
the supports of the two components of 7. The unitary re-
presentations 7'«#7 are unitarily equivalent to T/, while
T (respectively, T ~*) is the (complex orthogonal) direct
sum of two copies of the component of 7 relative to P,
{respectively, P,).

Proof: Denote by M'{ and M ; the ranges of the projec-
tions P, and P,, respectively, i.e., the two mutually orthogo-
nal (complex) subspaces of M’ that are invariant with re-
spect to T, and by 7{and T3 the restrictions of 77 to M J
and M}, respectively. If B is an antiunitary isomorphism
from the (complex) Hilbert space M { onto the (complex)
Hilbert space M j such that Vge G

BT{(g)=T;lgB,
then
A=BP,-B~'P,

can be quite easily shown to be an antiunitary operator on
M’ that commutes with 7 and such that 42 = — 1. More-
over, 4 is the unique (up to a phase factor) antiunitary opera-
tor on M “ that has these two properties; in fact, if ¥ is an-
other such operator, then ¥4 ~'is a unitary operator on M’
that commutes with T therefore, since 77 is a multiplicity
free unitary representation, two complex numbers p, and p,
of modulus one exist such that
va ! =p,P, '*‘Pzpz;6
thus we have
-1=V? =((P_1P1 + p.P,)(BP, — B P
= —(pp2P) + pp,Py)
(bar means complex conjugation), whence p 0, = 1; there-
fore p, = p, and this shows that ¥ and 4 differ by a phase
factor only. Thus, 4 is an operator on M that satisfies the
conditions of Lemma 2, and therefore the operators J, 4,
areelements of C (M,S, T ) for all the real numbers @, 8,y such
that a® + B2 + ¥ > = 1. The uniqueness up to a phase factor
of A shows that if we defined the operators J, 5, through a
different antiunitary operator that meets the conditions of
Lemma 2, we would obtain the same family of complexifica-
tion operators. Also, from Lemma 2 we know that the uni-
tary representations 7’ e are unitarily equivalent to 77,
Notice that this holds alsofora = — 1;infact,fora = — 1,
T’=#7 is known to be antiunitarily equivalent to T, but in
the present discussion 7'’ is also known to be self-contragre-
dient (through the antiunitary operator 4 ).

Consider now the operator J; on M. Taking into ac-
count that if for two vectors m,m’ of M the equality
(m|m’), = 0 holds, then S (m,m’) = 0 holds as well, and also
using the property (C1) of J, we see that Ym,m' e M

S (Jom, Jom') = S ((Py — Paom,(P, — Pym’)
=S (P,m, P,m’) + S (P,m, P,m’)
=S((P, + P)m, (P, + P,)m') = S(mm’),

i.e., J, satisfies the condition (C1). Observing now that J
commutes with P, and P, because M { and M j are complex
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subspaces of M, it is very easy to show that J; satisfies the
condition (C2) since so does J. Finally, J, satisfies the condi-
tion (C3) because so does J and because P, and P, commute
with Tas M J and M ] are invariant with respect to 7.
Thus, + J, are elements of C(M,S,T'). To examine now the
unitary representation 77 in the (complex) Hilbert space
M %, note that P, and P, commute also with J, and therefore
M ] and M ; are (complex) subspaces also of the (complex)
Hilbert space M *». We denote them by M J° and M 3> when
we consider them endowed with the (complex) Hilbert space
structure of M , . Clearly, M { and M 3} are invariant with
respectto T/ since M | and M j are invariant with respect to
T’. Also, M }>and M ? are easily seen to be mutually ortho-
gonal (complex) subspaces of M “, since the restrictions of J
to M ¢ and of J, to M 7} coincide while the restriction of J to
M ] is the opposite of the restriction of J, to M %. For the
same reason, the component of 77 relative to M °is unitari-
ly equivalent (through the identity mapping on M { = M )
to T, while the component of T’ relative to M j° is antiuni-
tarily equivalent (through the identity mapping on
M3 = M%) to TJ. Therefore both the components of 7%
are unitarily equivalent to 7', since 7' is antiunitarily equi-
valent to 7'/, and this proves what had to be proved for T'%.
The same holds for T ~’, replacing T4 and T';.

To complete the proof, we now have only to show that if
K is an element of C (M,S,T'), then X is one of the operators
Jiapy» £ Jodefined above. For such an operator K,[J,K ] _ is
a bounded operator on M that anticommutes with J, and
therefore [/,K']_. A4 is a bounded operator on M that com-
mutes with J, i.e., a (complex) linear bounded operator on
M. Moreover, since [J,K ]| _A commutes with 77, it must be
a complex linear combination of P, and P, because 7’ is a
multiplicity free unitary representation. This means that
there are complex numbers 4,,4, such that

[V.K]_A= AP +A,P,°
namely
V.K].=A4A,B"'P,— A,BP,
A direct computation, where use is made of the properties
(C1) and (C2) of J and K, shows that ¥m e M’
([J,K]_m|m), =0,
and therefore
0 =/Tx(B ~'Pym|m), '—IZ(Blelm)J
=/T|(B ~'P,m|P,m), _IZ(BPImIPZm)J;
this holds only if Vm, e M {, m, € M}
(’1—1 - /Tz) (Bm|my); =0,

which implies 4, = A, since B is an antiunitary isomorphism
from M { onto M ;. Therefore, there is a complex number A
such that

M,K]_=A(B'P,— BP,).

Observe now that [/,K ], is a bounded operator on M that
commutes with J, i.e., a bounded (complex) linear operator
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on M ’; moreover it is self-adjoint because
Im([J,K ] ,m|m), =0,

as a direct computation shows; therefore, since [J,K'], com-
mutes with 77 and this unitary representation is multiplicity
free, there are two real numbers 1, i, such that

VK], =uP+ u,P.
Summing the two equalities obtained above for the commu-

tator and the anticommutator of J and K, and using the
property (C2) of J, we obtain

~2K=AJ(B~'P,— BP) +J (P, + u,P,); (R)

squaring this equality and again using the property (C2) of J,
we obtain

— 41 =(—pul + (Au, — Au)B — |2 )P,
+ (=3 + Aps — A, )B 7 = |A D),

whence — 4P, = (—pui — |4 )P, + 4 (4, — p,)BP,

and — 4P, =(—u; — |A")P, + A (uy —p)B 7P,

Since the range of BP, is M ] and the range of B ~'P,is M 7,
these last two equalities imply

d=pi +AP=p3 + AP andA(y, —p,)=0.
IfA =0, theneitherpy, =pu,= F2orpu, = —p,= F2
and —as can be seen inserting these values in {R) above —
either K= +JorK= + J,. If 4 #0, theny, = u,, and —

settinga= — u,/2,f=ImA /2,y= — ReAd /2andinserting
these values in (R) above — we get

K =aJ+ pA4 + yJA;

the real numbers .5,y satisfy the relation

o’ +B =i+ 1A =1
This shows that if K is not either + J;,, then it must be one of
the complexification operators J, 4 ,,. Thus the proof is con-
cluded.

Observe that for the two antiunitarily equivalent com-
ponents into which 7/ decomposes in the statement of Re-
sult 3, to assume they are unitarily inequivalent (as in the
statement of Result 3) is the same as to assume that neither of
them is self-contragredient. Also, itis worth mentioning that
the definition of J;; in Result 3 is unambiguous because the
decomposition of T” into a (complex orthogonal) direct sum
of irreducible components is unique, 7”7 being multiplicity
free; thus, P, and P, are completely identified by their being
the projections that decompose T into irreducibles.

Notice that T (respectively, T ~ ) cannot be decom-
posed into a direct sum of irreducibles not both unitarily
equivalent to the component of T’ relative to P, (respective-
ly, P,), because the decomposition of 77 {or T ~ ') is unique
up to unitary isomorphisms, 7 (or T~ ) being a factor
representation. Therefore, for K € C (M,S,B ), the way T * de-
composes into irreducibles can be used as a criterion to dis-
tinguish between K = + J,and K being one of the operators
J\wp.- Indeed, we have the following uniqueness condition
for the complexification operators of (M,S,T’), when for
(M,S,T) the conditions of Result 3 hold: The operators + J;,
are the only complexification operators that turn 7 into a
unitary representation whose irreducible components are
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copies of the same unitary representation.

Another uniqueness condition that determines the
complexification operators to be just + J, is found if the
“symmetry group”

{TegeG}

of a one particle picture that satisfies the conditions of Result
3 is suitably extended. Indeed, define the “gauge
transformations”

{exp AJ,A e R}
[observe that exp AJ is a well defined orthogonal operator on
M since J is a bounded linear operator on M and exp AJ is
naturally a (complex) unitary operator on M ‘] and the
“charge conjugation”

C=BP,+B'P,
(where B is as in the proof of Result 3), and consider the set
T={T(g)gcG;expAJ, AR, C]

of orthogonal operators on M. Clearly C (M,S, T )isasubset of
C{M,S,T), and since the latter is known it is just a matter of
direct computation toshow that C (M,S,T’) contains the com-
plexification operators + J, and nothing else. This can be
seen also on the basis of Result 1, since T defines in M a
family of (complex) unitary operators that can be easily
shown to be irreducible , not self-contragredient and self-
adjoint (and therefore Result 1, which depends on Schur’s
theorem, still applies). Observe that the Stone theorem seif-
adjoint generator in M > of the gauge transformations is the
‘“‘charge” operator P, — P,, since

expAJ = expAJ (P, — P,).

Since CP, = P,Cand C? = 1, C interchanges the two eigen-
spaces of the charge, and this explains the terms used in
inverted commas.

We end this section proving a result concerning the uni-
tary inequivalence of the representations of the c.a.r. over
(M,S ) associated with different complexification operators.
To this aim we first need another result. This appears here as
a lemma, but its scope is wider, as it provides a simple crite-
rion for the unitary equivalence of the Segal representations
of the c.a.r. that are associated with different complexifica-
tion operators of (M,S). Quite naturally, we call complexifi-
cation operators of (M,S ) the operators on M that satisfy (C1)
and (C2) and denote the set of them by C (M,S ). Obviously
C(M,S,T)isasubsetof C (M,S )forany “symmetry group” T

Lemma 3: If J and J ' are two complexification opera-
tors of C (M,S), the corresponding representations of the
c.a.r. over (M,S) are unitarily equivalent if and only if
J —J' € F,(M),thesetof the Hilbert—Schmidt operators on
the real Hilbert space M.

Proof: A first step consists in constructing a unitary op-
erator from M’ onto M ’'. For this purpose, take two orthon-
ormal bases {u, } and {u;} in M’ and M7, respectively; as
{ug,Ju,}and {uy, J 'uy| are two orthonormal bases for the
same real Hilbert space M, we can take the same index set for
both the bases. Define V as the unitary operator from M’
onto M 7" such that

and VJu, =J'u,

@’

P ?
Vu, = ul,

a
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Notice thatin particular ¥J = J'V.IfR and R ' are the repre-
sentations of the c.a.r. corresponding to J and J*, respective-
ly, a unitary operator I" (V) exists from the Fock space over
M onto the Fock space over M* such that Ym e M

C(V)R(m)T(V)™! = (R'V) (m);

therefore R and R’ oV are unitarily equivalent (recall that
whenever Vis an orthogonal operator on M, R ‘oVisarepre-
sentation of the c.a.r. if R ' is). Thus R and R ' are unitarily
equivalent if and only if R " and R '© V are. At this point use
can be made of a criterion to be found in Ref. 7: Here, 1t
amounts to saying that R “and R ‘o V are unitarily equivalent
ifand only if VJ' —J'Ve #,(M);as V= 'J'V =, this is
equivalent toJ' — J € #,(M ). This ends the proof of the
lemma.

As a side remark, notice that it also follows from the
proof of the lemma that if R ’ is a representation of the c.a.r.
associated with a given complexification operator J ', then
for any orthogonal operator ¥ on M there is a complexifica-
tion operator J such that Ro ¥V is (unitarily equivalent to) the
representation corresponding to J, and vice-versa. Indeed,
J =V ~'J'V.Inother words, the Fock space representations
(ifany) of the c.a.r. over (M,S) can be classified by the orthog-
onal operators on M. This result, as well as the idea underly-
ing the proof of Lemma 3, can also be found in Ref. 8.

We can now prove the result on the inequivalence of the
representations of the c.a.r.

Result 4: In the situations described in Results 1, 2, and
3, under the obvious proviso that the space involved are all
infinite dimensional, all the complexification operators con-
tained in C (M,S,T) give rise to unitarily inequivalent repre-
sentations of the c.a.r. over (M,S').

Proof: In view of Lemma 3, we just have to look at
J — J'. Tobegin with, notice that J and — Jareimmediately
seen to be inequivalent. Moreover
Japp —dwpy =la—a)J+B—-BM+y—v)J/A4
is, up to the factor [(@ —a')* + (B8 =B + (¥ — ¥)2]"% an
isometric operator on M in both the situations of Results 2
and 3. Finally, J,, 5,, — Jo, in the situation described in Re-
sult 3, is not even a compact operator. This completes the
proof.

The last result shows that in the situations described in
this paper, when the complexification operator is not unique,
its nonuniqueness is an essential one, since it leads to unitari-
ly inequivalent representations of the c.a.r.

3. EXAMPLES

In this section we use the results obtained in the pre-
vious one to discuss two very well known models. Also if
these models are so simple that little really new can be said
about them, some features of them that are usually over-
looked are pinpointed here. However, the real goal of this
section is to show how the theory discussed in this paper
should be used in the analysis of linear systems (e.g., linear
quantum fields in an external field).

The first application of the results proved in the pre-
vious section is to the one particle space defined by the free
Schroedinger equation. Here, the one particle symmetries
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are described by a complex irreducible unitary representa-
tion of a central extension of the Galilei group. In the Bose
case the Segal quantization is shown to be unique by our
result of Ref. 5, since the relevant representation is real irre-
ducible.” As for the Fermi case, either Result 1 or Resuit 2 of
the present paper must apply, since the relevant representa-
tion is complex irreducible; as it is not self-contragredient, '’
Result 1 applies and uniqueness (which here always means to
within a sign) of the Segal quantization obtains.

As asecond example, we examine the one particle space
whose quantization leads to the free relativistic Dirac field.
On a suitable space of solutions of the Dirac equation an
action of the proper orthochronous Poincaré group P ', can
be defined in a natural way; as is well known, this defines a
representation of ', that splits into two irreducible compo-
nents. To describe them, we refer to the structure one is like-
ly to consider at first, defining on the space of solutions an
L *-type Hilbert space structure, where multiplication by the
imaginary unit is plainly defined pointwise. If we denote this
complexification operator by J, the space of solutions by M,
the real part of the L *-type inner product by S, and the “nat-
ural” action of P', on M by T, we find ourselves exactly in
the conditions of Result 3. Indeed, T turns with respect toJ
into the direct sum of the two continuous irreducible repre-
sentations of P, determined by the pairs of Casimir opera-
tor eigenvalues (m,1/2) and ( — m,1/2). As this situation has
been recognized unsatisfactory very soon, owing to the pres-
ence of negative mass states, various (equivalent) schemes
have been contrived to have the space of the “antiparticle”
states transform according to a “physical” representation of
P, . The way of getting round this difficulty we can make
the most of to illustrate our results consists in redefining the
structure of the one particle space (rather than redefining
things after quantization); this is achieved by changing the
sign of the multiplication by the imaginary unit on the sup-
port of the component ( — m,1/2), which means changing J
into Jj, (see, e.g., the second of Bongaart’s papers quoted in
Ref. 1). In fact this turns T into the“physical”’sum of (7,1/2)
with itself. Notice that this is not a priori forbidden since
the relevant representation is not irreducible and therefore
Resuits 1 and 2 do not apply. One might reasonably ask
whether this is the only possibility, i.e., how many complexi-
fication operators there are that give rise to a “physical”
representation of P'_ . Result 3 answers this question and
shows that J, is the only choice.

A few more remarks on the free Dirac field. As we have
Just seen, if one constructs the “naive” complexification op-
erator J as a first step, then he is unambiguously led to con-
struct the *“physical” J, as a second step if he wants both
particle and antiparticle states to transform according to
physical representations of P ', . If J, instead was adopted
right at the outset, the uniqueness of J, rather than its con-
struction from J would be the main point of interest.

For this purpose, observe that J, is uniquely determined
by the remarks that follow Result 3. Further, notice that
another uniqueness condition for J, can easily be derived
from Weinless’s uniqueness condition quoted in the Intro-
duction. Finally, it is worth mentioning that, as a conse-
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quence of Result 4, the representations of the c.a.r. over the
free Dirac one particle space corresponding to the “naive”
and the “physical” complexification operators are unitarily
inequivalent. This makes it relevant to have criteria, such as
those described above, to make a choice between them.
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An axiomatization of the measuring process leads to a Jordan algebra structure on the
observables. The novel features in this development include a proof of the existence of the sum of
observables, a proof of the quadratic nature of the square of an observable, the lack of a finite
dimensionality assumption, and the exploitation of the change in the measuring process due to a

change in the counting observable.

PACS numbers: 03.65.Bz, 03.65.Fd

I. INTRODUCTION

In this paper we give a full exposition of previously an-
nounced results linking a Jordan algebra structure to the
measuring process.' The first axiomatization of the measur-
ing process leading to Jordan algebras was done by Jordan®
and Jordan, von Neumann, and Wigner.3 They associated
with each observable 4 another observable 4 “ which returns
the nth power of the value returned by 4 on each measure-
ment. Also, assumed was the existence of the sum A + B of
observables 4 and B satisfying

E A4+ B)=E,(4)+E.B)
for all states x, where E, (4 ) is the expected value of 4 on

state x. With the assumption that 4 " is given by an algebra
structure, i.e., that

AB=1i[(A+ B} —A>—B?]
is bilinear, one is led to a power associative algebra which is
formally real (£4 } = 0 implies 4, = 0). Finite dimensional
formally real power associative algebras were shown to be
Jordan; i.e.,

A%(BA)=(4%B)A.

The physical grounds for the existence of the sum of
observables and the quadratic nature of 4  are not clear,
while the finite dimensionality assumption severely limits
the applications. Indeed, in the Jordan model, if 4 and B are
not “compatible,” then 4 + B can take values not among
sums of those of 4 and B. Thus, it is difficult to assign a
physical meaning to4 + B, when 4 and B cannot be simulta-
neously measured. Also, the bilinearity of 4-B is difficult to
justify for noncompatible observables.

In our axiomatization, we retain the concept of taking a
function of an observable, technically represented in axiom
(MS2) (see Sec. II). However, we do not assume the existence
of A + B, the quadratic nature of 4 2, nor finite dimensiona-
lity. The basic new element which we introduce is a change
in the measurement process due to a change in the counting
observable. This is merely an exploitation of the obvious re-
mark that the expected or average value of a collection of
events depends on the total value and the count of the num-
ber of events. The changes from one counting observable to
another are given by a group, reminiscent of the changes of
observers in relativity theory. In our development, we show
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the existence of A + B, roughly by changing the counting
observable to make 4 and B compatible. Also, the quadratic
nature of 4 2 is an involved consequence of our axioms.

In Sec. I1, the foundational concepts and definitions are
given, including the axioms of a measurement system. The
algebraic properties of such a system are developed in Sec.
IIT while the analytic properties are given in Sec. IV. In Sec.
V, we give the main theorem stating that the observables
form a formally real Jordan algebra and a normed linear
space.

Il. MEASUREMENT SYSTEMS

One can view the “classical” measuring process as a set
{2 of states and the set a of (bounded) functions on {2 called
observables. The value of the observable fin state p is simply
f(p). In a “statistical” measuring process the states are prob-
ability measures on a set {2 which are absolutely continuous
with respect to a fixed measure u with p(£2 ) < oo . The obser-
vables are the functions in a, = L *(2,u) and the expecta-
tion of the observable fin state v is E, (f, v) = [, fdv.

The following trivial observation will play a central role
in the sequel. The intuitive meaning of the expectation is that
itis the average value of f over a large ensemble of indepen-
dent occurrences of the state v. Thus, if one thinks of fas
additive on such occurrences, the expectation is approximat-
ed by the total value of fon an ensemble divided by the
number of occurrences in the ensemble. Clearly, if the total
value of f remains the same but the count of the number of
occurrences changes, then the expectation of £ will change.

To represent these changes in the statistical measuring
process, we view av as an ensemble of a occurrences of the
state v, where a > 0. Thus, the set €, of ensembles is just the
set of non-negative, nonzero, finite measures 77 on {2 which
are absolutely continuous with respect to u. Note 7 = av,
with a = ({2 ). Identifying the state v with the ray
R*v = R"7="7 and defining the value of f&a,, on 7 to be

. 77>nELfd77, ()
we obtain
Eqo(fim={fima/{l,m, (2)

independent of the ensemble 7 in state 7. Here we have used
the constant observable 1 to get the count of (1, 5), = 7(2)
occurrences of state 7. If we use instead the observable 4 to
count occurrences of 7, we get
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EQfiny={fima/{hma. (3)

If 2 > 0, wecan define ~-p byd (h-n) = hdnpand h-p = (h-7).
We now have

Eo(f,5)=Eolh ~' £, 7). (4)
Thus, f~>h ~' f, 3—h-n represents the change due to chang-
ing the counting observable from 1 to 4.

We shall need the following definitions. If a and & are
sets we say (,): aX &—R is a nondegenerate pairing
provided

{4, x) = (B, x)
(4,x) = (A4,y) for all Aea implies x = y.
If (o', &', (,)’) is another such triple and if for §: a—a’ there
exists ¢: &'—& satisfying
(B(d4),x) =(4,d(x)) forAeca, xe&",

then we say 6 is a homomorphism. Since ¢ is uniquely deter-
mined by 8, we write ¢ = 6 *. Asan example, we note that for
h,h ~'ea,, h>0, w, givenby w,(f) = hf, 0}¥(n) = h-nisan
automorphism of (a,, &, (,) ) corresponding to changing
the counting observable from 1to 4 ~'. A homomorphism 6:
a,—a with finjective and 8 * surjective is a representation of
(2, u)in (a, &, {,)). Representations 8,, i = 1,2, of (£2;, u,) in
(a, &, (,)) are equivalent if there is a measure space isomor-
phism a: 2,—(2, with 0,( f) = 6,( fea)for all fea,, . A fam-
ily 7~ of representations 6: a, —a covers a provided

and for all xe# implies 4 = B

a= U Bay). (5)
e

We write a, = a,, &g =&, ,and (,)p = () g,

A measurement system M = (0, &, {,), ¥, I, x,, T)
consists of a set a of observables, a set & of ensembles, a
nondegenerate pairing {,): a X &—R, a group #" of auto-
morphisms of (a, &, (,)) called changes in counting, a fixed
observable Iea called the counting observable, a fixed ensem-
ble x,€& called the fundamental ensemble, and a family .7~
of representations &: a,—a covering a, satisfying

MST) (1) =1, O*x,)=p,,

(MS2)If 0,, 6,77, if 6,(f;) = A for f,ea,, and if u:
R—R has u© fieq, , then u° fyca, and 6,(u° f)) = 6,(uc f).
The common value is denoted u,(4 ).

(MS3)Givenfe andhea,, thend (h ) = W (I )forsome
We% ifand onlyifh ~ 'ea,, h > 0. In this case, there is 8.7~
with W0 equivalent to 6w, .

(MS4) If We¥ andj: R\ {0} >R isjit) =1 ~1, then
there is We % withj, W = W j,, where, is defined.

lil. ALGEBRAIC PROPERTIES

Throughout the remainder of this paperlet .# = (a, &,
), 7, 1, x,;, 7) be a measurement system. Let ¢ be the
orbit #(I') of Tunder %", and call A€’ a counting observa-
ble. By (MS3), we see & = {0(h)|0eT; h, h ~'eay;
h>0} ={08(h)|6eT; h»e>0for some e} = {8(h)0eT;
(h, v)g2€{l, v}, for some € >0 for all ve& ,} = {A4ea|{4,
x)>€(l, x) for some € >0, all xe%'}.

Lemma I: a has the structure of a vector space over R so
that
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(a)for xe#, the map A-+(A, x) is a linear function on

(b) 7 acts linearly on q,
(c) € spans q,indeed a =RJ + 7.

Proof-1fA;ea and aeR, write B=a4,andC=A4, + 4,
for B, Cea provided (B, x) = a(4,, x) and {C, x) = {4,,
x) + {A4,,x) forallxe& . By the nondegeneracy of {,), Band
C are unique, if they exist. It is also clear by uniqueness, that
if B and Cexist for all choices of 4;, a, then a is a vector space
satisfying (a). Moreover, (W (4 ),x) = (4, W *(x)) shows (b).
To show B exists, we use (5) to write 4, = 6 ( f) with fea, and
note that for B = 0 (a f), we have (B, x) = (af, 8 *(x)),
=a(f, 0*x)), = a{d,, x). To show C exists first assume
A €R¥ ,say 4, =aW(l),acR, We¥# " Writed, = 6 ( f)and
setC = W6 (al + f)). Wesee (C,x) = (al + f, B *W *(x)),
=a(l, 0*W*x))y + (f, 0*W*(x))o =a(W(I), x)

+ {45, x). In general, write 4, = 8 (f) and choose m > 0 so
that # = m1 + f>1. Since &, # ~'ea, with A >0 we see

ml + A, = 6(h )%, showing (c). Moreover, C = ( — mlI)
+{(mI+ A,)+ A,)existsand C =4, + 4,.

Lemma 2: If A€ ¢ with A = W(I), then U,
= WW ~'e¥ andx, = W* 'x,e% depend only on4, and
U, = id, the identity of %". Moreover, x, = x,, A, BE¥
implies 4 = B.

Proof: First assume 4 = I. If Be%', write B=6{h).
Since W ~'(I) = I = 8(1), wesee by (MS3) there is fe.7 with
W ~ '@ equivalent to 6w, = 6. Thus, there is a measure space
isomorphism a: 2,—2, with W ~'0(foa) = 8 (f) or
0 (foa) = WO (f) for fea,. Since j, Wji(B) =j, Wj,8(h)
=/ W6 (h~")=j,8(h ~'oa) .
=0((h ~'oa)™") = 6 (hoa) = WO (h) = W(B), wesee W = W
on ¢ and hence on a by Lemma 1. Thus, U, = id. Also, if
B = 6(f)ea, then W(I)=6(1) gives 8.5 and a: 2,—42,
with W foa) = 6w,( f) = 6 ( f). Hence, (B, W"‘"’(x,))
— (W ~'(B), x,) = (W'6(f), x,) = (B(fea), x,)
= (foa, O (x;))s = (foa, up)o = (fite)o = (B, X,).
Thus W*~!(x,} = x,. Nowlet dea with W (I) = W,([) =

fW=w 'W,s0 Wy = W, W with W(I) =1, and_
W2 =j Wi, = W W, then WoW, l=www !
=W, W . and W5 '(x,) = (W) '(x,)

= W"‘ *‘W*“'(x )= W*“(x,)

Ifo =x, withd=W,I), B=W,I), We?// then
W*W**‘x,—x, Let W= W 'W,,so that W* 'x
=Xx,. Now 4 = B will follow from W({l)=1 Let W(I)
=@ (h)and let 8.7 with W0 equivalent to Oa),, via a: {2,
{2y If i : f~ foa, then W01 = Ba),, and ¥ " 'i*

AN

br =it Thus,/,tg—()*W* x, = of ~ 'i*0*(x,)
=wf s = of 'wo orduy =h - 'd/,tg and 2 = 1.
Thus, W(I)=1,s0 W= (W) = Wand W{I)=1.

Lemma 3: If Ac¥ and 4 = W(I), then .# ,, = (a, &,
(e W, A4,x,, T w)is a measurement system where
(B,x), ={Ug'(B),x)and 7, = {6, = WO |67 |.
M  is uniquely determined by 4 up to equivalence of the
representations .7 .. Also, (A w )y = A wow-

Proof: Clearly, (,), is a nondegenerate pairing. If p:
a’—sa is a homomorphism relative to {,), the { p(B’), x) ,

= (U, 'plB)x) = plB), U% 'x)) = (B,
p*U* ~'(x))". Thus, p is also a homomorphism relative to
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(,)4 withg =p*U*%~': £—&". Similarly, a homomor-
phism p: a—a’ for (a, &, (,)) is also a homomorphism for (a,
&,(,)4)withg' = U* p*: &'>& . Inparticular, 8,,: a,—a
is a representation of (2, ue) in (o, &, (,),) with 8 3"

= (0, ) U~ ' = Q*WHWW ~ I~ = g*ip*, Also, if
Ve  then V is an isomorphism of (a, &, {,)) with (a, &,
(,)4) and hence an automorphism of (a, &, (,) ,) with V" **
=UsV*UL-.

Clearly .7, covers a. If W({l) = A = I, then as in the

proof of Lemma 2, for each 8.7 there is fe.7 with 6,

= W8equivalenttof. Ingeneral, weseethatif W (I) = W'(I)
then .7, is equivalent to 7,

Since §,(1) = WO (1) = 4 and 0 %(x,)
=0*W*W*~!x,) = p,,(MS1)holdsfor.# ,, . If W8,€7 ,
with Wé,( f,) = B and if u° f\ca, , then 6,( f;) = W ~}(B) so

uo freay and Wo,(uc fi) = Wo,(u° f,) showing (MS2). Let
ty(B) = Wu, W ~'(B)be the common value. If W'(I) =
then W9, is equivalent to some W '8 so there is a: 2;,—2,
with B = W0,(f,) = W'8(f,°a) and u, . (B)

= W'8(uo f,00) = WO,(u° f,) = uy (B). Write u,(B)

= uy(B)and note uy;, = Wu, W~"'so

Wu,W-'=uy,, forde¥,We¥ (6)

If0,€7 , and hea,, then 8, (h) = V(A )for some Ve’ if
andonlyif@ (h) = W ~'"VW (I )ifandonlyifh ~'ea,,h >0.In
this case 8,0, = Wbw, is equivalent to
W(W~'VW)6 = V8,, for some 0,7 ,, showing (MS3).
To show (MS4), we let Ve ”", and computej, V'
=Wj W“V Wj,W"VWW“A
= WW“VWW“W], = (U, VU 7Y j,-

Fmally, if W W eWthenB WiAd)y=(W'W)I),

(U W05y = W= W, = (W)
—xB,WOW—(WW)B andU‘: w'(u, WU“)
=WWF W W ' =U,U; so((U2)'C,x),

=(U;'U,Ugz"'C,x) =(C,x)p. Thus (A )y
= /W'W-

Wedefines: R—R by s(¢) = ¢ 2. Since fea, implies f *eq,,
sc(4) is defined for Ce¥', Aea. If Bea, set s-(4,B)

=5cld + B) —sc{d) —sc(B).

Lemma 4:If A, B, Ce%, then

(a) /s =id,

(b)j(4) =4,

() Us =Jnjas

(d)Jj4 JeJa =jjA«B) ’

(e)ugyld)=1u,(B), for u: R\ {0} —R, @(t) = tu(t 7 "),

(f)sp(d)=j(B)

(g) (Ay xB)C = (By xA )C:

(h) (4, X4)e = (sc(4), Xc)es

(1) 2<Ay xB)C = <SC(A!B )’ xC)C)

(.” <U/C;B’ xB)C - (UgAx-xA >C'

Proof: Since by Lemma 2, replacing .# by .# ,, VeX¥~
does not change any of the expressions, we may assume that
any one of 4, B, Cis I. For (a)-(e), let 4 = I and
B =W(I)=6(h). Now (a) and (b) are trivial. For (c), Uy

=WW™='=WjW~'j, =jgJj by6). Also,
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W(I) = Wjl) II(B) 1mphes];,w;]1 = U/,(B;
=W =U; " =, yielding (d). For (e), let W0 be
equivalent to Ba),, via a: 2;—{2,. Now u,(B)
=0 (uoh)= 6w,k _l(uoh )
= 8w, ((@° J)oh) = By ((#° johoa)
(uOJ)BGW(hOa) Letting u(t) = 1 so ét(r) = ¢, we see
I=u,(B)=jz(0,(hoa)) or 8, (hoa) =j(I ). In general, we
have u;(B) = (#° )5 j(I ) = i1 (). Since § =}, (f) follows
from (e). For (g}-(j), let C =Tand 4 = W(I). We note U
=(WW~")" =U;"andj4) =i jud =U;' W)
Thus, (B I(A)>—<B (U W) 'x;) = (B,
U*_]W*_lx )=(U;'B,x,)=(B,x,),and (j,(4),
xz)=(U;'4,x3) = {(A4,x3),. Replacing 4 by j,(4)
shows (B, x, ) = (4, xp) follows from (B, x ),
= (4, xg) 4. Thus, for (g), we can assume 4 = C =I. Let
rit)=t"2fort>0, and note D = r,(B) exists. Also U, (I)
=jpI)=5;D)=B.Thus, (I, x;) =L, U}~ 'x;)
={(UyI), x;) = (B, x,) showing (g). If D = r,(4 ), then
Upll)=jplIl)=Aand Upd =jp j, jpll) =j.I)=5,4).
Thus {4, x,) =4, U% " 'x,) = (Upld), x;) = {s;(4),
x,), yielding (h). For (i), we see {s;(4,B), x,) = (s;(4 + B),
x;) —(s;(d), x;) — (s;(B),x;) =4+ B,x,, ) — (4,
X)) — (B, x5) = (A’xA+B> + (BaxA+B> —{(4,x,)
- (B9xB> = (A +B»x4) + (A +B)-XB) - (A)xA> - (B9
xp) =24, xz). For (), (U,B, x3) = {j4(Jj1 jp)B, X5)
= (U j, Uz 'Bxz)p = (jUB(A)B’ xB)B
= (s3(UpAd ), xp) p = (UpA, Xupa )B = (4, xUBA)
= (UzA, x,).
Lemma 5: If Ce%, then s-(4,B ) is linear in 4 and in B.
Proof: Let C = I.If A, Be%¥ , then A 4+ Be% since
(4 +B,x)> {4, x)>e(lx) forsomee>0.Set U, ,
U, — Uy as endomorphisms of the vector
space a. Since (U, B, x) = (j, j, B, x)
= (Jr JiparB, x) = (B, x) ;4,, we seefor De%, (U, B, x,,)
=(U,D,xp). Also, {4, x5, p) = (B, x,) + (D, x,)
={A4,xp) + (4,x,). Replacing Bby B+ Din (U, B, x,)
= (UpA, x, ) yields 2(U,B, x,) = (UgpA, x, ). Replac-
ing A by A + E, with Ee¥, gives
(UyeB, xp) = (UppAd, xi).

Letting A = I and noting Uy , 1 =g, I —jgl —jplI
=s,(B, D), we see

(U, B, xp) =(s;(B,D),xz) forB,D,Ec%. (7)
If 4, BeZ with {4, x;) = (B, x;) forall E€¥ then (E,x )
= (E, xp). Since ¥ spans a, we see X, = x5 and A = B by
Lemma 2. Again since € spans g, for Qea, (Q, x;) = 0 for

all Ee% implies Q = 0. Since the left side of (7) is linear in B,
we see

5;(B,+ By D)=5,(B,,D)+5,(B,, D)

=UA+B_

for B,, De% .
. (8)
For arbitrary Q, P, Rea, we have

5@+ P R)=5/(Q+ R, P)+5/(Q R)~5s,(Q, P),(9)
as is easily checked from the definition. If Q = 6 ( f), then
$/(@, mI) = 6((f+ m1P’) — 6 (f?) — 6((m1)) = 6 2m f)
=2mQ.IfP = mlin(9), wesees,(Q + mI,R) =2m(Q + R)
+5,(Q, R) - 2mQ =5,(Q, R) + 2mR. Letting
B=Q+ miI,D=R + nl, we see
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5,(Q, R)=s,(B, D) — 2mR — 2nB. (10)

For Q,, Rea, choose m;, n with B, = Q, + m,1,
D=R+nle? andlet Q = Q, + Q,, m = m, + m,. From
(8) and (10), we get s;(Q, + @5, R) + 5,(@>, R).

Since a > 0, Be¥ implies aBe%', we have from (7) that

s;laB,D)=as,B,D) fora>0,B,De%. (11)

From (10), we then have s,(aQ, R )= as,(Q, R ) fora >0, Q,
Rea. If g = 0, it is trivial. For a <0, it follows by additivity
that s;(aQ,R)= —s,( —aQ,R)=as;(Q, R).

IV. ANALYTIC PROPERTIES

If Aca, Ce¥, then by Lemmas 1 and 3, thereis m >0
with mC + A€% . Thus, m(C, x). + {4, x) >0 and

{4, x) |
(C, x)c
Thus,

<m for all xe&.

A,
4 e = sup LA Xel
xe#’ (Cs x)c

is well defined

Lemma 6: The following hold for Aea, B, Ce¥ :
(a) || ||c is a norm on qa,
) (|4 llc = [|.fllo, i O(f) = 4, 0T, C= W),
(©) 14 llc<lljz(C)all4 |5,
(d | llc and || || s are equivalent norms,
(e) |Upd [lc<|l4|clB
{f} Up is continuous.
Proof: Clearly, |lad || = |a| ||4 ||c. Also||4 || = 0im-
plies (4, x) = 0 for all xe% and 4 = 0. Since
{4, + 4,5, x) c|<|{4, X) | + [{4y, X) ], we have
4, + 45|l <|l4:llc + |42l showing (a). Since
6%&)=&,, wesee

Ifngfd"l .
a2 (FaIPR

the (essential) supremum of | f| over £2,. For (c), let B =1
andC=0(h), 07 .Set M= || j,(C)ll; = lh ~"|le» s0
h>M ~!. Thus, for all xe&, {C, x)>M ~'{I, x) or

l4llc = ius%

{1, x)
< {C, x) <M.

Now
[{4, x) | _ KU ¢ '4, x)| _ |4, U™ 'x)|
(C,x)¢ (Uc'C,x) (G, U 'x)
|4, Ug™'x)| (I, U™ 'x)
Uz 'x) (C,UL 'x)
<M A1 =i NNl |-

Clearly, (d) follows from (c). For (¢), we let C = I, and
compute

WU A,
(Ug'4,x)| (Ujz'B,x) _
—oup s DN s By, usBY,s
xt (Ug'B,x) (1, x)
<A (B
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since U ; 'B =, j(B)=j,(B). Replacing B by j,(B) and
noting U, = (J, js j; j;)~' = Uj yields (e). Finally, (f) fol-
lows from (e).

Recall that if £ is an associative algebra with 1 and a
normed linear space with ||xy||<||x]| |lv||, then
[l 1<l 2 llxlf so [l = <[l ™| Thus, [|xf) =" =[x~
and ||1)| = 1. Now 1 = ||1 + x — x||<]|1 + x|| + ||x]| so
(1 +x)7 <2 if [|x|[ <4 If
z=(14+x)""'=(1 =x+x}) = — (1 +x)7'x%, we see
lim,_4(}|z]}/|x||*) = O. Hence,

with lim M =0. (12)

(14x)"'=1—x+x*+2z - =
x=0 ||x||

Lemma 7:1f Aca, B, C,c%€ then
() )(C+4)=j(C)=Uc'd+Uc'scld)+Z,
where
Z

im 121
40 |47
b)Ug,;C=U.B=5,B,C)

Proof: Firstlet C=TIand 4 = 6(f). By (12) for a,, we

have (1 + f)7' =1 —f+ f* + g with lim._,(|lglls/|| fII3)
= 0. Applying 6, we get

’

V4
G+ A)=T—A+5,4)+ Z, wherelimuzo.(w)
A0 ||A 2

|7
Replacing I by Cin (13)and applying U & ' =j, jc = Ujyc,
gives (a), since lim,_(||Z ||c/||4 ||&) = O implies
lim, (| U, Z]l,/1l4 [I7) = 0 by Lemma 6(d) and 6(e).
For(b),lett>0andlet C=1,4=¢t(B+ C)in|(a)to
obtain

JiI+th+tC)=I—t(B+C)—t*)B+C)+Z,

(14)
where lim, .t ~2Z, = Osince lim, 4. || 7%Z,]|
=lim, - (|Z,[|,/||2B + ¢C|[7)||B + C|[7 =O. Let
C =1+ tB, A =1tCin (a) to obtain
JiI + 1B +1C)
=./1(I+ tB ) - UI_+1rB(tC) + UI~+ltBsI+ tB(tC) + Wn
(15)
where lim,_,. ¢ 72W, = 0. Also, C = I, A = tB in (a) gives
jiI+tB)=I—tB+t%,B)+ 7Y, (16)

where lim,_,. £ ~?Y, = 0. Note Uy C = j j,(C) = 5;4¢(B)
and Uy ,C = ,-,(C)(B, D), so
Us=t*Up, Uyp =tUs,p
by (11), withj,(C) replacing 1.
Since the continuous maps from a to itself form an alge-
bra with norm

IT{= sup ||T(4)|l,
lal,<1

satisfying || 7S ||<||T|| |IS |}, (17) and (12) yield
Urlip=1id—1(Up +1Up)+ V,, (18)

where lim,_,.1 ~'¥V, =0, since im,_,. 7 ~'|| V.||
=lim, ,o. [|| ViZlle(Ups + tUa)"]lle,B + tUB”.= 0.
Also, s, 5(C) =jcI +tB)=jcjrj,UI +1B)=jcI)

fort>0, B,De% (17)
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+ R,, where lim, 5. £ “>R, = O by the proof of (13). Hence
S14mltC) =175,(C) + Q,, (19)
where lim,_,. ¢ ~?Q, = 0. Combining (15), (16), (18), and {19)
yieldsj,(I + tB +tC)=1I—tB+1t%,(B)+ Y,
=(id —tU;p —t*Us + VC + (id —tU;p, — t*Up + V)
(tzsl(c) + Ql) + Wt or
Jild +tB +1C)
=I—t(B+C)+1%s;(B)+5/(C)+ U;C) + R,
(20)

2R, = 0. Using (14) and (20 to compute
tB — tC)] yields (b).

where lim,_,. ¢
lim, -2 72[j,({ +tB+1tC)— (I —

V. RELATION TO JORDAN ALGEBRAS

We are now in a position to show that the space a of
observables form a Jordan algebra. It will be convenient to
use a special case of the McCrimmon* formulation of qua-
dratic Jordan algebras which is equivalent, for the fields con-
sidered, to the classical definition. Thus, a vector space &~
over a field of characteristic zero, a quadratic map U:

F —End{#), and unit ce % form a quadratic Jordan alge-
bra provided for x, y, ze 2,

(QI1) U, =id,

(QJZ) Ux Uy Ux = Uny’

QI3 U U, x=U Uy
whereU,, =U,,, - U, - U,.

Theorem: If .# is a measurement system, then the set a
of observables has the structure of a quadratic Jordan alge-
bra and a normed linear space over R so that

(a) I is the unit of a,

by U, =j, j, for A%,

(c) U, B is continuous in 4, Bea,

(d) |14 %] = {14 >, Aea,

(e) 24 ? =0 implies 4, = 0.

Proof: We say a vector valued function /on % is % -
linear if

l{4+B)=1{4)+1(B), A,Be%, (21)

ll@d)=al({d), a>0,Ac%. (22)
In this case, / has a unique extension to a linear function Ton
a. Indeed, /is unique if it exists, since ¢ spans a by Lemma 1.
Also, !/ will exist if £a,4;, =0, a,€R, A,€% implies 2a;l(4;)
= 0. The condition 24,4, = 0 can be rewritten as 2b,B;
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= 2¢,C, with b, ¢, >0, B, C, €% . But 2b;/(B;)
= Z¢, 1 (C,) follows from (21) and (22). If b: € X € —7 " is
¢ -bilinear, thend ,(C) = b (4,C), 4, Ce¥ extendstoalinear
map bA a—% . Since for 4, Be¢,a>0, b, +bB =b,, g
and ab, = b,, . by uniqueness, we see f: A—b b, extends to a
linear map f: a—End(a, ¥ ). Now b(d, B)=f(4)B)
=b (4, B)for 4, Be¥,sobisabilinear map extending b. By
induction, we see any ¢ -multilinear map has a unique ex-
tension to a multilinear map on a. In particular, since U, ,C
= S;4c) (A, B) for A, B, Ce% we see, by Lemma 1(b) and
Lemma$5, that4 X B X C—U, ;C extendstoauniquetrilin-
earmap A4 XB XC»-»UABC on a. Define U, = iUAA and
note for Ae%, U, = YU,, —2U,)=U,. We now simply
write U, and U, 5 for U, and UA », A, Bea. Clearly, AU,
is a quadratic map U: a-—~End(a). Also, U, = id by Lemma 2,
50 (QJ1) holds. If 4, BeZ , then U, Uy U, =j,jrjsjijaJ:
=Jj ipz1 J1 = Uy ) by Lemma 4(d), so (QJ2) holds for 4,
Be? . Replacing A by 2t,4,,¢,>0,4,€¢ and Bby 3s,B,, 5;
>0, B;e% and picking out the coefficient of #,2,2,¢,5,s,, we
see the full linearization of (QJ2) holds for ¢ . By linearity,
the linearization and (QJ2) itself hold for a. Similarly, it suf-
fices to show (QJ3)for € .1f4,B,C,De% ,then U, Uy U, I
= Uyppupcl =5:(UpB, UpC) = Uyps:UnC by (QI2)
and Lemma 7(b). IfE = j,(D), then UE =j, jx =j, j; jpJ;
= U,U,. Hence, we have

UiUs 1= U’ZFBJC. (23)
Replacing I by A and E by I in (23) gives (QJ3) for €. Thus, a
is a Jordan algebra.

Since 4> = U,I =5,(A4), we see for 4 = 6(f),
1420 = llsst )l = [1771lo = | £1 = |14 1%, showing ().
For A-B = is,(4, B), we see |4-B||<}(||4 + B|?
+ A+ IBIBA<IA IR+ IBIE + 4] B
= 4| 1B ]|(1 + |14 /|8 1) + B |}/|l4 [|. Replacing A by 14,
wheret = |B||/||4 ||, wesee ||[4-B || =t ~'||(t4)-B ||
<3{|4 || ||B |- Hence 4-B is continuous in 4 and B. Since for
any Jordan algebra, U, B = 24-(4-B) — A *.B,(c)holds. Fin-
ally, 34 ? = 0and (4 %, x) >0 implies (4 2, x) =0s042=0
and 4, =0.

'J. R. Faulkner, “An apology for Jordan algebras in quantum theory,”
Contemporary Math. (to appear).

2P. Jordan, Z. Phys. 80, 285 (1933).

3P. Jordan, J. von Neumann, and E. Wigner, Ann Math. 35, 29 (1934).

“K. McCrimmon, Proc. Natl. Acad. Sci. U.S.A. 56, 1072 (1966).

John R. Faulkner 1621



Upper and lower bounds to zeroth order Coulombic hyperangular interaction

integrals
Metin Demiralp and N. Abdulbaki Baykara

Applied Mathematics Division, Marmara Scientific and Industrial Research Institute, P.O. Box 141,

Kadikdy-Istanbul, Turkey

(Received 3 February 1981; accepted for publication 19 June 1981)

In recent years it has been shown that the use of hyperspherical coordinate representation of the
Schrodinger equation for electrically charged particles necessitates the evaluation of certain kinds
of hyperangular interaction integrals. The analytic evaluation of rather simple cases has also been
accomplished. On the other hand certain numerical devices have been utilized and the
complications that have arisen have been discussed for their computation. We have attempted in
this work to find upper and lower bounds for all types of zeroth order hyperangular interaction
integrals having Coulombic potentials. A nesting procedure has been developed for obtaining
close bounds which can possibly be used to evaluate the desired value of integrals under
consideration. In this context a theorem has been established for the evaluation of a similar type of
integral and possible ways towards the generalization of the theorem have also been discussed.
For three particle systems some applications have also been presented.

PACS numbers: 03.65.Ge

I. INTRODUCTION

To determine the energy values of a system of electrical-
ly charged particles, one can write the Schrodinger equation
in hyperspherical coordinates. We then see that almost all of
the mathematical complications are encountered in the eval-
uation of certain hyperangular interaction integrals.'
Among these integrals the simplest one having only two po-
tential interactions was analytically evaluated.? For the gen-
eral case a computational scheme has also been proposed.?
There we have also discussed the convergence of the offered
scheme and pointed out that in certain cases the speed of
convergence is quite slow. Although various techniques can
be adopted to accelerate the convergence, determination of
upper and lower bounds for these entities gains importance
at least in checking numerically obtained values. Besides, the
establishment of a nesting procedure gives the possibility of
evaluating those integrals within any desired precision. A
slow convergence might show up. This, however, is beyond
the scope of the present work. In this context we shall only be
interested in searching for upper and lower bounds and in
making the difference between them narrower with the aid
of nesting procedure.

. PRESENTATION OF THE SCHEME TO FIND THE
UPPER AND LOWER BOUNDS

Consider the following hyperangular interaction
integral:

Fa+1) ~s' Tem—J—1)—=1)

= _ s
(m— 1)27°+ " S Jlm — J — 27!

¢

X (— Inx)’p (n)dS,,.
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=[ o3t Ta ) g g

XL (ETAE) 2L ETA, ,  E)20,dS,, (2.1)

where m,,...,m, represent some positive integers and £ is a
3N-dimensional unit vector. The integration is performed
over the domain of hyperangles. The effect of the operator
- on any arbitrary function ¢ which is in the space spanned
by the hyperspherical harmonics is given as below,

¥ = [ gt
<, kgl 1;] Kk 122 6 J;Gk @dS, (2.2)
where 8! denotes a & th order hyperspherical harmonic
with an upper index / showing its position among thed,, k£ th
order hyperspherical harmonics. In other words d,, repre-
sents the degeneracy. The star appearing as a superscript of
8" implies the complex conjugate of 8. For a system hav-
ing N + 1 particles the parameter « is given by the
relationship

a=(3N-2)/2.

The A,’s are certain idempotent matrices which can be
derived from some unit 3V-dimensional vectors u;’s and
three dimensional unit matrix /, with the aid of direct prod-
uct operation as follows:

A =uujel, j=1,..

o dy 1

L+ 1

After certain intermediate steps presented in a previous
work,? the effect of the m consecutive applications of .¥" on
the function ¢ can be expressed as

1 —x? _
(1—2(& Ty)x +x7)*+!

I)J 2a

(2.3)
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The utilization of this formula in Eq. (2.1) yields

Mippees Uy rem —J,—1)=y"*! e
IR TEACE 2 s S S i R A (2.4
ey ety 77" iZo == JMm, —J, — 1)(2a)™ wdy ety
where A ; is defined as follows:

2
1 —x,

qé—q)—l/2

+ 1

1—(—1) [
g=1 X (1“2(§Z§q+l)xq+x§)a+l

_ l]dxqpn ds,. 2.5)

1

The expansion of the integrand above into the powers of terms like (£ 7€, ) results in

Uy,

Y S ©
AL )T 2

0 M8

..k‘z OTk,...k,,qliIl [(a_zt_l)kq(a

at? / W k!B, 2.6

where iq(a)’s denote the integrals over x,’s. In a previous work? an analytic formula was given for these integrals.

Bila)= — {

dt’ T2k+a+1)

d’[zz"l“(k+a+t)1“(k—t) Sio
Lttt a)

o+2), -

The integrals Tk, x| the dependence on @ and u’s of which are not shown explicitly for the sake of simplicity) on the other
hand carry mathematical complications, since they characterize all potential interactions on unit hypersphere. Their explicit

representation is

=L f Ter,6 1] €8, T ds

Sig=1 g=1 g=1

(2.8)

It can easily be shown that for all non-negative integer J values and physically meaningful a values (@ = 0.5,2, 3.5, 5, ...

B is negative. For all other k, however, 8

certain difficulties. To get rid of this complication one can employ the following entity instead of A 5('y A

AS(557), ) (G). st 29

‘]Iw-- el 0 o0
a —
o1 )=3.3n
~Jp k=1 k=1

uy...

7la) is positive. In constructing inequalities, this type of sign distinction creates

iy 1)

The negativity of 27 can be dealt with after constructing inequalities for this entity 2 o
To find bounds for 7, , one can take into consideration the following identity given in a previous publication.”

Cie™ o _ 4rTki+) ('
s, VIET4:6))

— ot kgt
'k +a+ 1) Jo

(2.10)
0'2=§;~A1§z- (2'11)

A careful look at the integrand above reveals the following
inequalities:

(1=t <(l —?tHcl (2.12)
and these in turn imply that
47k, +3) Tk, + 1) (€ T€)™
Tk +a+ 3, s VE4E)
ATk, +Y) (2.13)
Ck +a+)

The consecutive use of these inequalities in Eq. (2.8) leads to
(477.a+1/2)p+1 (B, (1),
=1 (a

Fa+)) D,
4t 12\ Pt (3,
<((a+%)) q:l—(a‘f'%)kq‘ (2.14)
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I
Now let us define the following entities:

U= $ (e l)k = Ja+ ik !]Bi(a),
(2.15)

it 5[5 552 fos i
(2.16)

One can express U, {a) in terms of a Gaussian hypergeome-
tric function having unit argument and write the following
closed form.

_1[d t+an)) _
Uj(a)_2’{dt’1“(a+1)r(a+t)r( ‘)

Tle+) i _
X[F(g-:)r(a+%+t) 1”,=o' 2.17)

The analytic evaluation of L, (), however, needs a little bit
more effort. In this case a generalized hypergeometric func-
tion ;F, with unit argument shows up. Using certain trans-
formations for this kind of function with unit argument® one
can obtain the following result.
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) = [d1(+a/2) Ia+yry
Ll =5l Tla+)(+a+r—1]

rl—tla+t+1)
[ T@ra+y)

~ 1” . (2.18)

Therefore, one concludes

(g et

a + 172
M hsiia Mk 1

P II (2.19)

Hl. A NESTING PROCEDURE TO EVALUATE TIGHTER UPPER AND LOWER BOUNDS

The gap between upper and lower bounds given by Eq. (2.19) may be narrowed, with the aid of a nesting procedure. To
this end let us rewrite Eq. (2.9) in the following manner where all ;, ’s are positive integers,
q

k=0k

S,

k=n+1k

= 33 W M1[(5FF) (5F2), /wk e
[(a - 1) ( 2 _; Z)kq/"z)quq!]ﬁi‘;(a)- (3.1)

Starred summation is to be performed insuch a way that all indexed quantities are summed for all values of the indices ...,k

P

which fulfil the condition k, + ... + k, = k + p. Inserting the inequality (2.14) into Eq. (3.1) one can after some algebra

conclude

(3.2)

where dependence of B /' and B\ ona, J,....J,, u,...,4,, . , is not shown explicitly for the sake of simplicity. The bounds B}

and B! may be defined by the following recursive relations:

B(ni anl)+2*[7.k & (47Ta+1/2/r(a+2))p+lﬁ

q—-l

B — (FT;::)”“ v

g=1

Y i 172 \p +1
Th,.k, (—_‘) f[

Ta+1})

a4 1/2
B(O) <47T )p + 1 ﬁ L‘;q(a}- (36)
qg=1

Ia+1)

A careful look at these relations immediately shows
that the following inequalities are correct:

ByY=By V43

R T TP
B(0)<Bll< <B("'<ﬂ‘;( I )<Bl5'
J u

<..BU<BY (3.7)

and the sequences of B{"’s and B }"s converge to 2 ¢,

Sy
B = mB'{}'=~Q§(J | ) (3.8)

Therefore by using this nesting procedure (#th bounds are
nested by n — 1th bounds) one can evaluate £2,’s in any de-
sired precision. Of course the speed of convergence for the
sequences of B"s and B"s will determine the amount of
effort needed to obtain a given accuracy. This subject is be-
yond the scope of this work.

IV. EVALUATION OF THE BOUNDS

To evaluate B! and B one needs the values of 81 (a)
and 7y g . One can recall that 87 (@) was analytically evalu-
ated. The structure of 7, is, however, more complicated.
An efficient technique is to dlagonahze the quadratic form
£J4,&, into & TI§ (all elements of T are zero except for the
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()kl)k ]qﬁl a+1) (a—;Z)kq/%)quq!]ﬁ{‘:(a), (3.3)

(3.4)

(3, (s

[l f[(2), (55), /ot o

|
first three diagonal elements which equal unity). The inte-

gral 7, canbe finitely expressed in terms of u; vectors,
since the quadratlc form & TI§ can be reduced to the prod-
uct of sine squares of hyperangles corresponding to £,. This
structure essentially reduces the integrals over £, ’s to certain
polynomials of the elements of orthonormal matrices which
diagonalize the quadratic forms involved in the integrand of
Thyok, In the case of smaller p and n values this evaluation
can be handled fairly easily. Larger values of p, however,
enlarge the dimensions of the matter. Even for small values
of k,...,k, evaluation of 7, may end up being inconve-
nient for hand calculations. We find it appropriate to start
with the simplest case where all & ’s are unity and gradually
extend to other cases with some extra effort. As a start we
need the following theorem.

Theorem 4.1: If we define the following operator,

ey = [ 7 s

s, V(" An)
k=1,2,3. (41
where fis an integrable function of hyperangles, (a)
¥ (@,4,£ ) transforms any homogeneous polynomial of &
into a k th order homogeneous multinomial; (b) the following
relation holds between the kernel matrices of the quadratic
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forms £ "B¢ and £ TCE, the latter of which is obtained from
the former one by the operator 4" (a,4,£ ),

§ TC& = A (@A, )€ B, (4.2)
=7~ ”2/(a + 2)] ol TrB)I + ZB g(TrIBI [ — {(TtB Ve

— g(IB + BN+ l(TrIBI 7+ ZIBI 107, (4.3)

]

”jnk 11N m

where Tr and Q stand for trace and the orthonormal matrix
which diagonalizes the matrix 4.

Proof: Since part (a) can be proved directly expanding
the integrand in terms of £;’s we can start with Egs. (4.2) and
(4.1) to prove part (b). After a diagonalization procedure one
can explicitly write

(4.4)

S (QTBQ)IQTEETO),

Jkdm=1

N A6 'BE =

s, V(1 + 15 + 3)

7

where an indexed parenthesis shows the corresponding element of the matrix products shown inside the parenthesis. The use
of hyperangular coordinates (77,5 = c08035_ |, T3y _ 1 = 8inO;y _  €0885x _ ,,...) verifies

006N D UR/H

sV + 5 +13)
J nidS
(771 + 772 + 73

S = 5.5,,,J ds. + (8
! [’k' Vi +)

e ~ 28,880

j[akm + ajm 51(1)

4
L l/zdS}
(77 + 75 +13)

(64 = Kronecker’s symbols). (4.5)

Due to the fact that any orthonormal transformation which affects only 7, 7s,...,77;x OF 7, 7, 773 does not alter the values of
integrals above but changes the indices appearing in the integrands, after some intermediate steps one can summarize

+1/2
AT o123
f 5[(a +3)
= (4.6)
Vim +772 +73) 377'a—+l/2’ j=4,5,.,3N
ra+3)
+ 172
(37 k=123, j#k
15 (@ +3)
+1/2
J ;M ds, = | LA j=1.23 k =4,5,..3N (or vice versa), (4.7)
sV 4n+m3) 7 ) Mlatd
~ + 172 .
— k=45, 3N, £k
| Ta+y 7
These equations can be condensed into the following single one by virtue of Kronecker’s symbols,
7 Mk 7ot
= 1—45, +6 65 +6 6 8
J;’\/(?]%+17%+7]§) n F(a+§){ &(}l+ ]2+ 13+ k1+ k2+ kS)
+ 2 =86 + 85 + 8 10 + S + 85 + 83)6x1 + k2 + 63} (4.8)
The utilization of this equality together with Eq. (4.5) in Eq. (4.4} completes the proof.
Corollary 1: The evaluation of 7,, ,, can be accomplished by means of the following recursive relation:
B,=[m*"*/I(a+|Q,{(TtB,_ ) +2B,_, —{TtIB,_, ]I
—\TeB, ) +¥IB,_, +B, D)+ yTriB, DI +3iB, [QT, ¢=2,3,4,..p. (4.9)
L)
The initial value B, of this recursion can be found from One can write
TB é— j (5 17)2 (4.10) 2,n,¢1 + 172
Vi Bi= a2 - e 12

with the aid of the following equation which can be derived
in a similar but easier manner from the evaluation of the
integral given by Eq. (4.5),

J. 7, + 5 + n3)" /%S,

s'l
277.a+ 172
(o +3) |

— 48 + 8 +8;5)] 6 (4.11)
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and after some intermediate manipulations

21711 + 172

—— — o) T ~
I'a+3) Tr[BP %IQp+prQp+,I}.

(4.13)

In the preceeding formulas Q, stands for the orthonormal
matrix which diagonalizes 4,.

T =
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Corollary 2: The form of A, given by Eq. (2.2) implies

Q0 =0 8l, (4.14)
where /; and Q_j are three-dimensional unit and N-dimen-
sional orthonormal matrices, respectively, the latter which
diagonalize the idempotent matrix u;u]. This allows us to
write

172 _
B, =" " yj e, (4.15)
Fla+y
and
T=Tel, T=e;, (4.16)

where e, is an N-dimensional unit Cartesian vector, namely

el =11,0,..0]. (4.17)
These and the identity
IBIT={TdBI|T (4.18)

lead to the following equations after some algebra:

B, = [1/2a + 1)]Q,(Iy —)QT; I,:N-dimension-
al unit matrix (4.19)

B, = [1/Q2a + )2a +3)1Q, {3(TtB, _,)Iy +2B,_,
Iy —\TrB, _ M +(TiIB, _ I

—(TtI B, _,
—~¥IB, ,+B, \I)}Q] (4.20)
4t 172 \p+ 1
T =(m) [1/2a + 1)]
X[3TeB, —u), \Bu,, ], (4.21)

the last of which has a more compact form than Eq. {4.13).
Corollary 3: In the case of adjacent unit indices, i.e.,
Thr k1 Lt 1k, | ok where k; # 1, k; | # 1, part (a) guarantees
that the integrals corresponding to the indices
kys..k;, k; , ...k, can be expressed in quadratic forms;
then the consecutive use of Eq. (4.3) finalizes the problem as
to the evaluation of an integral over hyperangles, the inter-
grand of which is a product of two quadratic forms and the
reciprocal of the square root of another quadratic form. Al-
though the corresponding 7 looks hard to evaluate, this last
integral does not have a complicated structure for evaluation
and can be tackled by making use of the aforementioned
approaches.

V. CERTAIN APPLICATIONS AND CONCLUSION

It is because of the fact that three-particle systems are
the most realistic ones among those characterized by sym-
metric wavefunctions that we make our applications in this
section for @ = 2. For this case (2’ /J)U,(2) and (2’ /J )L, (2)
values required for the determination of bounds to £2; are
calculated. The related sets of values for roughest upper and
lower bounds are (1.333333, 2.245179, 2.029793, 2.240185)
and (0.547935, 1.086775, 1.231266, 1.417371) forJ =0, 1, 2,
3, respectively. A quick glance at Eq. (2.4) will show that
recombination of £2 > with {27 /J!) appearing in the coeffi-
cient of A 7 will lead us to a healthier analysis, especially in a
numerical sense. Although the structure of U,(2) and L,(2)
can be given analytically, the algebraic effort to take the J th
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derivatives will become extremely tedious for higher values
of J. One does need to use more explicit expressions for U, (2)
and L,(2). To this end the serial expansion of the products
F(1+¢)r(1—t)and I"(§{ + £} {1 — t)into the powers of ¢
can be made by virtue of Bernoulli numbers* or better still
Riemann’s Zeta* function with non-negative integer-valued
arguments (excluding the singular point 1). After some inter-
mediate algebra we can conclude

U,) =W V2\D, ., +29,+ 2D, ) (5.1)
where

S Y-k
7, =_§_Z(_ l)kzk(l __3—k—1)1_+_(__21_)__§(.]—k)

K=o

T
L= ey

+ Z_,=0, (52
L,2y=WV2)E, ,+4&,_ , +5%, ,+2%,
+.7,  +.7,), (5.3)

where

J
Z)pJ =2Z(_ 1)k2k(1 _3—k—1)(1 _2—J+k+1)
k=0

J— k
5 1—+(—'5L{(J— k), #,=0,7<0, (5.4)
F = = — 1P =37, F_,=0. (55)

These types of expressions are not restricted to the case
where a = 2. Similar but more complicated formulas can be
derived for integer a values. These are beyond the scope of
this work. On the other hand half-integer a values seem to
create some trouble due to the existence of products like
I'(} — )" (¢). In these cases one can, however, expand these
types of products in the powers of ¢, but the expansion coeffi-
cients seem not to be expressible in terms of easily calculable
quantities.

For higher values of J one can derive an asymptotic
form for B7’s from its integral representation,’

L= [0 (= e !

X (1 4 x)— @1~ 2%gx, (5.6)

Indeed, serial expansion of the last factor in the inte-
grand above into the powers of x, and term by term integra-

TABLE L Nested bounds to the simplest 2 2(J /u,,u,). (a) ¥ = u{u,, (2)
values are to be multiplied by (167°/3)".

J 0 3

Y 0.0 0.5 1.0 0.0 0.5 1.0

B 12533  1.2667 1.2800 1.4034 14495  1.4958
B3 1.1598 1.1849 12132 1.3278  1.3837  1.4420
B3 1.1039  1.1344 1.1710 1.3108  1.3683  1.4291
23 0.7225 0.7474 0.8161 12915 1.3500 1.4132
B} 0.6606 0.6908 0.7274 1.2878  1.3451  1.4059
B} 0.6431 0.6680 0.6963  1.2824  1.3381  1.3963
B 0.6013 0.6146 0.6279 12475 12936 1.3398
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tion yields the following equation after certain elementary
steps:

(27 /I8 %) =264, (5.7)

The use of this fact in the definition of U,(2) and L,(2) gives
the limit values 2.4 and 1.6, respectively. As a matter of fact
given sets of four values tend to these limits.

To obtain tighter bounds we use this last discussion and
the findings of the previous sections to build Table 1. There,
the comparison of the nested bounds with the actual values
of .Qf, has been given for the first few n values and J =0,

J = 3 in the simplest case. A careful look at Table I reveals
that the rate of the convergence of the nesting procedure
increases as J increases. This implies that the nesting proce-
dure can be effectively used for the evaluation of .(lf, for
higher J values.

To evaluate first nested bounds to the general case of
£ 7 we need the value of 7, ;. As can be recalled from the
aforementioned theorem and its corollaries a recursion for-
mula can be made use of for this purpose. For the sake of
computational simplicity we can reorganize the elements of
Eq in a vectorial form, making use of its symmetry. This,
after some elementary matrix algebra, yields for the most
realistic case of @ = 2,

16\ + 1,
Tu g = ( 3 ) 3w;+,L//pu%p_]....,///260,, (5.8)
where
wl = 41— lcos’d,,1 —1sin’g,, — isinf,cosd, |,
g=1p+1 (5.9)
and
1+ lcos’d, 1+ 3sin’6, — isind, cosé),
M= 1+ isin®6, 1+ jcos’d, 1sind, cosf),

isinf,cosf, — isinf,cosf, 3cos’d, — sin’6,)
g=23,.p, (510

where 6_ is originated from the following representation of
the vector u, appearing in the definition of the potential ma-
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trix 4 ‘

ul = [cosb,,sinf,,] g=1,..p+1 (5.11)

For other positive integer values of a the sample ap-
proach can be used but higher-dimensional matrices and
vectors appear.

For the equipotential case further simplifications can be
made making use of the fact that all 8,’s are equivalent and
can be chosen to be zero. This produces the following com-
pact form:

16m\r+1 — . —
Ty = (T)P 3’4" o, (5.12)
where
o' = 31] (5.13)
and
_ 2[4 1
= — . 5.14
%[1 J (.14

By employing the theory of matrices one can arrive at more
explicit results which it is unnecessary to give here.

Therefore in the light of these applications we can say
that upper and lower bounds to £2 5°s may be effective in
their actual evaluation for certain cases. However, to in-
crease the precision required other types of 7 integrals must
be evaluated. But this necessitates dealing with tensors. We
have left this subject out of this work. This may be the subject
of a future work.

'M. Demiralp, J. Chem. Phys. 72, 3828-3826 (1980}

M. Demiralp and N. A. Baykara, “Analytic Evaluation of Certain Zeroth
Order Coulombic Hyperangular Interaction Integrals,” J. Math. Phys. 22,
2427 (1981).

*N. A. Baykara and M. Demiralp, “Numerical Evaluation of the Zeroth
Order Coulombic Hyperangular Interaction Integrals™ (submitted for
publication to J. Chem. Phys.)

“W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for
the Special Functions of Mathematical Physics (Springer, Berlin, 1966).

Y. L. Luke, The Special Functions and Their Approximations, Yol. 1 (Aca-
demic, New York, 1969).
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Mass dependence of Schrodinger wavefunctions for an exponential potential
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It is shown that the condition G ()>0 for r>0, where G (r) = (3/3m)s (u(r))? dr, does not hold in

the case of exponential type potentials.

PACS numbers: 03.65.Ge, 03.65.Nk, 14.40. — n

i. INTRODUCTION

Recently Leung and Rosner® studied mass dependence
of wave funtions in the nonrelativistic case for some types of
potentials. This study is useful in the investigation of the
spectrum of bound states like the ¢/J or Y particles.” They
showed that for a power law potential of the type
V(r) = rf(e > 0) and also for logarithmic potentials the
condition

G (r)}>0 for r>0,
where

G(r) = aim (u(r)}? dr

0

is satisfied. Here u(r) denotes normalized Schrodinger wave-
functions. It is not very difficult to obtain the mass depen-
dence of the Schrédinger wavefunctions and energies® for a
power law potential if one uses the simple scaling arguments.
However, for a potential which is a transcendental function
of r, scaling arguments cannot be used to obtain meaningful
results. Hence, mass dependence of wavefunctions for some
well known monotonic potentials like e ~/* (exponential
type), (] / r)e —kr (Yukawan)’ ord/ cosh’ar (modiﬁed Posch-
teller) cannot be determined in a trivial manner. In this note
we show that the condition mentioned above fails to hold in
the case of exponential type potentials. OQur investigation
was limited to the case of s wave Schrédinger wavefunctions.

Il. SOLUTION OF SCHRODINGER EQUATION

The exact s-wave solutions of the Schrodinger equation
for an exponential potential are very well known. However,
for the sake of completeness, we present here the essential
steps. As usual we write the radial part of the s-wave Schro-
dinger wavefunction () as

Pr) = u{r)/r, (1
where the radial wavefunction u(r) satisfies the differential
equation (taking % = 1)

u" + 2u(E — Vir)lu =0. 2)
If we consider the equation for a bound state, then y is the
reduced mass and 1 = m/2, where m is the mass of any of

the constituent particles assumed to be of equal masses. If we
take

Vir)=Ae % (4<0) (3)
then (2) can be written as
v"(z) + (4m/k *)E — Ae*)ovlz) = 0, 4)
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where u(r) = v(z)andz = — kr/2. Thesolution of (4) is given
by

u(r) = ayl,(Ae” 7%, (5)
where

vi= —4mE/k? A’= —4Am/k? (6)

and a, is a normalization constant to be determined from the
relation

j (u(r)? dr = 1. (7)

0

Eigenvalues are obtained from the boundary condition
JiA)=0. (8)

Now

J;Jv(ie kr/2 u(/lewkr/Z)dr

2 (!
-1 ' 9
= T L J AW, (At~ de 9)

The right hand side of (9) can be evaluated by using the ex-
plicit expressions for integrals like*

Jz 27\, (A2, (Az) dz.

After some straightforward calculation, we see that the right-
hand side of (9) is equal to zero if u#v and foru = v

1 . _—_/{——( C'U,.(/l)) 1
fo vt = (0, ), (10)
(&JV(A) _ 8JV(2))

v v i

where we have also used the result (8).

Hence, orthonormal eigenfunctions for an exponential
potential are given by

u, =a, WM, (le “72), (11)

where v, is the value of v corresponding to the nth zero of
J (A ) for fixed A;a, is given by

1 aJ‘/l - 172
an(v1=(’;—”)”(f,,+.m . )) (12)

dv

lil. CALCULATION OF THE MASS DEPENDENCE OF
WAVEFUNCTIONS

Let us now calculate P (r) defined by

Pir)= J;r (ul?)’ dr. {13
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Using (5) we have

Pl = 1f QAR dt

= —f ai(J, (At))e —'dt (14)
- —]z—aOJ; (J,(At)t ' at. (15)

Using (10) and (12)
P(r)=1—f(m,r), (16)

where

f(m’r) = [e—kr/Z[ v+ .(ﬂe“"’/z) ( —kr/2)

—J (/{ Akr/Z) V+| (/1 —kr/Z)]
av

V.(he= %)) 0L, A\ (17
+——i——)]f(mw = ) (17)

If 9P (r)/dm >0 then P (r) is monotonically increasing with
respect to m and hence f(m,7) must be a monotonically de-
creasing function of m. We show by counterexample that
this cannot be true. In calculating v for given m, one should
note that

M
— >0,
om
i.e., ¥* is a strictly monotonically increasing function of m”.

This can be shown in the following way. From (6)

V= —4mE /k*. (18)
Hence

M 4 [ oE

= = _ E - 19

om 5T " o] 19)
But

9E = _ _(_Q (20)

am m

{from the Feynman-Hellmann theorem)
L
“om
Also, v is determined from the equation
J.A)=0

(21)
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Now, for our counterexample, we take

et =l m = f kYA <m,
Ji2
= — j2,k?/44, (22)
where j, , is the nth zero of J,(2)

Hence v, = 1,v, = 2. Using these values, the right-hand
side of (17) can be calculated numerically.® 3/, (z)/dv are cal-
culated by using the formula’

nYz/2) =" not (2/2),(2)

+ .
2 & (n—k)k!

(23)
It is found that

fim,r} =0.773 < f(m,,r) = 0.880.

Hence, f(m,,r) < f(m,,r) for m; < m, and the condition that
S (m,r) is monotonically decreasing fails to hold.

V. CONCLUSIONS

As pointed out by Leung and Rosner,' the condition
G (r)>0,0<r < « is a quantitative statement of the condition
that a bound particle falls deeper into the well as ¢ increases.
We have shown by a counterexample that this condition is
not satisfied for the case of exponential type potentials. In
fact, numerous counterexamples can be found to show that
f(m,r) is not a monotonic function.

'C. N. Leung and J. Rosner, J. Math. Phys, 20, 1435 (1979).

2A brief but excellent review is given by C. Quigg, in Lectures on Charmed
Particles, Fermi Lab. Conf. 78/137THY (1978) (unpublished).

*G. Cocconi, Commun. Nucl. Particle Phys. VII 6, 117 (1978).

“L.Y. Luke, Integrals of Bessel Functions McGraw-Hill, New York, 1962),
Pp. 254-5.

1 am grateful to Mr. C. N. Leung of the University of Minnesota for point-
ing this out and also for some helpful comments.

*Numerical values of Bessel functions of the first kind for arguments up to
three places of decimals are taken from The Annals of the Computation
Laboratory of Harvard University (Harvard, Boston, MA, 1947), Vols. I11
and IV (unpublished). Values of Bessel functions of the second kind are
taken from E. A. Chistova, Tables of Bessel Functions (Pergamon, New
York, 1959).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
(Dover, New York, 1970), p. 362.
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We consider a neutrino field in interaction with a space-time admitting an isometry group and we
attempt to derive the symmetries imposed on the neutrino flux-vector and on the neutrino field for
solutions of the Einstein-Weyl field equations. It is proved that if one of the following two
constraints is imposed, (i) the neutrino field is of class E,, {ii) the neutrino flux-vector is collinear
with one of the principal null directions of the Weyl tensor, so that ¥, = 0, then

L= —(1/2)s£" and 2,1 =0,

where £ # is the neutrino field, /# is the neutrino flux-vector, n* is a Killing vector field, and s is a
real constant. However, in the cases of a pure-radiation field with diverging rays and a pure-
radiation field with nondiverging rays and ¥, = O the above formulas become

L= p—isit* and &1, =pl*,

where now p and s are in general real functions of the coordinates.

PACS numbers: 04.20.Cv

I. INTRODUCTION

To solve the Einstein field equations with a nonvanish-
ing source, very often we have to find approximation meth-
ods or at best make restrictive hypotheses on the form of the
space-time metric. These hypotheses generally consist in ad-
mitting that space-time possesses a certain group of isome-
tries. Aside from these restrictions, in practice it is often
convenient to assume that the source of the gravitational
field (i.e., a scalar field, an electromagnetic field, etc.) inherits
the symmetries of the space-time metric. Naturally a ques-
tion will arise as to whether this assumption really consti-
tutes a restriction or is just a consequence, through the Ein-
stein field equations, of the hypotheses of symmetry made on
the metric. Concerning the scalar field, the electromagnetic
field, and the perfect fluid, recently several authors have ex-
amined this question.! Here, we have the same probiem in
view but for a spinor field, that of the neutrino.

To proceed, we adopt the 2-spinor formalism which in
general seems to be more adequate than the 4-spinor formal-
ism for the treatment of the neutrino field in a curved space-
time. The important advantage of this formalism is the possi-
bility of introducing directly from the neutrino field in each
point of the space-time a null tetrad in terms of which the
Weyl equation and the neutrino energy-momentum tensor
take a very convenient form. For the reader’s convenience
and in order to fix our notation we give in Sec. II a number of
preliminary results; however, a familiarity with the spin co-
efficient formalism of Newman and Penrose” is assumed.

Il. THE 2-COMPONENT NEUTRINO FIELD IN A CURVED
SPACE-TIME

The interaction of a neutrino field and a gravitational
field is described in general relativity by the Einstein—Weyl
coupled equations

R,=—T,,

uv

oﬁ/\"é_ ::4 =0,

(IL1)
(IL.2)
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where

T,, = (i/8Ey o E , + EotE,, —c.C) (IL3)

is the neutrino energy-momentum tensor. The spinor
[Throughout this article we adopt the notations of Pirani.’
Thus, small Greek indices are tensor indices (values 0,1,2,3)
while capital Latin indices are spinor indices (values 1,2).
The signature of the space-time is taken to be

—,—,—,+ ] &"is the neutrino field and the quantities
o“; are the generalized Pauli matrices satisfying the follow-
ing anticommutation relations:
010y + 00 0,4 = 8,87

]

(I1.4)

Following Griffiths and Newing* we introduce the 2-spinor
x"inaway that (£ “, y*) form a dyad or spinor frame; that is,

54Xs —5BX4 = €as- (IL.5)
We then construct the null tetrad or null frame:

I# = o* G EEX, (I11.6a)

K = o* Y'Y, (I1.6b)

mt = o* 5 € X, (IL.6c)

m* = o* y'EX. (I1.6d)

The vector /# is interpreted as the neutrino flux-vector. The
completeness relation which arises from (IL5) is

(IL.7)
For a given £ “ the most general transformation on y * which
preserves (IL.5) may be written in the form
E1=¢", (IL8a)
X =xt+ v (IL.8b)
where ¥ is an arbitrary complex function of the coordinates.

This transformation generates the following transformation
for the corresponding null tetrad, called a “null rotation

Ik, + Lk, —mm, —mm, =g,,.
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about /#"

[# =", (I1.9a)
K=K+ Wm'* 4+ Um'™ + W (11.9b)
m*=m" + Pl (IL9c)

In terms of the spin coefficients a, B, ¥, €, p, «, 0, T associated
with the null tetrad (see Appendix A}, the Weyl equation and
the neutrino energy-momentum tensor assume the equiv-
alent tetrad form®

(I1.10a)

p=¢
B=r, (IL.10b)
T,

= —{ALIL +20[g,, — 4«4+ 2i[(@ — 201, m,,

—la =20, ,m,, +kx,m,, ~«x, m,

+&m,m, ~am,m, ]}, (IL.11)
where

A =2y — ), (IL.12)

o = (i/2)(p — p). (IL.13)

The round brackets on the indices in Eq. (II.11) mean sym-
metrization. The energy density of a field as measured by an
observer with future-pointing velocity #* is

E(u)=T,,u"u"

The expression (I1.11) for the neutrino energy-momentum
tensor can be simplified essentially by the adoption for the
neutrino field of the following physically relevant condition:

E(u)#0
for all the observers at every point in which T, #0.
In the terminology of Wainwright® we say that these neu-
trino fields satisfy the weak energy condition E, or equiv-
alently that they are neutrino fields of class E,. If this condi-
tion is fulfilled we can prove® the existence of a null tetrad
with respect to which the energy-momentum tensor {I1.11)
reduces to the form
T,, = —}3[ALlL +2wg,, —4oll,k, +1.x,)

73
+ 2iom,m, — 2iom,m, ], (IL.14)
with the following restrictions on the spin coefficients:

K=0,_
a—2r=0.

(IL.15)
(IL.16)

Here, w and o are proportional, respectively, to the twist and
the shear of the neutrino principal null congruence and they
fulfill the relation

g0 — 40°<0. (IL.17)

If in particular 0o — 4w? <0 then the null tetrad is deter-
mined uniquely with respect to the null rotations about /#
and if oo — 4w” = Othen there exists a freedom in the choice
of the null tetrad with the restriction that
20¥ — ig¥ =0. (I1.18)
So, in this second case we can perform the null rotation
(I1.9a)~(11.9¢) and give any value to the real part of V.
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lil. LIE DERIVATIVES OF THE NULL TETRAD OVER A
KILLING VECTOR FIELD

Let us consider a null tetrad (/#, «*, m*, rr—z") and a real
Killing vector field #*. Because the vectors [, k*, m* are
null, it is obvious that their Lie derivatives with respect to n*
are given in general by

L 1¥ =pl* — gm* — qm*, (IT1.1a)
L= fih — rm" — rm*, (ITL.1b)
ZL,mt = el* + gk + hm", (I1L.1¢)

where p, fare real and g, 7, ¢, g, h complex. By Lie differenti-
ation with respect to n* of the completeness relation (I1.7)
and the help of (III.1a)—{III.1c) we obtain

Conversely, if (I11.2) are valid it is clear that n* is a Killing
vector field. So, we have the following theorem.

Theorem A

A vector field n* is a Killing vector field if and only if the
Lie derivatives with respect to n* of the null tetrad vectors
I#, k*, m" are expressed by the formulas

L0 =pl* — qm* — gmt, (I11.3a)
Lkt = — pr* — rm* — rm*, (I11.3b)
L omt = —rl* — gt — ismH, (ITL.3c)

where p, s are real and ¢, » complex.

Let us now define the Lie derivative of a spinor £ # with
respect to a vector field n* so as to satisfy the following
properties’:

(i) If £* is a 2-spinor, then .¥" £ is also a 2-spinor.

{ii) &, 0% = Oif and only if n* is a Killing vector field.
Thus using (I1.6a)—I11.6d) the spinor equivalents of (II1.3a)-
(II1.3c) are given by

L4 =p—is " — gy, (IT1.4a)

Lxt=—rE"—p—isy" (II1.4b)
If the 2-spinor £ * is the neutrino field, then from (I11.3a) and
(II1.4a) we observe that the symmetry properties of the neu-
trino flux-vector and of the neutrino field depend critically
on whether or not the quantity ¢ vanishes. However, under a
null rotation about /* the quantities g, p, s, r are transformed
as follows:

q=q _ (II1.5a)
p=p—q¥—q¥, (IT1.5b)
is'=is4+q¥ —q¥, (I1L.5¢)
r=r+{p—is\W0—q¥2+.%, V. (I11.5d)

From {111.5a) g cannot be put to zero in general. If it happens
to vanish, then p and s become invariant with respect to
{I1.9a}I1.9c).

It is well known® that the Lie derivatives of the Weyl
tensor C,,,,, and of the Ricci tensor R,,, with respect to a
Killing vector field are zero:

& 2 Crppo =0,
fnR;Lv = Oy

or equivalently,
Z ¥ ascp =0, (I11.6)
Ly Papiy =0, (IIL7)
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where ¥ ,,cp and @,y y are the spinor equivalents of the
Weyl tensor and of the Ricci tensor, respectively.

Considering the dyad components of the Weyl spinor
[see Appendix A, Egs. (A5)] after a straightforward calcula-
tion and with the help of (I11.4a) and (I11.4b) and (II1.6) we
obtain

LW =2p — is)¥, — 4q¥,, (IT1.8a)
LW = —r¥,+ (p—is)¥, — 3q¥,, (I11.8b)
LW, = —2rW, — 2q¥,, (I11.8¢)
L W= —3r¥, — (p — is)W, — q¥,, (I11.8d)
L W= — 4y, —2p —is)¥,. (I11.8e)

Let us now consider the dyad components &;; of the Ricci
spinor [see Appendix A, Eqs. (A6)]. By a straightforward
calculation and with the help of (II1.4a)-(I11.4b) and (I11.7)
we obtain

L, Doy = 2(pPy — 9Po — 9%Po1)
L, P = —qP—qP, — 1Py — 1P,

(II1.9a)
(ITL.9b)

LDy, = (p — is) Py, — 29D, — gDy, — rdy,, (111.9¢)
L, P,= —(p+is)P, —rPy, — 5¢’22 - 2;¢n’
(I11.9d)
LDy = — 2rDy, + gD, + isPy,), (I11.9¢)
LDy = — 2pDyy + 1D, + rP). (I11.9f)

From the Einstein field equations (I1.1) and the expres-
sion (I1.11) for the neutrino energy-momentum tensor we
derive the following equations which can be considered as
the dyad components of the Einstein field equations.

@, =0, (I11.10a)
D, = (i/8)k, (II1.10b)
b, = (i/4)0, (IIL.10c)
?,, =l (II1.10d)
b, = — (i/8)a — 27), (IT1.10e)
@, = — A, (IIL.10f)

By substitution of (II1.10a)—{III.10f) into (III.9a)}-(I11.9f) we
obtain

gk —gk =0, (IIL.11a)
L0 =i/2)gla — 21) — gla — 27) + e — ],
(IIL.11b)
L k= (p — isk + 2{2wq + iog), (ITL.11¢)
Zola—21)= — (p + is)a — 27) — 2or + ior — 1Aq),
(IIL.11d)
& 0=q@— 2r)— ik — 2iso, (II1.11e)

LA = —2pA + 2fla — 27) — 2irl@ — 27). (IIL11f)

It must be noted that equations (II1.11a)—(I11.11f) can also be
considered as the intergrability conditions
<R, = —2,T,, of the Einstein field equations.

For the neutrino fields of class E,, we must introduce in
the equations (III.11a)—(III.11f) the restrictions (II.15} and

(IL.16). We obtain thus,

&L w=0, (I11.12a)
20q + iog =0, (ITIL.12b)
2wF + ior — 1Ag = 0, (ITL.12c¢)
& o= —2iso, (I11.12d)
L A= —2pA. (I1L.12¢)

In the next sections, in order to exploit the above equa-
tions we will use extensively and often without explicit refer-
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ence the various restrictions satisfied by the spin coefficients
[e.g. Egs. (I1.10a) and (II.10b), (IL.15), (I1.16), etc.] and the
Einstein equations (II1.10a)-(III.10f). Also, we will refer to
some of the Ricci and Bianchi identities. For these, we will
adopt a special reference notation; e.g., by (R.2) [Respective-
ly, (B.2}] we will mean the second Ricci identity (respective-
ly, second Bianchi identity) in the listing given by Pirani® or
by Flaherty.'® However, for the reader’s convenience all the
Ricci and Bianchi identities which are used in this paper
together with the commutation relations of the D, 4, 8, and K
differential operators are displayed in Appendix A.

IV. THE EFFECT OF SPACE-TIME ISOMETRIES ON THE
NEUTRINO FIELDS OF CLASS £,

Because of Eqgs. (II1.12b), (III.12c), and the restriction
(I1.17) satisfied by the neutrino fields of class £, we must
separately consider the two cases 4w?> — 07> 0 and
4w? — 06 = 0. The pure radiation field (v = 0 and o = 0)
will be considered as the third case. Finally, the resuits of the
three cases may be resumed in Theorem B given below.

Case 1

We consider the case where

40* — 05 >0. (IV.1.1)
So, from (I11.12b} and (I11.12c) follows that

g=0, (IV.1.2)

r=0. (IV.1.3)

In order to exploit Egs. (IT1.12a), (I11.12d), and (I11.12¢) we
must apply a theorem which states that the Lie derivative
with respect to a Killing vector field commutes with the co-
variant derivative.® Here, and in the remainder of the paper
this theorem in conjunction with Egs. (III.3a)—(I11.3c) will be
used extensively without explicit reference.

First, let us consider Eq. (II1.12a). This can be written in
the form

N [

wiv Vi )

Inserting (I11.3a) and (I11.3c) together with (IV.1.2) and
(IV.1.3) into the above expression yields

m“m"] = 0.

pw =0.
Since @ = 0 is excluded from (IV.1.1), we obtain
(IV.1.4)
Now Eg. (I11.12d) becomes an identity and we must consider

Eq. (ITI1.12¢). This, with a similar procedure as previously
and with the help of (IV.1.2}, (IV.1.3), and {IV.1.4), yields

As=0. (IV.1.5)
Further restrictions on s can be obtained from the Lie deriva-
tives with respect to n* of the Weyl equation and the help of

(IV.1.2}, (IV.1.3}, and (IV.1.4). Thus, from L, e=.7,pwe
obtain

p=0.

Ds =0, (IV.1.6)
and from .¥ B = ., T we obtain
s =0. (IV.1.7)

[For the definition of the 4, D, and 6 operators, see Appen-
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dix A, Eqgs. (A2)]. Equations (IV.1.5), (IV.1.6), and (IV.1.7)

imply that s is constant. Now, by virtue of (IV.1.2), (IV.1.3),
(IV.1.4), and (IV.1.7) the equations .¥ ,x = 0 and-

& (@ — 27) = 0 become an identity and therefore we can-
not derive further restrictions on s.

Case 2

We consider the case where

40° — 0o =0, (Iv.2.1)
with

®#0 and o0#0. (Iv.2.2)

To prove that ¢ vanishes we will proceed by contradiction.
So, let us assume that

q#0. (IV.2.3)

By virtue of (IV.2.1} and (IV.2.3) Eq. (IIL.12¢c) splits into the
equations

20F + ior =0, (IV.2.4)
Y= (IV.2.5)

From (IV.2.1) it follows that we can perform the null rota-
tion (I1.9a}—{I1.9c) subject to the restriction (I1.18). Under
such a transformation and by virtue of (II1.12b), (II1.12d),
and (IV.2.4) we may observe that the quantities o, o, ¥ — 7,
g, s, and argr are invariant [see Appendix A, Egs. (Ada)-
{Ade)]. However, by virtue of (IV.2.3) we can always choose
the real part of ¥ so that

p=0. (IV.2.6)
Now, let us consider Eqs. (II1.12a), (II1.12d) and the integra-
bility conditions
L e=Lp L= 7L k=L, a—27)=0.
From these, if we take into account (II1.12b), (IV.2.4),
(IV.2.5), and (IV.2.6) we can derive the following equations:

8q = 3q7 — \[g(T + 7) + g7 + 7)), (Iv.2.7)

5q = 347, (IV.2.8)

34q = 4qy — gz — GA, (IV.2.9)

Dg = q(2p + p). (IV.2.10)
From (R.1) follows

Do =2(p + plo. (IV.2.11)

By virture of (IV.2.10), (R.2), (IV.2.3), and (IV.2.11) the D

differentiation of {II1.12b) gives
¥, = 2iwo. (Iv.2.12)

By substituting (IV.2.12) into (III.8a) and (II1.8b) and using
(II1.12a), (II1.12d), (IV.2.3), (IV.2.6), and (III.12b) we obtain

¥, =0, (IV.2.13)
il

¥, = Lo, (IV.2.14)
3g

We can observe that from (III.12b), (IV.2.4), and (IV.2.14)
follows

Y, =W, (IV.2.15)
From (R.3), (R.4), (R.5), and (R.11) we derive

bw = — 207+ 7) + iG(F + 1) + 40T, (IV.2.16)

b0 = 407 (IV.2.17)
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With the help of (IV.2.12), (IV.2.16), and (IV.2.17) Eq. (B1)
yields

207+ 1)+ iolm +7) — o7 =0. (IV.2.18)
On the other hand by & differentiation of (II1.12b) and the
help of (IV.2.7), (IV.2.8), (IV.2.16), and (IV.2.17) we obtain

100(7 + 7) + 3io{m + 7) = 0. (IV.2.19)
By virtue of (IV.2.1) Egs. (IV.2.18) and (IV.2.19) yield
(IV.2.20)
(IV.2.21)

By Lie differentiation with respect to n* of (IV.2.20) and with
the help of (IV.2.4) we obtain

A7 =23y + 7. (IV.2.22)
By Lie differentiation with respect to n* of (IV.2.21) and with
the help of {IV.2.5), (IV.2.9), and (IV.2.22) we obtain

Dr=gqlig —pu+2y) +rp. (IV.2.23)
With the help of (IT1.12b}, (R.2), (IV.2.5),(IV.2.11),(IV.2.12),
and (IV.2.23) the D differentiation of (IV.2.4) yields

Ao — P) = qlu — ). (1v.2.24)
Now, by virtue of (IV.2.24), Eq. (IV.2.14) can be written in
the form

Vo= — i — Pl — ). (IV.2.25)
Acting on g with the commutator of the 8- and &-differenti-
al operators and taking into account Egs. (IV.2.7), (IV.2.8),
(IV.2.10), (IV.2.20), (IV.2.21), (IV.2.22), and (IV.2.24) we
obtain

1o —P) = lp + Al — ). (IV.2.26)
With the help of (IV.2.5), (IV.2.15), and (IV.2.20) the Ricci
identities (R.6), (R.12), and (R.17) yield

Yo-P) = piL — pu,
These equations together with (IV.2.26) yield

P = pu, (Iv.2.27)

Ao =A16. (Iv.2.28)

With the use of (IV.2.15), (IV.2.21), (IV.2.27), and (IV.2.28)
we can derive from (R.8)

Dl —a)= —lp+A — ) (IV.2.29)
Now with the help of (IV.2.11) and (IV.2.29) and by D differ-
entiation of (IV.2.25) we obtain

DY, = (p + p)¥,. {Iv.2.30)
By virtue of (IV.2.11), (IV.2.13), and (IV.2.15) the real part of
(B.3) becomes

2DW, =3(p + P\, + 2p + p)P, .

Comparing this with (IV.2.30), we obtain

o +p)(¥, +20,,)=0.

Now, if p + g = 0, then by virtue of (R.1) and (IV.2.1) fol-
lows p = w = 0, which contradicts (IV.2.2). On the other
hand, if ¥, + 2¢,, = 0, then by D differentiation of this
equation and the help of (IV.2.11) and (IV.2.30) we arrive
again at the contradiction @,, = @ = 0. So we must con-

7=0,
m=0.
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clude that
qg=0.

Now by similar calculations as in Case 1 we may derive from
(ITI.12a) that

p=0,

and from (I11.12e) and the Lie derivative with respect to n* of
the Weyl equation (II.10a) and (II.10b) that

§ = constant.

Case 3
We consider the case where
w =0, (IV.3.1)
o =0, (IV.3.2)

i.e., the neutrino field is a pure radiation field. Because of
this, Egs. (I11.12a), (IT1.12b), and (I1I.12d) become identities
and from (II1.12c¢) follows
g=0. (IV.3.3)
Otherwise the neutrino field would be a ghost field. These
fields, because they do not interact with space-time, are ex-
cluded from our discussion.
From Eq. (II1.12e) and the integrability conditions
L e=2L 0 L B=2L,7 7L, la—27) =0, we obtain

Ds =0, (IV.3.4)
55 =0, (IV.3.5)
Dp=0, (IV.3.6)
5p =0, (IV.3.7)
As = ipA. (IV.3.8)

The condition .¥", k = O is irrelevant and therefore Eqs.
(IV.3.4)<(IV.3.8) constitute all the restrictions which we can
formulate on s and p. The investigation of these equations in
conjunction with the commutation relations of the D, 4, §,
and é differential operators shows that they are compatible
both with the cases of a pure radiation neutrino field with
diverging rays (i.e., p 3 0} and with a pure radiation neutrino
field with nondiverging rays (i.e., p#0) and ¥; = 0 without
any further restriciton on p and s. Thus, in these cases we
have

L = pl#,

L8 =4 — s,
where p and s are in general real functions of the coordinates.
In fact, as is shown in Appendix B, this agrees with the re-
sults of Collinson and Morris."'

Let us now consider the case which is characterized by
the equations

p=0, (IV.3.9)

W, 0. (IV.3.10)

It is well known that pure radiation neutrino fields can exist

only in space-times with algebraically specialized Weyl ten-
12

sors,'’ i.e.,

W, =¥, =0. (IV.3.11)

With the help of (IV.3.2), (IV.3.9), (IV.3.11), and the other
restrictions satisfied by the spin coefficients, Egs. (R.12),
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(R.16), (R.17), and (B.4) yield

¥, =0, (IV.3.12)

7=0. (Iv.3.13)
Here it must be noted that because of (IV.3.11) and (IV.3.12)
the condition (IV.3.10) is preserved under the null rotation
(IL.9a)~(IL.9c} [see Appendix A, Egs. (A7)]. By virtue
of(IV.3.2), (IV.3.9), and (IV.3.13) Egs. (R.15) and (R.18) take
the form

oy=0, (IV.3.14)

5y =V, {(IV.3.15)

Now, acting on s with the commutator of the § and 4 differ-
ential operators and using (IV.3.4), (IV.3.5), (1V.3.7),
(IV.3.8), (IV.3.13), (IV.3.14) and (IV.3.15) we obtain

pll_/3 =0,
and thus, because of (IV.3.10),

r=0.

From this last equation and Eqs. (IV.3.4), (IV.3.5), and
{Iv.3.8) follows that

§ = constant.

The results of the three cases can be recapitulated in the
following theorem.

Theorem B

If a neutrino field of class E, interacts according to the
Einstein-Weyl coupled equations with a gravitational field
which admits a Killing vector field n*, then

L= —(i/2)sE1,
L IH=0,

where £ # is the neutrino field, /# is the neutrino flux-vector,
and s is a real constant. However, in the cases of a pure-
radiation neutrino field with diverging rays (p#0) and a
pure-radiation neutrino field with nondiverging rays (p = 0)
and ¥, = 0 and only in these cases, we have

L6 =Mp—isE",

LM = pl*,
where now p and s are in general real functions of the
coordinates.

V. THE EFFECT OF SPACE-TIME ISOMETRIES ON THE
NEUTRINO FIELDS WITH ¥, =0

In this section the general neutrino field is considered in
interaction with a space-time admitting a Killing vector field
n* and subject to the restriction that the neutrino flux-vector
be collinear with one principal null direction of the Weyl
tensor; that is,

¥, = 0.
Of course, this restriction is preserved under the null rota-
tion (I1.9a)(I1.9¢) [see Appendix A, Egs. (A7)]. From (V.1)
and (I11.8a)—(II1.8¢) it is easily seen that unless the space-
time is flat,

(V.1)

g=0. (v.2)

Considering the integrability conditions
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L, e=5L,p, L .B=17,7of the Weyl equation and tak-
ing into account Eq. (V.2) we derived by a straightforward
calculation

Ds =0, (V.4)
dp — i8s = 0. (V.3)

Also, with a direct calculation and with the help of (V.2), we
obtain
L& —21) = 18(p + is) — is{@ — 27) — 21207 + io7),
L A= —24s — pA + 2ifla — 27) = 2ir@ — 27),
LK = (2p — is)k,
L0 = po + i/2)rc — rk),
L0 =po — Fk — 2iso.
The comparison of the above equations with Eqgs. (II1.11a)-
(ITIL.11f) and the use of (V.2) yield

8p + ibs = — 2pl@ — 27), (V.6)

As = IpA, (V.7)

pr =0, (V.8)

po =0, (V.9)

po=0. (V.10
If p = O then from (V.4), (V.5), and (V.7) follows that

5 = const

and therefore a theorem similar to Theorem B is established.
There remains to investigate the possibility

p#0. (V.11)
We will show below that this assumption leads to a
contradiction.

At first, from (V.8)«(V.11) follows

k=0, (V.12)

® =0, (V.13)

o=0. (V.14)

These equations imply that the quantity ¢ — 27 remains in-
variant under the null rotation (I1.9a)—(I1.9¢c). Furthermore,
if @ — 27 = 0, then the neutrino field would be a pure radi-
ation field which is considered in the preceding section. So,
we must assume that

a — 27#0. (V.15)
Equations (V.12) and (V.14) together with (R.3), (R.5), and
{(R.11) imply that

¥, =0. (V.16)
Taking into account Egs. (V.2) and (V.16) Eq. (II1.8¢) can be
written in the form

ZL,¥,=0. (V.17)

Acting on s with the commutator of the Dand 4 differential
operators and using Egs. (V.3), (V.4), (V.5), (V.6), (V.7),
(V.11), (V.12), and (V.13) we obtain

v, =¥, (V.18)

Asby virtue of (V.12) the spin coefficient p is invariant under
the null rotation (I1.9a)(I1.9¢) [see Appendix A, Eq. (A4f)] it
seems useful for our proof to distinguish the two cases p7#0
and p = 0 (i.e., neutrino fields with diverging rays and neu-
trino fields with nondiverging rays, respectively). Equations
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(V.1), (V.13), (V.14), (V.16), and (V.18) will be used in what
follows without explicit reference.
Case 1

Let us assume that

p#0. (V.1.19)
Then, using the null rotation {I1.9a}-(II1.9¢c}, we make

=0, (V.1.20)
and consequently (V.15) is reduced to
a#0. (V.1.21)

By virtue of (V.2), (V.14), and (V.1.20) the Lie derivative with
respect to n* of (V.1.20) yields

r=0. (V.1.22)
From (R.17), (V.1.19), and (V.1.20) follows
u=i. (V.1.23)

With the help of (V.5), (V.6), (V.11), (V.1.20), (V.1.23), and
(R.12)the action on s of the commutator of the § and é differ-
ential operators yields

¥, =pu —aa. (V.1.24)

With a direct calculation and the help of (V.2) and (V.1.22)
we derive

L up = pp,
L= —pu.

Also, from (II1.11d} and (V.1.20) follows
L a={is —pa.

Thus the Lie derivative with respect to n* of (V.1.24) can be
written

L, ¥, =2paa,
which by virtue of (V.17) is reduced to

(V.1.25)

paa =0.
But this last equation contradicts (V.11) and (V.1.21).

Case 2
Let us assume that
(vV.2.19)

Acting on s with the commutator of the § and & differential
operators and using (V.4), (V.5), (V.6), (V.11), (V.2.19),
(R.12), and (R.17) we obtain

2, = — (@ —27)(@— 21) — 7F. (V.2.20)

By a direct calculation using (V.2) and {V.2.19) we can derive

p=0.

L, r= —ist.
Also, by virtue of (V.2) Eq. (II1.11d) reduces to
L la—27)= —(p+ isj{@ — 27).

Thus the Lie derivative with respect to n* of (V.2.20) can be
written

L, ¥, =pla —27)@ — 27),
which by virtue of (V.17) reduces to
pla —27)@ —2r)=0.

(V.2.21)
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But this last equation contradicts (V.11) and (V.15).

So we have proven the following theorem.
Theorem C

If a neutrino field interacts according to the Einstein—
Weyl coupled equations with a gravitational field which ad-
mits a Killing vector field n* and if the neutrino flux-vector is
collinear with one principal null direction of the Weyl ten-
sor, so that ¥, = 0, then

L€ = —(i/2s6"
and

L4 =0,
where £ “ is the neutrino field, /“ is the neutrino flux-vector,
and s is a real constant. However, in the cases of a pure-
radiation neutrino field with diverging rays (p#0) and a
pure-radiation neutrino field with nondiverging rays (o = 0),
and ¥, = 0 and only in these cases, we have

fngA = %(p - is)gA’

&L = pl¥,
where now p and s are in general real functions of the
coordinates.

V1. CONCLUSION

With a method closely related to the spin coefficient
formalism we have considered the effect of space-time iso-
metries on the neutrino field. For a space-time admitting a
Killing vector field n* and in a coordinate system adapted to
this vector field (i.e., such that n* = §,)) the main results of
this paper are
(i) the neutrino flux-vector is independent of the coordinate
X%

(i1) the neutrino field £ # has the plane-wave form

é— 4_ g~ (i/Z)sx"‘p A’

where ¢ is a 2-spinor independent of the coordinate x* and
where the “frequency” s is a real constant.

It is worthwhile remarking that these results fail to hold
for the pure-radiation neutrino fields. This must be related to
the fact that pure-radiation fields are not uniquely deter-
mined from the space-time metric. Furthermore, we do not
know if the above results are valid for neutrino fields not
belonging to the energy class E, and such that ¥,50. This
case will be investigated in a future work.

Recent experiments'* seem to indicate that neutrinos
are not massless. If that is the case, Weyl’s equation will be
an approximation for the description of their behavior and
therefore we should consider the Dirac equation. However,
it must be noted that the method used here for the study of
the effect of space-time isometries on the zero rest-mass neu-
trino field can be applied also in the case of a nonzero rest-
mass neutrino field for which only the restriction on the heli-
city is retained (i.e., the neutrino field is described by a 2-
spinor). For this it is necessary to formulate the Dirac equa-
tion and the energy-momentum tensor of the Dirac field in
the 2-spinorial formalism and in particular in terms of spin
coefficients. This and the energy conditions for the Dirac
field are examined by Griffiths'* and Radford and Klotz."
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We intend to investigate this question in a future paper. Fi-
nally we would like to remark that, as was pointed out by
Henneaux, ' the above results (i) and (i) must be valid at least
under some restrictions (unknown for the moment) and for
the general Dirac field.

APPENDIX A

For convenience, we list the definitions of the spin coef-
ficients and of the D, 4, 8, § differential operators with re-
spect to the null tetrad (# ,«* ,m* m ) as defined by Newman
and Penrose.'”

k=1L, ml% m=m, " €e=41,x"+m, ,m)"
p =1 mtmY, A=, k0, a = K, mP)R,
(Al)

o=1,.m'm’, p=m,k'm’, B=il, «+m, mm’
=1, m, v=m, Kk, y= i(ly;ik‘“ + m,,., mfK”.
D=I"V,, A=«V,, §=m'V,, §=m"'V,. (A2)
where V,, means covariant differentiation.

With the help of the Weyl equation in its tetrad form
(I1.10a)—~(II.10b} the commutation equations of the D, 4, 8,
and 8 operators acting on scalars are written in the form'®

AD —DA=(y+PD+(p+pA — (r+ D8 — (F+ 78,
8D — D8 = (@ + 7 — 7D + kA — 06 — pb,

(A3)
84 —A8= —VD —aA+ A6+ (u—y + P9,
88 -85 =@ —pu)D + (p—p)d — (@ — 76 — (F — a)d.

Using the tetrad form (II.10a)—(II.10b) of the Weyl
equation [which clearly is preserved under the null rotation
(I1.9a)—(I1.9¢)] we find that the quantities «, w, 0, a — 27,

y — ¥, p, and 7 are transformed under (I1.9a) — (11.9¢) as
follows:

K=« (Ada)
=0 +([i/2KV—-iV) (Adb)
og=0 +k'Y¥, (Adc)
a—2=a —2F + KW WY

—2iR'¥ — iT'VW), (Add)
y—y=v -7+ ¥ -27F)—¥@-2r

+ W (WK — OR) — ¥ (2% +id'P)

— V('Y — TV, (Ade)
p=p + ¥, _ (A4f)
r=7 +pV+0V+KPV (Adg)

The components of the Weyl spinor ¥, z¢p and of the
Ricci spinor @, 5y With respect to the dyad (£, y*) are
defined by'®

Yo = ¥ascpb A§ B§ C§ i

¥, = W,pcpb "E°E X,

¥, = Yancn€ "€ "X X°, (A5)
Wy =¥ e XX X°,

Vo= Yo X XX X"
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Poo = Pypxvb Ag B/ljxg_y’ Dy, = 610 = ¢ABXY§A§ BEX)-(—Y’
P =Py YEY, Pra=Py = Pypyi€ WEET,
o (A.6)
Py = Pupiv X' YUY, Poz = Poo = Pupiv€ "€ X%
Under the null rotation {I1.9a)—I1.9¢) the dyad compo-
nents of the Weyl spinor transform as

Vo=V,
WI = lpll + WW'O:
W, =W, 429 L WY (A7)

V= W', 43V, + 30 L WY

V=W 4+ 4WV' + VY, + 4V L WY

Using the Weyl equation (I1.10a)-(I1.10b) and the fact
that the trace of the neutrino energy-momentum tensor van-
ishes, the Ricci and Bianchi identities used in this paper can
be written in the form

Dp — 8k =p*+ 06+ (p + plp — kr — k{3a + 7 — m), (R.1)

Do — bk =4po — (47 — 7 + @k + ¥,, (R.2)
Dr—Ak=(r+Tp+(T+ 7o+
o —pIr — By + Pk + ¥, + By, (R.3)
Da-—-dp=p—pla+10—7p—xA
—ky + 2pm + D, (R.4)
Dr—dp=la+mo—{u+yk—(@—mpo+¥, (RS
Dy —Ap=(r+Ta+(T+77
—lo+Aly —r+ T+ 77—+ ¥t Dy, (R
Du—ébr=Ac+mr—pu—ma—1—w+ ¥, (RS
8 —b8a =pla@ + 7) — o(3a — 7)
tlo—pr+l—gk— ¥+ S,  (RI1l
Sa —8r=pu — Ao+ ad + 77 — 2ar
+rle—p) +plu —pg)— ¥, + Py, (R.12)
8y —ATr=2ur—ay —ov—pv
— 7y =)+ ad + Py, (R.15)

87— A0 =po+ Ap + (21 — @)r — (3y — Vo — kv + Dy,

(R.16)
Ap—57'=vx-—pﬁ—ﬂ.a—a7'+(y+77)p—!{/2, (R.17)
Aa — 8y =2pv — 274 + (¥ — flJa — ¥, (R.18)

8¥, — DV, + D®,, = (4a — MW, — 6p¥,
+ 3k¥, + 209, — 2D, — kD, + 2(p + p)Poy, (B1)
3(6¥,— DW,) + 2DD,, — 5D,,) + 5P,
=3A¥, — % ¥, + k¥, + 6la — m)¥,
+2(a + 7+ )Py, + 21 — 2 + TP,
+2(26 — p)Py\ + 20P,5 — 0Py,
— 28D, — 2kD,,, (B3)
3AW, — 8%,) + DD, — 6P, ) + 6Dy, — AD,,
=3vW, + 6(y — u)¥, — 97, + 60V, — v®y, — 24P,
+ 2 — p — ¥VPoy + 21 + 27)P,, — 2(p + PPy,
+ (2a + 27 — APy, + 20D, — 24P, (B4)
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APPENDIX B

All space-time metrics admitting a pure-radiation neu-
trino field with diverging rays (i.e., p #0) or a pure-radiation
neutrino field with nondiverging rays (i.e.,p =0)and ¥; =0
have been found explicitly by Collinson and Morris.!! So,
considering the isometry groups of these metrics we may
confirm our results of Sec. IV, Case 3 concerning these fields.
For all the notations used here and for further details the
reader is referred to the paper of the above authors.

1. Neutrino pure radiation fields with diverging rays

In a coordinate system (x',x2,x°,x*) = (u,7,x,) based
on the neutrino principal null congruence,’® the space-time
metric admitting these neutrino fields is written in the form

-2u/r 1 0 0
I 0 o0 0

&=\ o o —rPn o | B
0o 0 0  —rn

where the spin coefficient u is an arbitrary function of u
alone. The neutrino flux-vector is

I# = Ar—28%, (B1.2)
where4 =4 (u)isanarbitrary function of u. According tothe
form of the function () the investigation of the Killing
equations yields the following results:

(a) If u # 1/(a — 2bu)’, where a and b are real constants,

the metric {B1.1} admits a 3-parameter group of isometries
with Killing vector fields
n’z‘Z) = (O’O’y! - x)s n{t}) = 8‘3"1 nfz) = 6‘:' (B13)
By straightforward calculation we find that the Lie deriva-
tives of /# with respect to these Killing vector fields vanish:
='fn(i]l,u=o’ l=27 3; 4 (B14)
(b)If e = 1/(a — 2bu)’, b #0, the metric (B1.1) admits a
4-parameter group of isometries with Killing vector fields
nﬁ) =(a/b_2u’ 2", _Zx’ “2}’), n’;‘2] =(Oa Oyy) _x)9
nty =8, nf =8 (BL.5)
Now the Lie derivative of /* with respect to n{}, is nonzeroin
general:

Lol = [(i —2u)iiAL —6]1“.
b A du

It must be noted that if z = constant (i.e., b = 0) then the
neutrino field reduces to a ghost field.

(B1.6)

2. Neutrino pure-radiation fields with nondiverging rays
and ;=0

In the same coordinate system as previously the space-
time metric admitting these fields is written in the form
—mx*+py)—Fluxy) 1 0 0
1 0 0 0
0 o —3 o}
0 0 0 -}
(B2.1)
where m=m(u) is an arbitrary function of z and F (u,x,y) is

gpv =
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any function of u,x,y satisfying Laplace’s equation
(3%/3x* + 3*/3y*)F = 0. This metric represents the well
known plane-fronted wave. The neutrino flux-vector is

I# = A8, (B2.2)
where 4 =4 (u) is an arbitrary function of u.

In the case where

m = positive constant, F (u,x,y) = F(u), (B2.3)

this metric admits a 7-parameter group of isometries with
Killing vector fields

nty = (1, 4F (u), 0, 0),

nfy, = (0,0, — 2y, 2x),
nfy =/(0, (2m)'/%e ~ Vg, — 2¢ VI Q),
nts, = 0, — (2m)|/2e(\/’zmux’ _ 2e(m)u’0);
nts, = (0, (2m)!2%e = VI 0, — 2¢ — (VIR
nf‘n — (0’ _ (zm)l/Ze(\/E)uy, 0, — 2e(\/m:4).

nfy) = &,

(B2.4)

The Lie derivatives of / # with respect to these Killing vector
fields are

Loal* =0, i=2,3,4,567,
1 dd

Lt =——==1I" B2.5
) < v (B2.5)
If with (B2.3) we set

Aw)=1, (B2.6)

the neutrino field reduces to the “restricted neutrino field”
of Inomata and McKinley.?' The Lie derivatives with re-
spect to nf; of their plane-wave-like solution

EA =Y, (B2.7)

where £ ¢ is a covariantly constant 2-spinor and € is a real
constant, are given by

jntl)gA = ek, fnmgA =i,
jn(ngA = 09 l= 2) 4) 59 6: 7 (B2.8)

Also, it must be noted that by virtue of (B2.6) the neutrino
flux-vector is equal to nf;, and therefore constitutes a motion
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of the neutrino energy-momentum tensor in accordance
with the results of Audretsch and Graf.'
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The Melnick-Tabensky solutions have high symmetry
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Melnick and Tabensky recently gave a class of static perfect fluid solutions of Einstein’s equations
in which the metric {in comoving coordinates) takes the conformastat form. In this paper we
point out that all these solutions have spherical or plane or pseudospherical symmetry.

PACS numbers: 04.20.Cv, 04.20.Jb

Melnick and Tabensky' gave a class of static solutions
of Einstein’s equations for perfect fluid in which the metric
takes the conformastat form

ds? = e¥dt? — e¥(dx® + dy* + d2%), (1

where ¢ and i are functions of x, y, z. As they remark, their
method requires no assumption about symmetry, and indeed
their solutions, though evidently possessing axial symmetry,
have no other obvious spatial symmetries. Moreover, there
are special members of the class which apply to isolated bo-
dies, i.e., have a closed boundary at zero pressure. Thus Mel-
nick and Tabensky’s solutions seem to offer the intriguing
possibility of static bodies of perfect fluid which are not
spherically symmetric. However, in this paper we shall show
that the solutions have spherical symmetry (SS}, or plane
symmetry (PS), or pseudospherical symmetry (PSS).

The class may be written

p=¢u), u=(+m)"'x*+y*+2°—q),
(2)
e v =e®(z+ m)alu),
where m, g are constants, and a and ¢ are related by
2
da _ 2a( aé )2_ (3)
du? du

The pressure p and density p can be obtained from the
expressions

kp =le 22V + (V) + 2V + 2(Vd )* + 2V$-VY), (4)
kp = —e YRV + (V¢)Y), ()

where « is the gravitational constant in Einstein’s equations
(8 in the units of Ref. 1). Equations (4) and (5) correct (3)
and (4) of Ref. 1. Both p and p are functions of « only, so they
satisfy an equation of state of the form p = f(p). The 4-veloc-
ity of the fluid is

u'=6e?°,
showing that it is at rest in the coordinate system of (1). As
the motion is shear-free and irrotational the solutions are
among those discussed by Barnes.”

Given any two functions of u, @ and @, not necessarily
satisfying (3), a metric (1) subject to (2) has at least the four
Killing vectors

(. ) _
Yy =8\y—6&ix,
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¥ =807 + 2 — X+ 2mz 4 q) — 285
— 28, x(z + m),

;)" = —28\xy + 8, (x* + 22 — y* + 2mz + g)
—28.y(z + m),

@

¥ =8,

)
where (x', x2, x3, x*)=(x, y, z, t). Since the y‘ (u = 1, 2, 3)

span a two-plane at each point, the space~time must be local-

ly SS or PS or PSS. One can distinguish the different cases by
()
considering the commutators of the y', but in order to facili-

tate identification of the solutions we shall exhibit explicitly
a suitable coordinate transformation of (1).

First write

x=0cosff, y=osinp,
and define 7 by

n=040 2"+ 2mz +q).

Introducing now the differential du from (2) we can bring (1),
subject to (2), to the form

ds’ =e¥dt? —e aX !

X [du? + X 2Y ~¥dn® + YdB?)], (6)

where

X: =(u+2m) + dlg — m?),

Y. =n* +4m?—q).

In what follows we shall have to treat separately the
three cases

2
m*>q, m’=gq, m'<q,

and to save writing we shall denote these by (A), (B), and (C),
respectively.
Define € by
2Am* — q)''%cot 8 (A),
7= 6~ (B),
2(g-m?)""?coth & (C),

which reduces (6) to
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ds* =e*dt? — e~ g 2X 7!

X [du® + K ~'X3d6?% + f(0)dB?)], (7)
where
4|m* —q| (A),(C),
=i
and
sin? @ (A),
f=4 6° (B), (8)
sinh?@  (C).

It is obvious from (7) and (8) that the metric has SS, PS, and
PSS in cases (A}, (B), and (C), respectively.

We can put (7) into a spatially isotropic form if we intro-
duce a different radial coordinate » by

ﬂ o (K)I/Z du
r (u + 2m)* + 4(g — m?)
which gives

(K)"? coth(Inr) (A),
(Inr)~! (B),
(K)"2cot(lnr) (C).
By this means we arrive finally at the metric
ds’ = e¥dt? — e *a " *r~gTdr* + r1(d8* + fdB )], (9)

where

u+2m=
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sinh(inr) (A},
g= Inr (B),
sinlln7)  (C).
Equation (3), which is the only restriction imposed by the
field equations on ¢ and @, becomes, in the new coordinates,

a" —2a¢?+a'(2gg” +r ") =0, (10)
where ' means d /dr.

The class of solutions of Melnick and Tabensky is there-
fore equivalent to a known class of static perfect fluid space—
times admitting a four-parameter group of motions, and in-
cluded in Barnes.” The PS and SS cases in this class are dis-
cussed in Secs. 13.6 and 14.1 of Ref. 3. [Note that Eq. (14.15)
of Ref. 3, which is equivalent to (10), should say
dG —92G d’L
dx? dx?
where for (9), x = 7%, L = grae® and G = Le*.] The vacuum
solution given by Melnick and Tabensky! is similarly equiva-

lent to the well-known plane symmetric vacuum solution of
Taub [Ref. 3, Eq. (13.30)].

L

]

'J. Melnick and R. Tabensky, J. Math. Phys. 16, 958 (1975).

A. Barnes, Gen. Relativ. Gravit. 4, 105 (1973).

*D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact solutions of
Einstein’s field equations (Deutscher Verlag d. W. Berlin and Cambridge
U.P., Cambridge, 1980).
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A relativistic variational principle for a particle in an external field is developed both in flat
spacetime and in curved spacetime. In flat spacetime Kalman’s equations follow from the
variational principle, and their relationship to four-dimensional Euler-Lagrange equations is
clarified. It is shown that Kalman’s equations are uniquely defined and that they may be recast
into a generalized Hamiltonian formalism. The equations of motion arising from the curved-
spacetime variational principle are shown to be uniquely defined.

PACS numbers: 04.20.Fy, 03.50. — z

I. INTRODUCTION

In 1961, Kalman' presented a set of manifestly covar-
iant equations of motion for a particle in an external field in
flat spacetime. The equations were derived from a relativistic
generalization of Hamilton’s variational principle. Al-
though the procedure parallels the Lagrangian formalism,
the resulting equations of motion do not have the form of the
covariant Euler-Lagrange equations in which the usual time
parameter is replaced by particle proper time. Kalman also
showed that the equations of motion cannot be recast into a
covariant form exactly analogous to Hamilton’s equations.
In this work, the above properties of Kalman’s equations are
examined further and the variational principle is extended to
curved spacetime. The relationship between Kalman’s equa-
tions and four-dimensional Euler-Lagrange equations is
clarified, and it is shown that the former may be recast into a
generalized Hamiltonian form using Dirac’s constraint
formalism.?

It is to be noted that Kalman'’s equations are of limited
applicability; they describe a particle interacting with an ex-
ternal field (i.e., a field independent of the particle position)
and hence cannot describe a system of interacting particles.
An extension of the formalism to include interacting parti-
cles would have to conform with the no-interaction theorem
of Currie, Jordan, and Sudarshan*®: A relativistically invar-
iant theory of interacting particles cannot simultaneously be
a Hamiltonian theory and allow an invariant description of
particle world lines. Although the problem of extending the
formalism is not considered here, it is anticipated that Kal-
man’s equations may form a suitable starting point for the
construction of a relativistic theory of interacting particles.’

InSec. II, the action integral is parametrized in terms of
an arbitrary function. One choice of parameter (particle
proper time) leads of Kalman’s equations whilst another
choice leads to Euler-Lagrange equations. These two sets of
equations are, of course, equivalent and this is demonstrated
explicitly. It is shown, however, that the two choices of pa-
rameter cannot be held simultaneously; hence the Euler—
Lagrange equations cannot be parametrized in particle prop-
er time. In Sec. III, it is shown that the latter equations (para-
metrized in particle proper time) are not even well defined:
The source of ambiguity is the relativistic constraint on the
particle 4-velocity components. Kalman’s equations are
shown to be unambiguously defined despite this constraint.
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In Sec. IV, the constraint is taken into account in the con-
struction of a generalized Hamiltonian formalism. Finally,
the variational principle is developed for curved spacetime in
Sec. V, and it is shown that the resulting equations of motion
are uniquely defined.

Il. VARIATIONAL PRINCIPLE IN FLAT SPACETIME

Consider a particle interacting with an external field in
flat spacetime. In Ref. 1, the particle trajectory is parame-
trized in particle proper time. In the following calculations,
an arbitrary parametrization is considered. The scalar action
functional for the particle-field interaction is taken to have a
form analogous to that of nonrelativistic action
functionals:'®

S= j Frex)di (1)

where the integral is over the trajectory x(4 ). In (1), g and b
are arbitrary points on the trajectory and x = dx/dA. The
first variation in S is obtained"' by comparing (1) with a simi-
lar integral over a curve x’(4 ') lying in the vicinity of the
trajectory x(4 ). Thus,

b
S+65= Jf(x’,x’) dA’, (2)
where
x'=x+ bx
A'=A4+64; (3)

the variations 8x and 84 are infinitesimal and the 8x are arbi-
trary but vanish at the end points of integration.'? From (3),

the corresponding variation in x* satisfies
_ . d
Sx=x"* — xk =

T di
Equations (1)-(4) yield the first variation in the action'?

58S = J(&f) di + Jfﬁ(di )

(6x*) — x"%(&{ ). (4)

+ f(f—- i %) d(6a). (5)

The required equations of motion are obtained from (5)
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by setting 65 equal to zero. Evidently, the form of the equa-
tions depends on the choice of parameter 4. Below, two pos-
sible choices are considered. The first is to equate 4 with
particle proper time, and this leads (as in Ref. 1) to Kalman’s
equations of motion. Alternatively, A may be defined in such
a way that Euler-Lagrange equations follow from (5).

Consider the choice that A is the particle proper time,
i.e., dA = ds, where the line element takes the Minkowski
form'

ds* =7, dx'dx™ {6)

in Lorentzian coordinates. Then, the action integral of (1)
takes the form

S= f fx,U)ds, (7)

wheref(x,U )is ascalar function and Uis the particle 4-veloc-
ity. From (6),

“55) = U, S5 @)
hence (5 afterapartlal integration, yields
osl-v )
b — S5x*d
5= f [ k- ds au* /=v au' e
oo Dl o
+[ au* 4 v’ x" a ®

Setting 85 equal to zero then yields Kalman’s manifestly
covariant equations'> of Ref. 1:

In the Appendix, it is shown that the 4-vector in square
brackets on the right side of (10} is minus the covariant 4-
momentum, and that (10) reduce to Lagrange’s equations in
a given coordinate system.

In the second choice of parameter, A is the analog of
the time parameter in nonrelativistic action principles: The
same A parametrizes both the trajectory and its neighbor,
hence A = A’ and 84 in (3) vanishes. Then, (1) takes the
form'®

S:f/(x,x) da, (11)

and (5) (with 8§ = 0) yields Euler—Lagrange equations in the
parameter A:

2_ 4y )
ax* A \ax*
It is sometimes claimed'’ that A in (12} may be chosen to be
particle proper time. In that case, {12) would reduce [after
equating/ and fin (11) and (7)] to the form of {10) without the
term U, (f— U’ 8f/3U"), i.e,, to Euler-Lagrange equa-
tions in the proper time. This claim is erroneous, however,
since the condition &8s = 0 is incompatible with (8).
Equations (10) and (12}, arising for the same action,
must be equivalent. This may be shown explicitly by relating
the integrands of (1 1) and (7):

=fU) — (13)

(x,%) d/l
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where, from (6),

ds sl omyt/2

— = (N X X™) 2 14

i (74 ) (14)
Equations {13) and (14) imply that the differentiated expres-

sion on the right side of (12) is

= Lrufr-vL) (15)
axx  gu* au'
Finally, (13)—(15) reduce (12} to the form of (10).

In conclusion, Kalman’s equations (10} are equivalent
to (12}, but the parameter in the latter cannot be the particle
proper time. Indeed, A in (12) may be chosen to be nonscalar,
but then (12) would not be manifestly covariant. These re-
sults may prove useful in the construction of a theory of
interacting particles which aims to avoid the world line con-

dition in the above-mentioned no-interaction theorem.

lll. UNIQUENESS OF KALMAN’S EQUATIONS

The action integral (7) yields Kalman’s equations {10),
not the Euler-Lagrange equations in particle proper time
[which, as noted above, take the form of (10} without the
term U, (f — U'df/dU"). The latter equations could be re-
jected solely from inspection of their form: From (6), the
components of the 4-velocity are related to one another by
the constraint

M U'U™=1; (16)
hence the partial derivations (df /U *) are not well defined.

At first sight, it appears that (10) suffer from this defect
since they also contain partial derivatives of the form
(@f /73U *). The constraint (16) could generate ambiguities in
(10) in two distinct ways: First, given f(x,U), the derivatives
(@f /70U *) are ambiguous because one may choose arbitrarily
which of the components of U is the dependent variable.
Second, (16) allows some arbitrariness in the actual function-
al dependence of fon U. In the discussion below, these possi-
ble sources of ambiguity of Egs. (10) are examined in turn,
and it is shown that Kalman’s equations are uniquely de-
fined despite the constraint (16)."®

From (16}, one may express any particular 4-velocity
component U? in terms of the other three components {joint-
ly labelled U 9):

Ur=u”U", q#p. (17)
The function f(x,U ) may then be written as a function inde-
pendent of U?:

fxU) =fx,UPUN=f"(x,U"). (18)

(The prime indicates a differing dependence on U”,U¥.)
Thus, the constraint (16} induces the identity transformation
JS—f" of (18). Under this transformation, the partial deriva-
tions (3f'/dU *) satisfy

(Go7) =0

(367)-G) - 7(3%) w

where (16) is used to evaluate (AU ?/dU 9). Equations (18) and
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{19) then yield the invariance of the 4-momentum in (10)
under the transformation f—f":

I ( g Y )
aur POV o
_ 9 ( gt 9 >

U~ +U\f —-U pros (20)
Thus, (10) are invariant under the transformation of (18),
even though the individual partial derivatives (3f /3U *)
[which transform according to (19)] are not uniquely
defined.

The remaining possible source of ambiguity in (10) is the

freedom in functional dependence of fon U allowed by an-
other identity transformation f—f, where

f(x’U) =f(x’U’§ ),
E=nq, UU"=1. (21)
From (21), the derivatives (3f /dU *) satisfy
I N_ (9 af
(aUk) (aUk)”Uk( dg)' 22

Equations (16), (21), and (22) show that the 4-momentum in
(10) is invariant under the transformation f—f. Thus, (10)
themselves are invariant under this transformation.

The two possible sources of ambiguity in (10) are repre-
sented by the identity transformations (18) and (21). Kal-
man’s equations (10) are uniquely defined since they are in-
variant under each of these transformations. The Euler—
Lagrange equations in proper time are ambiguously defined
since, from (19) and (22), they are not invariant under either
of the transformations. This ambiguity reflects the impossi-
bility of equating the parameter A in (12) with particle proper
time.

Although the Euler-Lagrange equations in particle
proper time are incorrect, they can be used in certain cases'’
to yield equations of motion identical with Kalman’s equa-
tions. Consider, for example, a free particle of mass m. Then,

f=—-m (23)
in (7) and Eqs. (10) yield the constancy of 4-momentum mU.
This result may also be obtained from the Euler-Lagrange
equations in proper time after an appropriate identity trans-

formation of the type (21). In case of a particle of charge e in
an electromagnetic field, fin (7) takes the form

f= —m—ed, (x)U* (24)

Since the particle-field interaction term in £ does not contrib-
ute to U, (f— U'df/dU") in (10), it follows that the Euler—
Lagrange equations in proper time may, after a suitable
transformation of the type (21), yield the correct equations of
motion.

IV. GENERALIZED HAMILTONIAN FORMALISM

The particle-field 4-momentum P arising from the ac-
tion integral (7) and appearing on the right-hand side of (10)
satisfies
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Pis therefore a function of the coordinates x and the 4-veloc-
ity U:
P, =P.(x,U) (26)

The components P, are not independent of each other, and
this may be shown as follows. First, suppose that the rela-
tions (26) are invertible for U, i.e., the components U, may be
expressed

U, = U,x,P). (27)
The constraint (16) then yields the scalar equation
¢ (x,P)=0, (28)

hence the components of P are interdependent. If, however,
the components of U cannot be expressed as in (27), then the
functions P, in (26) are linearly dependent and this implies’
that one or more scalar equations of the form (28) hold.

In Ref. 1, Kalman showed that one cannot consistently
recast Egs. (10) into a covariant form exactly analogous to
Hamilton’s equations, i.e., the equations

oH _ 4P, _ of

Ix™ ds xm’

OH _ um

P,

H=H (x,P), (29)

are not self-consistent. This result is not surprising since the
components of P are interdependent and hence the second of
(29) are ambiguously defined.

If the requirement of an exact analog is dropped, (10)
can be recast into a generalized Hamiltonian form>* which
takes into account the constraints on P. As noted above,
these constraints are expressed by one or more scalar equa-
tions of the form (28). For simplicity, it is taken here that
there is only one such constraining equation (the generaliza-
tion to several equations is trivial). From (10), (25), and (16),
an infinitesimal variation in f(x,U) satisfies

dP,
8 = ~—Tx"—P,8U" (30)
A

Equations (30} and (28), with a suitable scalar multiplier 4,
then yield the manifestly convariant generalized Hamilton-
ian equations

oG _ _dh. 9
x™ ds xm’
3G 36
= Um s
P TP
G=f+P. U*=0. (31)

[The vanishing of G in the last of (31) follows from (25) and
(16).] These equations may be shown to be well defined, de-
spite the constraint {28) on components of P, by an argument
similar to that in Sec. III above.

Equations (31) are designated “generalized Hamilton-
ian equations” for the following reasons: First, they do not
have a form exactly analogous to Hamilton’s equations; in-
deed, thelatter, i.e., Egs. (29), are not self-consistent. Second,
Gin (31) should not be confused with the Hamiltonian H; the
function G is a scalar while H is given by the time compo-
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nent of the 4-momentum P of Egs. (25) [see Eqs. (A 10)].
Toillustrate the formalism, consider the following sim-

ple examples. First, the function ffor a charged particlein an

electromagnetic field satisfies {24}, and (25) yields

P.=mU, +ed,.

Since this equation is invertible for U, there is only one con-
straint equation of the form of (28):

é (x,P) = P*P, + &4 *4, — 2eP*4, —m* = 0.

The second of (31) then shows that z = (2m) ™" and this re-
sult in the first of (31) yields the equations of motion (a com-
ma below denotes partial derivatives)

dP,
ds

[The latter, of course, also foliow directly from {10), (24) and
(25).] Consider now the case of a scalar interaction

f=1lx). (32)
Equations (25) and (10) then yield
P k™ T l/’Uk’

Ve = Lo
respectively. The latter equations of motion may also be ob-
tained from (31}, for which

¢ (x,P)=y* ~ PP, =0,
andu = (2¢) "

=ed" U,

V. VARIATIONAL PRINCIPLE IN CURVED SPACETIME

In this section, the variational principle is developed in
a covariant form for the action integral {7) in curved space-
time. Suppose the particle interacts with a single tensorial
field B (x) (the generalization of the following analysis to in-
teraction with several fields is trivial). Then, the action inte-
gral takes the form

§= J f(B(x),U)ds, (33)

where the line element satisfies
ds’ =g, dx'dx™, (34)

and the g,,, are components of the symmetric metric tensor.

As in Sec. 11, the coordinates x of the trajectory are
related to those of a neighboring curve by the first of (3).
Note, however, that the differential expression

dx' = dx + dbx (35)

shows that déx is not a vector, since the vectors dx and dx’
are located at different points in curved spacetime. One may
define 8dx to be the vector difference between dx’ at x + 8x
and the vector dx + §, dx, which s the parallel transport of
dx from x to x + éx:

6 dx=dx’ — (dx + 6, dx). (36)
Equations (35) and (36) yield
Sdx" =dbéx" + ' dx' 8x", (37)

where the I'7? are the affine connection coefficients. The
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notation of (36) may be extended to any tensor Q; denoting
quantities measured at x + x with a prime, the variation

80=0'—(Q+4,0) (38)
has the same tensorial character as does Q itself. (In the case
that Qis a scalar, §Q reduces to the flat spacetime variation.)
This notation is now employed in the development of the
general-relativistic variational principle.

From (33), the first variation in the action is

88 = J-(éf) ds + J-ﬁS ds. {39)

Consider the form of the integrands in (39). The first of these
satisfies'®

— af o af 'm_ m
8f = aTm{Bm B )+ WU um. (40)

Although §fis a scalar, the right side of (40) is not manifestly
scalar since each of the contributions in parenthesis is the
difference between a quantity measured on the neighboring
curve and its counterpart measured on the trajectory. Clear-
ly, it is necessary to recast (40) into a manifestly scalar form
in order to obtain manifestly covariant equations of motion
from (39). To accomplish this, note that since fis scalar, its
parallel transport from x to x + x vanishes:

af af
o f=—6B —_5,Um"=0. 41
i f 28, O U yrrl] (41)

Equations (40) and (41} yield the manifestly scalar expression

af af
6f= —=96B, + —8U™ 42
/ JB; v au,, “2)

From (38), the term 8B, ; is related to the covariant deriva-
tives of the field B ;:

‘SBU) = B(ﬂ:maxm' (43)
The term U ™ in (42) is, from (38) and (37),
6Um=gﬁxm—U”@+Fﬁ,U’5x". (44)
ds ds

Equations (42)—44) express the first integrand of (39) in a
manifestly covariant form. In the remaining integrand, the
term & ds is reduced by (34) and (38) t0*®

k
5ds = dbs = \gy,  U'U™6x* + U, dj: _ (45)

Equations (39) with (42)—{45) reduce, after a partial inte-
gration, to

58 = fds (iBm,k + Py, U’)6x“ — P 6x*
9B, a

a 4
e -[agral-usm)l
Thus, the particle-field momentum components P, are given
by the same expressions in flat spacetime [Egs. (25)] and in
the presence of a gravitational field. The condition that 85 in
(46) vanishes for the trajectory yields the manifestly covar-
iant equations of motion

b

of
55 Buw + P U'=0. (47)
()

P.H. Lim 1644



Equations (47), with the last of (46) for P, , are the generaliza-
tion of Kalman’s equations {10) to curved spacetime for a
particle-tensor field interaction. In the case that fdepends on
several tensor fields B *(x) the first term in (47) is replaced by
a summation over s of the corresponding contributions from
each field:

a
ZﬁBﬁM + P, U'=0. (48)
In Sec. III above, it is shown that in flat spacetime,
Kalman’s equations are well defined despite the constraint
(16) on the 4-velocity components. This result is now ex-
tended to curved spacetime, for which the constraint takes
the form

g, U'U™=1. (49)

As in Sec. I1I, the constraint may possibly lead to ambigu-
ities in the equations of motion in two distinct ways. The first
of these is represented by the identity transformation f—~f" of
{18). Under this transformation, (19) and {20} remain valid
and hence (48) are invariant. The remaining possible source
of ambiguity is represented by the identity transformation
f—fwhere (21) is replaced by

fIBx)U) = f(B*(x),UE),
§=g,,,,U‘U"’=1. (50)

Equation (22) remains valid, hence P, in the second of (46) is
invariant under the transformation f—f. The equations of
motion (48) then remain invariant since the covariant deriva-
tive of the metric tensor is identically zero.

It follows that both the 4-momentum P and the equa-
tions of motion (48) are well defined despite the constraint
(49).

VI. CONCLUSION

The action integral (7), for a particle in an external field,
leads to Kalman’s manifestly covariant equations of motion
(10) in flat spacetime. It is shown in this work that (10) have
the following properties:

(1) They are equivalent to Euler-Lagrange equations,
(12), in which the parameter A cannot be particle proper
time.

(ii) They are well defined despite the relativistic con-
straint (16) on the particle 4-velocity.

(iii) They can be recast into a generalized Hamiltonian
formalism.

The variational principle for the action integral (7) is
readily generalized to curved spactime, and it leads to equa-
tions of motion (48) for particle-tensor field interactions.

In future work, the formalism could be extended in two
directions. First, as noted in Sec. II above, Kalman’s equa-
tions recast into the form of (12) with a nonscalar A may form
astarting point for the construction of a relativistic theory of
interacting particles. Finally, it would be interesting to con-
struct a manifestly covariant Hamilton—Jacobi formalism
based on Eqs. (31) above, and to study the transition from
classical mechanics to quantum mechanics. In this way, it
may be possible to deduce a covariant correspondence prin-
ciple for the transition.
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APPENDIX: PARTICLE-FIELD 4-MOMENTUM

The covariant component P, of the particle-field 4-mo-
mentum corresponding to the action integral (7) is defined”'

as

P= — ﬁ’ (Al)
where right side of (A1) is evaluated on the particle trajec-
tory. Thus,' (A1) and (9) yield

oo )

P =— + Ulf-U"—=—]| A2
* [ T ATy (A2
To demonstrate that the P, in (A2) constitute the 4-

momentum, consider the action integral (7) expressed in a
specific Lorentzian coordinate system:

S=|La, (A3)

where L is the Lagrangian. A comparison of the integrands
of {7) and (A3) yields

f=U°L; (Ad4)
hence (A2) takes the form
aL aL
P =—U°( - U, U’—)—L(SO. AS
A e LU S 0 (A5)

[Note that Sec. ITII shows that the right side of (A5) is well
defined despite the constraint (16).]

To evaluate (AS5), it is convenient to define the 3-veloc-
ity components
_dx®

dt
in the specific coordinate system. From (6), the components
of U are related to the 3-velocity components

UO — (1 + ”Iaa VGVB)_HZ,

yea (A6)

Ua — VaU() (A7)
Thus, the partial derivatives (JU* /d¥?) satisfy
0
aUa 07 Ra arrB
S5 = U@+ UU?). (A8)

Equations (A8) and (6) yield the partial derivations of L with
respect to the 3-velocity components

_‘iL__ = UO( 6_L — U! _‘ZL_)
ave U’ Ut/
aL aL
V”EW:—UO((?UO—UOU’;—;I). (A9)
Finally, (A9) reduce (AS5) to the form
s OL
ave
aL
ave

8

Po=V —L=*H,

P, =—

= = Pa> (A10)
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where H and p, are the Hamiltonian and a component of
the conjugate 3-momentum, respectivley. Thus, the P, of
(A5) are the covariant components of 4-momentum.

In the specific Lorentzian coordinate system employed
above, {A4) reduces Kalman’s equations (10) to the form

oL _ _dn

axk dr
Equations (A10) show that (A11) are Lagrange’s equations of
motion.
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In parametrized field theories, spacelike hypersurfaces and fields which they carry are evolved by
a Hamiltonian which is a linear combination of the super-Hamiltonian and supermomentum
constraints. We say that a dynamical variable K generates a conditional symmetry of the
Hamiltonian when it is linear both in the hypersurface and the field momenta and its Poisson
bracket with the Hamiltonian vanishes by virtue of the constraints. Generators are classified by
their dependence on the momenta: P-restricted generators depend only on the hypersurface
momenta, 7-restricted generators depend only on the field momenta, while mixed generators
depend on both kinds of momenta. Conditional symmetries in a parametrized Harr}iltonian
theory are then linked either with ordinary symmetries (isometries, conformal motions, or
homothetic motions) of the spacetime background, or with internal symmetries of the fields. Ip
particular, we prove that a generic field with nonderivative gravitational coupling and a quadratic
energy density has a P-restricted conditional symmetry if and only if the spacetime backgrf)und
has a Killing vector, while a field with a trace-free energy-momentum tensor has a P-restnf:ted
conditional symmetry if and only if the background has a conformal Killing vector. An a¥gor1thm
allowing us to enumerate all possible mixed conditional symmetries in a given parametrized field

theory is explained on an example of the Klein—-Gordon field. These results complement our
previous proof that canonical geometrodynamics does not possess any conditional symmetry.

PACS numbers: 04.20.Fy, 11.10.Ef

1. MOTIVATION

In general relativity, one often studies fields which
evolve on a given spacetime background. The fields are de-
scribed by the canonical data ¢ * (x), 7, (x), which are de-
fined on a spacelike hypersurface X “(x). As the hypersurface
is deformed in the embedding spacetime, the dynamics of the
datais generated by a field Hamiltonian. By a process known
as parametrization, it is possible to treat the hypersurface
variables X *(x) as canonical coordinates and to generate the
deformation of the hypersurface by a Hamiltonian. The total
Hamiltonian of the system is composed from the hypersur-
face part and the field part.

The resulting formalism closely resembles Hamiltonian
geometrodynamics. There, as in parametrized field theories,
the total Hamiltonian is a linear combination of a super-
Hamiltonian and a supermomentum. The super-Hamilton-
ian and supermomentum are constrained to vanish. More-
over, their Poisson brackets close in a characteristic way,
which is the same for all systems, be they matter fields or
geometry. The main difference between geometrodynamics
and parametrized field theories is in the role played by hy-
persurface variables. In geometrodynamics, these variables
are inextricably mixed with the dynamical data. In parame-
trized field theories, they are kept clearly separated from the
field variables. This difference is reflected in the structure of
the constraints. The geometrodynamical super-Hamiltonian
is a hyperbolic function of the momenta, while the super-
Hamiltonian of a parametrized field theory is parabolic in
the momenta, being linear in the hypersurface momenta and
quadratic in the field momenta. The separation of hypersur-
face variables makes parametrized theories much easier to
interpret than geometrodynamics. They are thus an ideal
testing ground for concepts proposed in geometrodynamics.
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The concept we want to discuss in this paper is that of a
symmetry of dynamical evolution. For unconstrained dyna-
mical systems, the definition of symmetry is straightfor-
ward. We say that a dynamical variable K generates a sym-
metry if it is linear in the cancnical momenta and has a
vanishing Poisson bracket with the Hamiltonian H of the
system. However, the presence of constraints creates com-
plications. Symmetry may be conditioned by constraints, be-
cause the Poisson bracket [K, H] may vanish only for such
values of the canonical variables which satisfy the con-
straints. A constrained system may have a conditional sym-
metry even if it does not have any unconditional symmetry.

In parametrized theories and in geometrodynamics, all
the dynamics is reducible to constraints. The Hamiltonian
which generates the evolution of the system is itself a linear
combination of the constraints. We shall study conditional
symmetry in this extreme context.

We have already concluded that geometrodynamics
does not have any conditional symmetry.’ It is rather diffi-
cult to see what this negative result means from a spacetime
viewpoint. In geometrodynamics, the presence or absence of
a conditional symmetry is a property of superspace, not a
property of spacetimes generated by the evolution of a spa-
tial geometry in superspace. The situation is quite different
when viewed within the framework of parametrized field
theories. First, these theories may have conditional symme-
tries. Second, such symmetries are easily linked either with
ordinary symmetries of the spacetime background or with
internal symmetries of the fields. Our aim is to clarify the
meaning and significance of conditional symmetries by
spelling out such links in detail.

The study of conditional symmetry is important for ca-
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nonical quantization. The hyperbolic super-Hamiltonian in
geometrodynamics leads to a Klein—-Gordon type equation
for the state functional. The lack of a conditional symmetry
means that superspace equipped by DeWitt’s metric does
not have a conformal Killing vector which would scale the
scalar curvature potential in a prescribed way. The absence
of such a vector has serious repercussions. The standard
complexification of the space of solutions of a Klein—Gor-
don equation and the construction of a positive definite inner
product fails and a one-system interpretation of quantum
geometrodynamics is hard to maintain. In parametrized
field theories, the situation is less serious. A parabolic super-
Hamiltonian leads to a Schrodinger type equation for quan-
tum fields propagating in a curved spacetime. A positive
definite inner product can thus be formally defined even if
the theory does not have a conditional symmetry. Still, the
symmetry of the background is needed to select a privileged
observer and escape thus the well-known ambiguities of an
“observer-dependent” quantum field theory. The links
between a symmetry of the background and a conditional
symmetry of the super-Hamiltonian provide a framework
for fixing the observer in the canonical formalism.

2. PARAMETRIZED FIELD THEORIES

We shall briefly explain the basic scheme of parame-
trized field theories. We state relevant results without proofs
and refer to our earlier papers® for details. We quote the
sections and equations from these papers by prefixing them
by the Roman numerals I to IV. A general theory of parame-
trized fields is rather cuambersome. We thus prefer to restrict
ourselves to fields with nonderivative gravitational coupling.

A. Lapse-shift decomposition

We start by cutting the spacetime by an arbitrary space-
like hypersurface X = X %(x°). The Latin indices always
run through the values 1,2,3 and the Greek indices through
the values 0,1,2,3. At each point of the hypersurface, we have
the basis consisting of the three tangent vectors X J=X“, to
the hypersurface and of the unit normal vector n,

Cap X2MP=0, gunn’= —1 (2.1)
To describe a continuous deformation of the hypersurface in
the embedding spacetime, we incorporate it into a one-pa-
rameter family of hypersurfaces X * = X “(x%, t). We intro-
duce the deformation vector

No=X*=9X%x° t)/dt (2.2)
connecting the points with the same label x° on two neigh-
boring hypersurfaces. The components N and ¥ ¢ of the de-
formation vector with respect to the basis {n® X ¢},

N*=Nn*+N°X¢,

(2.3)

N= —N°y,, N‘=N°X%,

are called the lapse function and the shift vector.

B. Field projections

To follow the dynamics of an arbitrary tensor field, we
project that field perpendicular and parallel to the hypersur-
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face and observe how these projections change when the hy-
persurface is deformed through spacetime. The projections
of a vector field follow the pattern (2.3},
p=0¢'n"+4°Xg, (2.4)
¢ X)X ] = — ¢ (X (x)n,(x)[X],
(2.5)
B X)X ] = @ *(X (X)X G (x).
They are considered as functions (x) of the labels x° and func-
tionals [X ] of the embedding X “(x%). As a rule, we suppress
the indices in arguments of functions and functionals.
The projection formulas (2.4)-(2.5) are easily general-
ized to tensors of an arbitrary rank. Thus, for a second rank
tensor ¢ “2,

¢aﬂ= ¢1Lnanﬁ+ ¢alXZ nB
+¢tn° X5 +4UX XY, (2.6)
=~ 1)¢ aﬂnanﬁ, ¢ =(—1)p**Xx" ng,
(2.7)
' =(—1¢%n, X5, ¢ L X5 X5
We shall label by capital Latin indices all possible pro-
jections of a tensor field ¢ '*'=¢ " “N(X) or of a collection
of such fields. Thus, ¢ * may mean
¢A — 1¢1,¢a;¢u,¢ai’¢ib,¢ab }
C. Normal and tangential changes
The rate of change 9,4 * of ¢ * with the label time # can

be decomposed into the normal change 5, ¢ # and the tan-
gential change 8, ¢ *:

$4=0,6"(x) =5y "(x) + 5" (x), (2.8)
A —_ 3, Nt 5¢A(x)
Sy (x) _fd x' N (x')n (x)—_axa'(x')’ (2.9)

A —_ 3, a'( ! a’( .t 5¢A(x) — A
Snd (x)—fd x' N (X)X“'(x)__aX“'(x') Lyg*(x).
(2.10)

The tangential change is always equal to the Lie derivative
L, of the spatial tensor ¢ #(x) along the shift vector N “.
There are four different projections of the spacetime
covariant derivative ¢ “# of a spacetime vector field ¢ *(x).
Two of these’ refer only to a single spacelike hypersurface,

¢L;b:¢1.b__Kg¢c’
a;b=¢an_Kab¢ l.

Here, the vertical stroke denotes the spatial covariant deri-
vative with respect to the induced metric g,,, and K, is the
extrinsic curvature of the hypersurface. The remaining two
projections,*

Ng“ = —6,8" =8N,

(2.11)

(2.12)
Ng™t = — 654" +K30°N—¢'N*,

can be used to calculate the change of the field off the hyper-
surface. Similar formulas can be written for tensor fields of
an arbitrary rank.’ In particular, we get

Sy 8 = — 2NK,,, 6yg'?= —Ng'’K (2.13)

for the metric tensor.® Equations (2.13) help us to pass freely
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between the covariant and contravariant and tensor and ten-
sor density forms of the projected equations.

D. Reconstruction theorem

We say that the deformation N * = Nn® is a hypersur-
face tilt at a point x if N (x) = 0. The tilts leave the spacetime
point X = X “(x) fixed.” The projections ¢ ,¢ ¢ at x change
under hypersurface tilts according to the rules

Sy =¢°N,, Oyd°= —¢'N"“ (2.14)

Our strategy was to start from a given spacetime field
[say, ¢ %(x)] and project it 1 and || to a hypersurface [Eqgs.
(2.5)]. We shall ask now an inverse question, namely, under
what conditions can some given functionals ¢ '(x)[X ] and
& °(x)[X ] of X *(x) be interpreted as the 1 and || projections
(2.5) of a single spacetime vector field ¢ %X ) restricted to the
hypersurface X “ = X %(x). The answer to this question is
given by Eqgs. (2.10) and (2.14): The functionals ¢ ‘(x)[ X ]
and ¢ °(x)[ X ] can be reassembled into a spacetime vector
field (2.4) if and only if they behave properly under hypersur-
face shifts [Eq. (2.10)] and hypersurface tilts [Eq. (2.14)]. We
shall call this statement the reconstruction theorem. Its gen-
eralization to arbitrary tensor fields is obvious.

E. Killing fields

Besides dynamical fields ¢ {*), the Killing vector fields
k %(X ) play a prominent role in any study of symmetry.
Equations (2.11) and {2.12) help us to project the Killing
tensor k “P)=k *F 4 kB,

klab) = flelb) _ pgabpl {2.15)
Nk©@Y = _ 8 k+ k"N~ k'N=, (2.16)
Nk = 28, k' —2k°N,. (2.17)

They also help us to obtain a projected version of other dif-
ferential operators. When dealing with conserved currents,
we shall need to project the divergence equation®:

I'glK <, =8n(8"°K ") + (Ng'°K9).,. (2.18)

F. Hamiltonian field theories

The dynamics of tensor fields follows from the field ac-
tion

S = [dXL@101 55,00 (2.19)

The field Lagrangian L is a scalar density constructed from
the field ¢ !, its first derivatives ¢ {*! ,, and the metric ten-
sor g, For fields with nonderivative gravitational coupling,
the derivatives of the metric tensor do not enter the Lagran-
gian. The field ¢ '*!(X ) is varied to yield the field equations
while the metric g,,(X ) is kept as a prescribed function of
X “. By varying the metric, we obtain the energy—-momen-
tum tensor of the field®
g eres =2 2L
agaB
The Hamiltonian form of the action is derived by the
projection process followed by the Legendre dual transfor-

(2.20)
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mation. First, the Lagrangian is expressed as a function of
the projected variables N, N°, g, ¢ # and of the derivatives
#* along a given one-parameter family X = X *(x, ) of
spacelike hypersurfaces.'® Differentiating the hypersurface
Lagrangian with respect to ¢ “, we obtain the hypersurface
momenta 7,. The action is then cast into a Hamiltonian
form!!

s[4 7] =fdtfd3x(m¢'s‘ _ NH®_N°H?%). (2.21)

Here, the lapse and the shift functions are treated as given
functions of x* and ¢, and the metric g,,(x)[ X, ] as a given
functional of X %(x, t),

gab(x)[Xt] =g X) X7 Xﬂx:xu, 1) (2.22)
The field Hamiltonian
HY{ +H = J. dx(N (x)H ®(x) + N “(x)H &(x)) (2.23)

is a linear combination of the field energy density H ¢ (x) and
the field momentum density H #(x),

H*=g'"?T,, H!= —g'’T,. (2.24)
Both densities are measured by an observer moving 1 to the
hypersurface. The field energy is constructed from the varia-
bles ¢ ,, 7, and g, (x), the field momentum only from the
canonical variables ¢, and 7*. Neither of these expressions
contains ¥ and N ¢. The field Hamiltonian (2.23) is obtained
by smearing H #(x) by N (x) and H ¢(x) by N “(x).

The energy density H ¢ contains all the information
about the stress tensor 7% (Ref. 12):

oH*?
agab
This equation follows from Eq. (2.20); notice that the only

term in the action (2.21) which depends on g, is H®.
The field evolves according to the Hamilton equations

gl/ZTab = -2

(2.25)

¢4 (x)=[¢"(x), Hy + Hx ],
(2.26)
Ta(x) = [7alx) Hy + Hn ]

Recalling Eqgs. (2.9) and (2.23), we can split Egs. (2.26) into
the lapse and the shift parts,

Sng(x)=[p*(x), Hy], Oymylx)= [malx), Hy], (2.27)
and
Ondx)=[¢"(x), Hy], Onmalx)= [m4(x), Hy]. (2.28)

Because the left-hand sides of Eqs. (2.28) must reproduce the
spatial Lie derivatives of the canonical variables, Eqs. (2.28)
determine the field momentum:

Hy =fd3x 74X (x)

[ = - fd% ¢4 (X)L, (x)]. (2.29)

As an example, we write the field momentum of a scalar field
and a vector field!>:
H Z = 7¢,a’

HZ = 7Tl¢l,a + 7Tb¢ b,a + (Wa¢b),b'

(2.30)
(2.31)
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G. Model field theories

We shall give now a few typical examples of field theor-
ies with nonderivative gravitational coupling. First, study a
scalar field with the Lagrangian

L=%|"(—3U$)e%b.b5 - W) (2.32)

where U #0 and W are two arbitrary functions of ¢. The
expression (2.32}is the most general scalar density which can
be formed from the variables 8.5» %, and ¢ , so that it is at
most quadratic in ¢ , . From the Lagrangian (2.32), we get

H? :% U—lg—l/27r2 +% Ug”zg"%,anﬁ,b +g”2W.
(2.33)

For a Klein-Gordon field, U = 1 and W = Im? Equation
{2.33) then reduces to

He=1g""7 4+,
V=18"%g"¢.4, +m'$?. (2.34)

From Eq. {2.25) we obtain the stress tensor of the Klein-
Gordon field,

87T, =8¢0, + 387" "7~ V)g,,. (235

For a complex Klein-Gordon field, the field Lagran-
gian has the form

L= —g|"(g%p* b5 +m*s); (2.36)
here, ¢ and ¢ * are varied as independent variables. We get
H? =g~ "m*r 4 ' g™ * .4, + m*$ *$). (2.37)

Unlike the real field, the complex field has a conserved cur-
rent

Ke=lilp*¢ = —$*4), K, =0. (2.38)

1ts projection can be expressed in terms of the canonical
variables. In particular,

g'7K = lilgm — ¢ *7*). (2.39)

As our next example, take a massive vector field with
the Lagrangian'*

L= — ||} g"¢"} . s 1Birs) + 48P b 4).
This leads to the hypersurface action

(2.40)

S (s 7] :fdtfd&wgﬁa ~ NH®—N°H?), (2.41)
H* =} g~ gymn’ +im =g~ n"

+ ig”lgﬂcgbd¢[a,b Wiea) + %ngllzgab¢a¢bs
HZ = - ¢a1rb,b - ¢[a,b ]Trb

(2.42)
(2.43)

Note that the projections ¢, ,7 were eliminated from the
action (2.41) by using the relation

m’¢, +g = 7", =0. (2.44)

For m = 0, the Lagrangian {2.40) describes Maxwell’s
electrodynamics. Here, Eq. (2.44) reduces to a supplemen-
tary constraint

™, =0 (2.45)

and the scalar potential ¢, can no longer be eliminated from
the Hamiltonian. We have
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H?= ¢, 7, + %g_]/zgab”ﬂﬂ'b
+ ig”zgacgbd‘ﬁ[a,b 1Bied (2.46)

and ¢, enters the action as a Lagrange multiplier. The mo-
mentum 7 has the meaning of the electric field strength
measured by an observer moving perpendicular to the
hypersurface.

H. Parametrized Hamiltonian field theories

We are going now to treat the hypersurface variables as
canonical coordinates. The deformation vector ¥ * is de-
fined by Eq. (2.2). We can reproduce this definition from the
action

S{x* P, N] :jdtfd%c(})a Xe—-N“P). (2.47)

Varying S with respect to the momentum P,_, we recover Eq.
{2.2). Varying it with respect to the multiplier N ¢ and the
hypersurface variable X * we obtain the equations

P, =0, P, =0, (2.48)

which tell us that the hypersurface momentum is trivial and
remains trivial in the dynamical evolution.

Instead of varying the deformation vector N , we can
replace it by the lapse function /¥ and the shift vector N ¢
from Eq. (2.3). The action (2.47) then assumes the form

S[X P,;N,N°] :fdtfd3x(Pa X*—~NP—N°P),
(2.49)
where P and P, are given by the expressions
P= P =n'X]P, P,=X P, {2.50)

They are to be considered as functionals of X “ and P,. The
variation of P, in the action (2.49} yields directly the lapse-
shift decomposition (2.3).

In the field action {2.21), the lapse and shift functions
are externally prescribed and are not to be varied. When we
develop the canonical data by Hamilton’s equations (2.26),
we should remember as an independent fact that X “ changes
by Egs. (2.2} and (2.3), inducing thus a change of the spatial
metric (2.22). By adjoining the hypersurface action {2.49) to
the field action (2.21), these changes are accounted for within
a canonical formalism. This process is known as parametri-
zation of the field theory. The parametrized action has the
form

S[¢* 7T X% Py N, N
= fdzfd%c(a, Xe 47,64 —NH—N°H,), (2.51)

where
H=P+H?* H =P +H? (2.52)

are called the super-Hamiltonian and supermomentum of

the parametrized theory. The metric g, in H * is to be consi-
dered as a functional of X %(x) in accordance with Eq. (2.22).
The variation of P, still gives us the lapse-shift decomposi-
tion. The variation of the field variables ¢  and 7, leads to
the old field equations {2.26). The hypersurface momentum
P_, however, ceases to be trivial. By varying the multipliers
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N, N ¢ we get the constraints
H=0=H,. (2.53)

The constraints can easily be solved with respect to the
hypersurface momentum P,,,

P,= —Pn,+P, X2,
P=—H* P = _H,.

a

(2.54)

We see that — P is to be interpreted as the energy density
and — P, asthe momentum density of the field. The remain-
ing Hamilton equations, obtained by varying X ¢, tell us how
these densities change from one hypersurface to another.

The change of an arbitrary dynamical variable K con-
structed from the canonical variables ¢ 4, 7, X , P, is giv-
en by its Poisson bracket with the Hamiltonian

H, +Hy = J d*x(N(x)H (x) + N°(x)H, (x)). (2.55)

In brief,
K=[K Hy+Hy]. (2.56)

Equation (2.56) summarizes the content of Hamilton’s equa-
tions of the parametrized theory.

If the Poisson bracket (2.56) vanishes for all N and N,
K has the same value on every spacelike hypersurface, i.e., it
is conserved. In fact, for K to be conserved, [K, Hy + Hy ]
does not need to vanish identically in the canonical variables
X P, ¢, 7, but only for such values of the variables
which satisfy the constraints (2.53). If a dynamical variable F
vanishes only modulo the constraints, we say with Dirac'®
that it vanishes weakly, and write F~0. On the other hand, if
a dynamical variable F vanishes identically in the canonical
variables, we say that it vanishes strongly, and write F = 0.
The weakly vanishing Poisson bracket (2.56) is a basic ingre-
dient in our definition of a conditional symmetry.

l. Closure relations

The constraints (2.53) must be preserved in time, which
means that the Poisson bracket

[Hy + Hy, Hy + Hx ] (2.57)

must weakly vanish for arbitrary smearing functions #, M
and N, N. This is ensured by the closure relations'®

[Hys Hy ) = Hiag wys (2.58)

[Hm, Hy ] = Hyans (2.59)

[Hm> Hn] = Hpv s (2.60)
where

(M, N*=MN* — NM *, (2.61)

M.ON=M°N,, (2.62)

[M-N] =Ly N (2.63)

define a composition of the smearing functions. When some
of these functions are themselves dynamical variables, e.g.,
when M (x) = M (x)[X, P,¢,7] and M °(x) = M “(x)

X [X, P,¢,7], Egs. (2.58)—(2.60) acquire additional terms:

[Ha, Hy =H[M_HN]+H(M,N), (2.64)
[Hym, Hy] = Hyay +H[M,HN], (2.65)
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[Hy Hx ] = Hiw gy + Hoowr (2.66)
[Nas Hy] =H _nam +H[M,HN]- (2.67)

The right-hand sides of Egs. (2.58)—(2.60) or Eqs. (2.64)-
(2.66) are linear combinations of the constraints, which en-
sures that the Poisson bracket (2.57) weakly vanishes. The
corresponding conserved quantities are of course trivial.
They coincide with the constraints and therefore weakly
vanish.

In an extreme case, there is no field to propagate on the
spacetime background. The constraint functions (2.52) then
reduce to the expressions (2.50). These expressions, Pand P,,
thus satisfy the same closure relations (2.58)—2.67) as the
original functions H and H,,.

The closure relations (2.58)—(2.67) in parametrized field
theories are exactly the same as the corresponding relations
in Hamiltonian geometrodynamics.’ This makes parame-
trized field theories so suitable as models for geometrodyna-
mics.

3. CONDITIONAL SYMMETRIES IN PARAMETRIZED
FIELD THEORIES

We say that a dynamical variable K [X *,¢*; P,,7, ]
generates a conditional symmetry in a parametrized field
theory if it is linear in the canonical momenta,

K =Ky + Ky, =Jd3x (k*(x)[X,¢ 1P, (x)
+ A4 (x)[ X, 17, (x))
= J d’x (k'(x)[X,¢ 1P (x) + k (x)[X,$ ]P,(x)

+ A4 x)[ X8 17, (x)), 3-1)

and its Poisson bracket with the Hamiltonian H,, + Hy
vanishes for such values of the canonical variables
X ¢4, P,,m, which satisfy the constraints:

[K, Hy + Hy] =O0. (3.2)

Because the lapse function and the shift vector are arbitrary,
Eq. (3.2) means that the variable K is conserved under an
arbitrary deformation of the hypersurface. Taking into ac-
count this arbitrariness, we can replace Eq. (3.2) by an infi-
nite set of equations,

(K, H(x)] =0 (3.3)
and
[K, H,(x)] =0, (3.4)

four equations for each point of the hypersurface.

There are two kinds of constraints we can encounter in
a parametrized field theory. First, there are always the su-
per-Hamiltonian and supermomentum constraints which
are introduced by the process of parametrization. Second, if
we are dealing with gauge theories, there are still supplemen-
tary constraints, linear in the field momenta. Our main moti-
vation for studying parametrized field theories is to draw
parallels to geometrodynamics. There are no supplementary
constraints in vacuum geometrodynamics. To concentrate
on the essentials, we shall limit our further discussion to
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parametrized theories without supplementary constraints.

Broadly speaking, we want to find all generators (3.1)
which satisfy the weak equations (3.3) and (3.4). For this
purpose, it is advantageous to replace the weak equations by
an equivalent set of strong equations. One way of doing this
is to adjoin the constraints (2.51)-(2.52) to the equations by
means of Lagrange multipliers. This is the only practical
method of analyzing the weak equations if the constraints
cannot be explicitly solved, as it is the case in geometrodyna-
mics. However, in parametrized theories the constraints can
be solved with respect to the hypersurface momenta P, . This
suggests an alternative way of replacing the weak equations
(3.3) and (3.4) by strong equations: After evaluating the Pois-
son brackets as function(al)s of the canonical variables, we
replace the hypersurface momenta by their expressions
(2.54) in terms of the remaining canonical variables ¢ 4, 7,
and X ©. For theories without supplementary constraints,
these data are completely arbitrary and the Poisson brackets
must thus strongly vanish in these variables. This method
makes the analysis of conditional symmetries in parame-
trized field theories considerably simpler than in geometro-
dynamics.

The clear separation of the hypersurface momenta P,
from the field momenta 7, also leads to a useful classifica-
tion of the generators. We say that a generator X is P-res-
tricted if it does not depend on the field momenta 7, i.e., if
h* = 0; we say that it is 7-restricted if it does not depend on
the hypersurface momenta P,, i.e., if £ “ = 0; and we call it
mixed if both kinds of momenta are present in the expansion
(3.1). We shall show that the P-restricted generators are asso-
ciated with symmetries of the spacetime background and the
w-restricted generators with internal symmetries of the field.
A mixed generator can either be a sum of two separately
conserved generators, one of which is P-restricted and the
other one is 7-restricted or, under circumstances which we
shall explain later, they may again correspond to a spacetime
symmetry.

4. INVARIANCE OF GENERATORS UNDER SPATIAL
DIFFEOMORPHISMS

Any two dynamical variables K and K which coincide
on the constraint surface,

K=K, (4.1)
are for all physical purposes equivalent to each other. More-
over, by virtue of the closing relations (2.64)~(2.67), when K
is conditionally conserved, K is also conditionally
conserved,

K=~0=K=0. (4.2)
When X is linear in the momenta and conditionally con-

served, we can adjoin to it the supermomentum constraint
H

a’

K=K+ [ d* )X 1H, ), 43)
without disturbing either the linearity or the conservation.
The generators of conditional symmetries thus fall into
equivalence classes (4.3) modulo the supermomentum con-
straint. We can consider Eq. (4.3) as a gauge transformation
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on the generators produced by the gauge functional
px)[ X ).

We can use the gauge transformation to eliminate the
hypersurface momenta P, from the generator (3.1). It suf-

fices to take u“ = — k ° then,

ke=0 (4.4)
and X reduces to

K= j d>x(k (x)P (x) + k4 (x)m .(x)). (4.5)

We can thus always represent the equivalence class (4.3) by
that generator (4.5) which satisfies Eq. (4.4).

More important, we can prove that the generator (4.5)
must satisfy the strong equation

[K,Hy] =0, (4.6)

while the original generator satisfied only a weak equation
(3.4). The Poisson bracket in Eq. (4.6) can be evaluated separ-
ately for the P part and the 7 part of the generator. The first
Poisson bracket,

U- d>*x k (x)P (x), HN]

=fd3x{k(x)[P(x), Hy] + [kx), Hq]P(x)}, (4.7)
can be written as

Ud3x k (x)P (x), HN]

=Jd3x(—LN k(x) + [k {x), Hy ])P (x) (4.8)

once we realize that [ P(x), H§ ] = 0 and apply the field-
free limit of Eq. (2.59) to the bracket [ P (x), Py ]. The second
Poisson bracket,

GRS

= [ @xih i maeh Ha] + (00 B bl
(4.9)

allows a similar rearrangement. Because of Eq. (2.29) we can
integrate by parts,

fd%c B (x)[74(x), Hy =fd3x714(x)LN7rA(x)

= — fd3x Ly Za(x)'ﬂ'A {x),

(4.10)
and write

[f d3x h*(x)m(x), Hx ]
= f d’x( — Lyh*(x)+ [h*(x), Hy ]Imalx).  (4.11)
Start now from the weak form of Eq. (4.6),

[K. Fy] = [ d((~ Ly klx) + [k (o) Hx )P

+(— Ly h*(x) + [R*(x), Hy ] )74 (x)} =0.
(4.12)
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Following the method explained in Sec. 3, we replace P (x) in
Eq.(4.12)by — H *(x)[X,$,7] and require that the resulting
expression vanish strongly in the remaining variables. Typi-
cally, H? is a nondegenerate quadratic function of the field
momenta 7, (x) [cf. Eq. (8.3)]. The coefficients of H #(x) and
. (x) must therefore vanish separately,

— Ly k(x)+ [k(x), Hy] =0 (4.13)

and

— Ly h*(x)+ [h*(x), Hy] =0, (4.14)
for our expression to vanish identically in the momentum
variables 7, . Substituting these equations back into the
original expression (4.12), we conclude that the Poisson
bracket [ K, Hy ] strongly vanishes, Eq. (4.6).

Supermomentum constraints generate the transforma-
tion of dynamical variables under spatial diffeomorphisms,
Eqgs. (2.28)(2.29). The weak equation (3.4) implies that X is
invariant under spatial diffeomorphisms only for those val-
ues of the canonical variables which satisfy the constraints.
On the other hand, the strong equation (4.6) means that K is
an invariant throughout the whole phase space. The strong
equation (4.13) then tells us that & (x) is a spatial scalar and
the strong equation (4.14) tells us that / 4 is a spatial tensor of
the same rank as 7, . This conveniently simplifies our further
considerations.

It is worthwhile to note where the argument fails when
we try to repeat it for the original form (3.1) of the generator.
Starting from this form, we pick up an additional term

[P, Hy] = P>
Mix) = — Ly kix) + [k(x), Hy ] (4.15)

in the Poisson bracket [K,Hyx],s0 that our old equation
(4.12) reads

[K, Hy) =J'd3x{( — Ly k{x)+ [k(x), Hy])P{x)

+(— Ly h*x) + [A*(x), Hx ])74(%)
+ M*(x)P,(x)} ~0. (4.16)

The momentum P, (x) can be eliminated from Eq. (4.16) by
using the supermomentum constraint,

jd 3x M x)P,(x) =~ — f d>x Mx)H (x)

_ f dx Ly A (x)r, (x),

yielding a term linear in the field momentum. Repeating the
reasoning which led us from Eq. (4.12) to Eqs. (4.13)-{4.14),
we see that Eq. (4.13) still holds, but Eq. (4.14) gets replaced
by

(4.17)

—Ly¢*+(—Lyh*+ [R4, Hy])=0. (4.18)
From this equation we are unable to conclude that M and
(— Ly h* + [h*, Hy]) vanish separately and so we cannot
maintain that the Poisson bracket (4.16) strongly vanishes.

Of course, K is not the only representative of the equiv-
alence class (4.3) which is a spatial invariant, Eq. (4.6). If
k *(x)[X,# ] is any spatial vector constructed from the ca-
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nonical coordinates X and ¢ and if we put
K=K+ H,,

Kisalsoa spatial invariant,
[K,Hy] = [H Hx] =H _pocsom =0 (4.20)

There are thus spatially invariant generators containing the
hypersurface momentum P, in their expansion (3.1).

(4.19)

5. SYMMETRY OF THE BACKGROUND AS A
CONDITIONAL SYMMETRY

Take an arbitrary field that propagates in a spacetime
with a Killing vector k %*{x),

Kz =0 (5.1)
The projection
KX )=T "X kg(X) (5.2)

of the energy-momentum tensor T *? into the Killing vector
k * satisfies the equation of continuity
K, =0. (5.3)

Similarly, when the field has a trace-free energy—-momentum
tensor,

Te =0, (5.4)

and propagates in a spacetime which has a conformal Killing
vector,

k(a;ﬂ) =4 (X)gaB, (55)
the vector field (5.2) again satisfies the equation of continuity
(5.3}

We project Eq. (5.3) along an arbitrary spacelike hyper-
surface, Eq. (2.18), and integrate it over d *x. If the hypersur-
face is compact or the field vanishes sufficiently fast at infin-
ity, the spatial divergence drops out and the quantity

K= J d*xg'?K, (5.6)

is conserved under normal deformations of the hypersur-
face:
6y K=0. (5.7)

Using Eq. (2.24) and the constraint {2.52), g'/2K, can be ex-
pressed as a linear function of the hypersurface momenta,

gI/ZKLE _gllznaTaBkB
= (Tunﬁ + T, XZ)k”
=(H°bn8 —I{fXZ)k’g

~(—Pnyg + P, X3)k*=k*P,. (5.8)
This suggests that
K EJ d’x K *(X (x))P,(x) (5.9)

generates a symmetry of the parametrized field theory. We
shall show that this symmetry is unconditional if the back-
ground has a true Killing vector (5.1) and conditional if the
background has a conformal Killing vector (5.5).

Take an arbitrary vector field k “(x), not necessarily a
Killing field (5.1) or (5.5), and calculate the Poisson bracket
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of the dynamical variable (5.9) with H,,. By the field-free
limit of the closure relations (2.64) and (2.65),

(K, Py] =[P, +PuPy]

=(P[kl,PN] + P )

k)

+ (P[k,PN] + Pyan)

T skt 4 wan Suk + (kv (5-10)

From the projection equation (2.17) we get

Syk*+koN= — NK** (5.11)
and from the projection equation (2.16) we get

Ovk+ (k' N) = — Nk@h, (5.12)
Therefore,

[K.PV]= =P . —P L4 (5.13)
or

[K, P(x)] = — Lk "Yx)P(x) — kBx)P,(x).  (5.14)

Next, we evaluate the Poisson bracket [K, H%]. The
hypersurface variables enter into H %, entirely through the
metric g, (x)[X ]. Therefore,

SH*®

K, H? =fd3xK,,,x N
Lk 3 o 8]
The variational derivative §H %,/8g , (x) yields the stress ten-
sor by Eq. (2.25). The Poisson bracket [ g,,(x), K ] is the
change of the metric induced by the deformation & “ of the
hypersurface,

[gab(x)’K] = [gab(x)! Pkl +Pk]

(5.15)

= —2k'K,, + ki) = kg - (5.16)
Equation (5.15) thus gives
[K,H%] =%Jd3x Ng'* Tk, (5.17)
or
(K, H?(x)] =1¢" Tk, (5.18)

We can put now the two pieces, Eqgs. (5.14) and (5.18),
together and obtain thus an important identity

[K,H(x)] = — 1k"“H (x) — k"““H, (x)
+ 58" K5 T
In the process, we have reassembled the projections

T,,, T'% and T* into the spacetime energy-momentum
tensor 7",

%gl/ZTabk(a;b) + k(l;a)Hzi + k l;lHa&
= 18"k 05 T (5.20)
Of course, the dynamical variable (5.9) is an invariant
under spatial transformations,
(K, H,(x}] =0. {5.21)

The strong equation (5.21) can be verified by a direct evalua-
tion of the Poisson bracket.

From Egs. (5.19) and (5.21) we are able to draw the
desired conclusions:

(5.19)

1654 J. Math. Phys., Vol. 23, No. 9, September 1982

Theorem: If the background has a Killing vector k *(x),
Eq. (5.1), any parametrized field theory on that background
has the unconditional symmetry (5.9).

Theorem: If the field has a trace-free energy~momen-
tum tensor, Eq. (5.4), and the background has a conformal
Killing vector, Eq. (5.5), the parametrized field theory has
the conditional symmetry (5.9) with

(K, H (x)] = 1A (x)H (x). (5.22)

A special but interesting situation arises for a massless
Klein-Gordon field. In this case, the energy-momentum
tensor is not trace-free, but its trace reduces to a pure diver-
gence modulo the field equation ¢ = 0:

To=—8%.05= — (8¢5 +60¢. (523
This leads to a conservation law if the field propagates in a
spacetime which admits a homothetic motion [i.e., which

has a conformal Killing vector field (5.5) with a constant
A (X )=A = const]. Indeed,

(T%kg),, = AT Pg 5 = — }AgPP )., (5.24)
and so the vector
K"zT“ﬁkB + %Ag"‘ﬁ¢¢ﬁ (5.25)

satisfies the equation of continuity (5.3). As a result, the vari-
able K defined by Eq. (5.6) is conserved, Eq. (5.7).

We can express X as a linear functional of the momenta
{P,,m} by using the rearrangement (5.8) and introducing

T= — g1/2¢.1:
K= f d>x(k “(X (x))P, (x) — 1A (x)m(x)).

It is easy to check that this dynamical variable obeys Eq.
(5.22)(withaconstant A ): The Ppart of the generator (5.26)is
subject to the identity (5.19), while a direct evaluation yields

[ J d3x'¢ (x')r(x'),H (x)] =g '’ — g% b,
=g Ts — T,,)=¢"T5. (5.27)

It should be emphasized that neither the P-restricted part
nor the m-restricted part of the mixed generator (5.26) are
conserved separately, but they are both needed for the mutu-
al cancellation of the trace term 75 . To summarize,

Theorem: If a massless Klein—Gordon field propagates
in a spacetime which admits a homothetic motion [Eq. (5.5),
with A = const], the mixed dynamical variable (5.26) gener-
ates a conditional symmetry, Eq. {5.22).

(5.26)

6. CONDITIONAL SYMMETRIES AND INVARIANCE OF
THE ACTION

The meaning of the P-restricted conditional symmetries
can also be grasped through their connection with the invar-
iance of the parametrized action (2.51) under transforma-
tions induced by spacetime diffeomorphisms.

To see how the spacetime diffeomorphisms enter into
the game, recall that a given vector field k “(x) produces a
one-parameter group of diffeomorphisms

X*=X%X" 1) (6.1)
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of the spacetime background by the equation

dX (1) _
dr

k4X (), X°0)=X". (6.2)

On the other hand, any covector P, is pulled back by the
diffeomorphisms (6.1),

P, =X5 (X ", 7)Psl7), (6.3)
and thus
@ = —k? (X (7)Pg(7). (6.4)
r

Equations (6.2) and (6.3) can be interpreted as a one-param-
eter group of canonical transformations

a dP
axX® _xe k), Lo
dr dr

generated in an 8-dimensional phase space {X %P, } by the
dynamical variable

K=koXx)P,. (6.6}
The hypersurface variables { X “(x), P, {x)} form an
8 oo * dimensional phase space. The diffeomorphisms (6.1) act
on the hypersurfaces X “ = X “(x) by dragging them along

the flowlines & *(x) and on the hypersurface momenta P, (x)
by pulling them back according to Eq. (6.3):

=[P, K] (6.5)

X %x,7) =X (X ?'(x),7),
P, = X5(X7 (x),7)Ps(x,7). (6.7)

This action can again be interpreted as a one-parameter
group of canonical transformations

OX %) ;(X’T) = [X%x,7), K],
T
9Fg bx7) =[P K 6.8
aT [ a(‘x,T)’ ]) ( . )

this time generated by the dynamical variable
K= J- d’>x kX (x))P,(x). (6.9)

The parametrized canonical action functional (2.51)
changes under the canonical transformations (6.9) at the rate

95 _ sk
ar
However, § d>x(P, X* + m,¢ 4) is a canonical invariant
and the multipliers N (x), N %x) do not depend on the canoni-
cal variables. Moreover, X is invariant under spatial trans-
formations, Eq. {5.21). As a result,

%f_ = dtJ.a“x Nx)[K, H(x}].

Equation (6.11) holds for an arbitrary vector field
k *(X ). When this field happens to be a Killing vector field of
the metric g,,(X ), the Poisson bracket [K, H (x)] vanishes
by virtue of Eq. (5.19) and the action S stays unchanged.
Therefore, if the background has a Killing vector, the para-
metrized canonical action remains invariant under a one-
parameter group of canonical transformations (6.8), (6.9) in-
duced by the diffeomorphisms (6.2) of the spacetime

(6.10)

(6.11)
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background. During this transformation, the field variables
& *,m, and the multipliers N, N ¢ are kept fixed. The fixation
of multipliers is consistent with their intended meaning, be-
cause the lapse function and the shift vector remain un-
changed if the hypersurfaces which they connect are
dragged along a Killing vector field. In this way, the uncon-
ditional symmetry (5.9) is linked with the invariance of the
action.

A more interesting situation arises when the back-
ground has a conformal Killing vector (5.5) while the field
has a trace-free energy—momentum tensor, Eq. (5.4). Under
such circumstances, Eq. (5.22) implies that the action is only
conditionally invariant:

is1—=Jdtjd3x%NAH:0. (6.12)
ar

We can paraphrase this fact by saying that the canonical
transformation does not effect the action if we take into ac-
count an equation obtained by varying the action with re-
spect to a multiplier, N (x), which itself is not a canonical
variable.

We can reinterpret this invariance as an unconditional
invariance if, together with the canonical transformation
{6.8)-(6.9) along a conformal Killing field, we keep rescaling
the lapse function:

AN (x,7)
ar

Under the extended transformation (6.8)-(6.9) and (6.13), the
parametrized action behaves as an unconditional invariant,

s _ _ fdtfd&(a—N-HJrNa—H):o. (6.14)
or ar

ar

=1 AN. (6.13)

The origin of the extended invariance becomes obvious
when we recall that the tracelessness of the energy—-momen-
tum tensor on which the whole argument is based follows
from the invariance of the field action under conformal
transformations of the spacetime metric,

BaplX) — ' Mg p(X). (6.15)

We shall first restate this result in terms of the parametrized
action. The conformal transformation (6.15) induces not
only the scaling of the spatial metric

Barlx) = ¢ Figgp(x), A (x)=A(X (x)),
but also that of the unit normal,
nox) — e~V Hpx) n(x) — V¥ (%), (6.17)

We want to identify the multiplier N with the lapse function
N = X °n, and so we should prescribe its scaling behavior as

(6.16)

N (x) — 120N (x), (6.18)
The infinitesimal version of Eqgs. (6.16)-(6.18) is
8845(x) = A (xJg, , (x), (6.19)
on%(x) = — L A (x)n%(x), bn,(x)=1A (x)n,(x), (6.20)
SN (x) =4 A (x)N (x), (6.21)

where A (x}=08A4 (x). Weimmediately see that tracelessness of
the energy—-momentum tensor follows from the invariance of
the parametrized action under the scaling (6.19)-{6.21):
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68 = —fdtfd3x[N6H+H6N]

- [a ol (r.om

oH*®
ag ab

+ 5g,,,,) + H(SN]

=fdtfd3x%NA(P+g‘/2T“bgab —H)

=J-dtfd3x§NAg”2(TZ —T). (6.22)

At this point, we can deduce the conditional symmetry
(5.22) from the scaling invariance of the parametrized action.
Indeed, if the background has a conformal Killing vector,
the scaling can be achieved by going along its flowlines.
Then,

sH= 92 5 - 11 K1or,
ar
8N =} ANdr, (6.23)
and the scaling invariance (6.22) of the action takes the form
A 3
O:—a—=~— dt | d°xN([H,K]+LAH). (6.24)
7

Because N is arbitrary, Eq. (5.22) follows. We can state this
connection as a theorem:

Theorem: If the parametrized action is invariant under
the scaling transformation (6.19)—(6.21) and the background
has a conformal Killing vector (5.5), the action is invariant
under the extended transformation (6.8), (6.9), and (6.13).
The dynamical variable (5.9) then generates a conditional
symmetry, Eq. (5.22).

The conformal transformation (6.15) leaves the field
variables unscaled. One can wonder what happens when a
simultaneous scaling of the metric and of the field variables
is needed to keep the action invariant. A typical exampleis a
scalar field conformally coupled to the background.'” How-
ever, the conformal coupling is derivative and as such it falls
outside the framework of our discussion. There does not
seem to be an example of the simultaneous scale invariance
for a nonderivatively coupled field. However, if we restrict
ourselves to a constant scaling, there is an interesting case to
be considered. It is the minimally coupled massless Klein—
Gordon field.

It is obvious that the Lagrangian
L= —1|"g|""*g"%¢ ,¢ 5 of this field stays unchanged if we
scale both the metric g,,, and the field ¢ by a constant factor,
ZaplX)— g5 (X), #(X)—>e "M (X), A=const.

(6.25)

Let us see what this scaling means for the projected varia-
bles. Of course, Eqs. (6.16)—(6.18)still hold for A = const, but
they must now be complemented by the scaling

é(x) > e~ "M (x), 7(x)— e Mmrix) (6.26)

of the field variables. The scaling of the momentum 7(x) is
consistent with the Hamilton equation 7 = —g'/%$,. An
infinitesimal version of Eq. (6.26) is
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84 (x) = — A (x), bmlx)=}Am(x), (6.27)

where A =64 is a constant. The transformation (6.26) or
(6.27) is a canonical transformation of the field variables
§#,7} generated by the functional

K,=—-14 fd3x¢(x)1r(x).

It is easy to check that the parametrized action (2.51) of
the scalar field is invariant under the constant scaling (6.16)—
(6.18), (6.26). In particular, the constraint functions (2.34)
and (2.30) scale as

H—e YYH H H, (6.29)

and so the scaling (6.18) of N exactly compensates the scaling
(6.29) of H.

The existence of the conditional symmetry (5.6) is a di-
rect consequence of this scale invariance. If the background
admits a homothetic motion k %, the scaling (6.16)—(6.18) can
be achieved by going along its flowlines. The scaling of the
hypersurface variables is then generated by the functional

(6.28)

K, = f d’x k(X (x))P,(x), (6.30)
the scaling of the field variables by the functional (6.28), and
the scaling of all canonical variables together by the func-
tional (5.26). The scaling of the lapse function is externally
prescribed by Eq. (6.13) with a constant A. Because the para-
metrized action remains unchanged under this combined
transformation, Eq. (6.24) again holds, now for the X given
by Eq. (5.26) and for a constant A. We thus see that the
conditional symmetry (5.26) for a massless scalar field prop-
agating on a background which admits a homothetic motion
follows from the invariance of the parametrized field action
under the combined (constant) scaling (6.16)—6.18) and
(6.26) of the hypersurface variables, field variables, and the
lapse function. This line of argument clearly shows that the
mixed character of the generator comes from the necessity to
scale both the field variables and the metric in order to keep
the action invariant.

7. INTERNAL SYMMETRY AS A CONDITIONAL
SYMMETRY

We have just seen how conditional symmetries follow
from an invariance of the parametrized action. The transfor-
mations we have considered were induced by spacetime dif-
feomorphisms and thus necessarily effected the hypersur-
face variables. The generators of such transformations were
consequently constructed from these variables, Eq. (6.9).

Another important class of transformations which
leaves the action invariant does not act on the hypersurface
variables at all, but effects only the variables in the field fi-
bers. These transformations correspond to internal symme-
tries of the field. In the parametrized canonical formalism,
the generators of such transformations can again be inter-
preted as generators of conditional symmetries. Because the
transformations effect only the field variables, their genera-
tors are wr-restricted.

Internal symmetries occur when a Lie group G of trans-
formations acting on a collection of fields leaves the field
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action invariant. By Noether’s theorem, any one-parameter
subgroup of G leads to a conserved current. In the canonical
formalism, the projections ¢ * of the fields are identified with
field coordinates. The one-parameter subgroup induces a
one-parameter group of transformations

¢ =¢"1¢"7) (7.1)
oné *’s. Equation {7.1) does not contain any reference to the
hypersurface variables. Its infinitesimal version, analogous
to Eq. (6.2), is

do”

dr
Typically, Eq. {7.1) is a representation rather than a realiza-
tion of the group. In this case, the coefficients 4 *(¢ ?) in Eq.
(7.2) are linear functions of ¢ ©.

The canonical momenta 7, conjugate to the canonical
coordinates ¢ # are pulled back by the transformation (7.1)
and so

dm,
dr

Equations (7.2) and (7.3) define a one-parameter group of
canonical transformations generated by the dynamical
variable

=h4(p?) (7.2)

= -—/18<A7TB. {73)

K= j d3x h(x)¢ %)m,(x). (7.4)

If the field action is left invariant by the group G, the parame-
trized action (2.51} is left invariant by the canonical transfor-
mations (7.2), (7.3):

as

ar
The generator (7.4) is a spatial invariant and so we do not
need to worry about the term [ H,{x), K | = 0. Because K
does not contain any hypersurface variables, we can put
[H{x),K]=[H?x), K] inEq.(7.5). Because everything
in Eq. (7.5) is expressed exclusively in terms of the field varia-
bles, the super-Hamiltonian and supermomentum con-
straints cannot help us and Eq. (7.5) must be a strong equa-
tion. (We assume that there are no other constraints, like
those encountered in gauge theories.) The invariance (7.5) of
the action then means that X generates an unconditional
symmetry

[K, H (x)] = [K, H*(x)] = 0. (7.6)

As an example, take a charged scalar field
“={¢,¢*{, m, = {m,7*} with the energy density (2.37).
This density is invariant under the phase transformations

- —fdzfdmv[mx),m =0 (7.5)

¢ ' =e WY g =eVIr and c.c. (7.7)
In this case,

¢=1ing, w= —linm, and cc., (7.8)

h(x) = {§ing (x), — | ing *(x)}, (7.9)

and the generator (7.4) reduces to the expression
K=7 [ dxyign— 427",

which we have already met in Eq. (2.39).

(7.10)
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An even simpler example is provided by the
transformation

¢'=¢ —pur, p=const, (7.11)

which leaves invariant the action of a massless Klein—Gor-
don field. Here, # (x} = u and the conserved generator is

K:,uJ‘d3x r{x). (7.12)

Let us finally briefly mention the complications en-
countered in gauge theories. There, the Lie group G acting
on a collection of “carrier fields” is turned into an infinitely
dimensional gauge group by letting the group parameters
depend on position. The action functional of the carrier
fields ceases to be invariant under the gauge group. To res-
tore the invariance, one introduces another collection of
fields, called “‘compensating fields,” and couples them to the
carrier fields by the Yang-Mills algorithm. The gauge invar-
1ance of the total action leads to supplementary constraints
on the canonical variables. So, in our first example {7.7), 77 is
made position dependent, the compensating field is the elec-
tromagnetic potential ¢, which transforms in the familiar
way

d
—— o X) =, (x) + 7,4 (x} (7.13)
dr
under the gauge transformation, the total action has the elec-
tromagnetic field minimally coupled to the charged scalar
field, and the supplementary constraint is the divergence
equation {2.45).

Complications arise because supplementary con-
straints can condition symmetries similarly as the super-Ha-
miltonian and supermomentum constraints do. However,
we do not intend to discuss these complications in the pre-
sent paper. Once again, our main purpose is to understand
the lack of conditional symmetry in geometrodynamics by
studying a simpler case of parametrized fields. The super-
Hamiltonian and supermomentum constraints are common
to geometrodynamics and parametrized field theories. On
the other hand, there are no supplementary constraints in
vacoum geometrodynamics.

8. GENERAL THEOREMS ABOUT CONDITIONAL
SYMMETRIES

We have seen how a Killing symmetry of the back-
ground or an internal symmetry of the field leads to a condi-
tional symmetry within the canonical formalism. The gener-
ator K has the form

K Ej d>x k(X (x))P,, (x) (8.1)
for the Killing symmetry and the form

K Ef 4% B4 () (x] 8.2)

for the internal symmetry. The generator (8.1) does not de-
pend on the field variables ¢ %,77,, while the generator (8.2)
does not depend on the hypersurface variables X *,P, . More-
over, the coefficient k£ “(X (x)) is not an arbitrary functional of
the hypersurface coordinates, but it is a restriction of a
spacetime vector field to a spacelike hypersurface.
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Let us pose now an inverse problem. Can we prove, for a
given field theory, that the generator K necessarily reduces
to one of the previous types, or maybe to their superposition,
such as we met for the massless Klein-Gordon field? This is
by no means obvious, because the generic form of K, Eq.
(3.1), allows much more flexibility in the coefficients k *,k,
and 4 “. Unfortunately, it is difficult to carry the argument
for all field theories at once, without relying on the specific
features of the field super-Hamiltonian. Various factors, like
the presence of additional constraints or coupling of several
fields, makes the general argument extremely cumbersome.
However, we can proceed quite far on the general level if we
limit our attention to fields whose energy density is a (local)
quadratic function of the momenta without a linear term,

H?(x)=T(x)+ Vx)[X¢ ],
T(x) =1 G (x)[X,¢ 17, (x)7p(x)
4GP X)X 17 0 (X (X)- (8.3)

We assume that the field variables ¢ #,7, are unconstrained
and that the “supermetric” { G **, G**#°} is nondegenerate.
The latter requirement means that

3 6Ty
fd e ] =0

YN, = ¥,(x)=0. (8.4)

The Klein—-Gordon field theory or the massive vector field
theory which we have discussed in Sec. 2 are of this type.

To see under what conditions the generator (3.1) re-
duces to a combination of the generators (8.1) and (8.2), let us
study the Poisson bracket

[K, Hy] = [Ku)Py] + [KupH%]

+ [KinyPy] + [KnpHE ] (8.5)
With a little bit of caution we can use the results of Sec. 5.
Equation (5.10) still holds if we interpret , as the partial
derivative 8, with respect to the hypersurface coordinates;
i.e, 8y F(x)[X,¢ ] is the normal change of the variable
F(x)[X,¢ ] obtained by varying X explicitly but not implicitly
in ¢ [X]. This yields

[Kiue)Pr ] =fd3x{(6N k'x)+ k°N )P

+ By kO(x) + kN — Nk )P, ). (8.6)
Further,
, SH*
(K B3] = [ XK. 80012 e
fd xfd3 SkeXIXg1 8Th x). (8.7
S (x') Smx)

Again, the first term can be handled as in Sec. 5, with the
result (5.17). The only difference is that the expression &,
cannot be interpreted as a projected covariant derivative of a
spacetime vector field, but it must be defined through Eq.
(5.16) in terms of k&, and k. This gives
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1
[K(k)’ H%] = 7fd3x Ng”zTabk(a;b)

fa e

k a,
Bk p (x))_ (8.8)
8¢ (x’)
The third Poisson bracket in Eq. (8.5} is
[Kurs P = [ @58, h* b, ) 89
Finally,

[Kin» H A (x), H % ] 7malx)

& de

+hAx)[malx), HE ) (8.10)

We do not need to calculate it in detail. It is enough to notice
that under our assumption (8.3) about the form of the energy
density, [K,,, H % ] is a quadratic function of the momenta
without a linear term. The same thing is true about the stress
tensor T %, which is connected with H ¢ by Eq. (2.25). The
momentum density H ? is always a linear homogeneous
function of the canonical momenta.

Keeping this in mind, we return back to the condition
[K, Hy ] =0. This weak equation means that the sum of the
terms (8.6), (8.8), (8.9}, and (8.10) must vanish for all values of
the variables ¢ 4, 7,, X% and P, which satisfy the con-
straints. Alternatively, we can solve the constraints for the
hypersurface momenta, Eq. (2.54), substitute these expres-
sions into the sum, and maintain that the sum vanishes iden-
tically in the variables ¢ %, 7,, and X “. The only term con-
taining the momenta in the third order comes from the
expression (8.8),

fd3xfd3x' Sk x) ﬂﬁ'——T(x).
8¢ (x') 6 (x')

This term must vanish identically in N and 7, . For nonde-
generate supermetrics, this implies
kHx)/8¢6 4 (x') = 0.
We thus see that the coefficient & * can depend only on the
hypersurface variables X % not on the fields ¢ “.
To complete the argument, it is advantageous to replace
the generator K by an equivalent generator with £ “ = O (Sec.

4). We then select those terms in the sum which are propor-
tional to the momenta and require that they vanish,

(8.11)

(8.12)

fd%c{(Nk La _ kINH® + §y h(x)-7,(x)} =0. (8.13)

Let us analyze this equation first for a single scalar field.
Then, H¢ = 7é , and 8, & *(x) - m,(x) reduces to
8y h (x) - m(x). Because m(x) is arbitrary, we get

Sy hix)= ‘N,

An & (x) which satisfies this equation can contain only two
types of terms: (I} those which are linear in ¢, {II) those
which do not depend on X. In other words,

hix)= —kx)[X16,(x)+ hx){¢].

~ (Nk*e —k (8.14)

(8.15)
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Substituting this form of 4 (x) back into Eq. (8.14), we learn
that the coefficient k “(x) is subject to the condition

Sy k°x)[X ] = Nk'* — k‘N“*= N°. (8.16)

Next, pass to a vector field ¢ *={¢, ,4,}, 7,
= {7 ',7°}. The supermomentum then consists of two
parts, one corresponding to the spatial scalar ¢, the other
one to the spatial vector ¢,. In the smeared form,

HE = f d*x{7 {x)Lnd, (x) + P )L, (). (8.17)

Equation (8.13) then reads

H¢Y +fd3x(6Nhl-1r‘+6Nha-17")=O, (8.18)
and it splits into two parts,

Sy hy +Lné, =0, (8.19)

Sy h, + Lo, =0. (8.20)

The first equation is our old equation (8.14) for the scalar
field ¢, . It implies that

hy = —k[X]¢,, +h[d.4.], (8.21)
where & °[ X ] must satisfy Eq. (8.16),

S ké[X]1=N" (8.22)
This enables us to rearrange the term

Lnd, =Ls ¢, =8y L8, (8.23)
and rewrite the vectorial equation (8.20) in the form

Snthy + Lyg,)=0. (8.24)

It is easy to see that Eq. (8.24) has the general solution
H,= —Lg+h,[6.0.] (8.25)

Equations (8.12), (8.21), and (8.25) show that the gener-
ator K for the vector field must have the form

K =fdﬂx(kL[X1P(x)—wlLk¢l

— 7 °Lyd, + hy(x)[¢° 17 (x)). (8.26)
Moreover, the Lie derivative terms in Eq. (8.26) yield the

smeared momentum — H, . The generator (8.26) is thus
weakly equivalent to the generator

K = f d *x(k *(x)[ X 1P(x) + k °(x)[ X 1P, x)

+hyx)[¢ 7 17 (x)).

Apparently, our procedure can easily be generalized to
arbitrary tensor fields or collections of such fields. Summa-
rizing this part of our argument, we can conclude:

Theorem: In field theories with a quadratic energy den-
sity (8.3), any generator K of a conditional symmetry is al-
ways weakly equivalent to a generator of the form (8.27), in
which the coefficients & %, k£ * do not depend on the field var-
iables, and the coefficients 4, do not depend on the hyper-
surface variables. Moreover, k * and k © are connected by Eq.
(8.16).

It is hard to draw further conclusions about mixed gen-
erators in an unspecified field theory. However, we are able

(8.27)
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‘to proceed either if we limit our attention to the P-restricted

generators, or if we fix the structure of the field theory. We
shall follow these two routes in succession. First, we derive
some general results for the P-restricted generators. Second,
as a characteristic example, we show what is the most gen-
eral mixed generator in the Klein~Gordon field theory.

For a P-restricted generator, the coefficient 4, in Eq.
{8.26) must vanish. We collect the surviving terms in the
Poisson brackets (8.6} and (8.8), eliminating again the hyper-
surface momenta through the constraints (2.54). We end
with the requirement

[Ki)» Hy] = Jd3xg‘/2 A =By kX)) + k°N, )T,

+ (B k) + KN -
F4NKSPT,} =0

on the restricted generator.
We say that the field is generic if the projections
T, (x}), T ,(x), and T (x} of its energy—-momentum tensor
can be arbitrarily varied along a hypersurface. For example,
both the massive and the massless Klein—-Gordon fields are
generic in this sense because, by assigning the canonical var-
iables ¢ (x), 7r(x) arbitrarily along a hypersurface, we can give
the projections (2.34), (2.35), {2.30) any chosen values. For a
generic field, Eq. (8.28) implies that the coefficients of
T,, T,,,and T,, must vanish independently. The first two
equations, )
6y k*= —k°N,, (8.29)

Sy ko= —kN*“ 4 Nk, (8.30)

show that the coefficients & * and & “ behave as projections of
a spacetime vector field under hypersurface tilts. We have
already chosen & * as a spatial scalar and & “ as a spatial
vector and we are thus able to conclude, by the reconstruc-
tion theorem of Sec. 2, that k * = k*n® + k °X  is the re-
striction of a spacetime vector field to the hypersurface:

kex)[X ] = k(X (x)). (8.31)

Taking into account not only the hypersurface tilts, but
also hypersurface translations, we can now relate the normal
changes 6, k* and 8, k “ to the projections k *# by Egs.
(2.16) and (2.17). On the other hand, we know that these
changes must be given by Eqgs. (8.29) and (8.30). This allows
us to conclude that

ki =0=Fk,,. (8.32)

Also, once we know that &k, and k, are projections of a
spacetime vector field (8.31), we are able to interpret k,,,,
which up to now was a mere abbreviation for the expression
(5.16), as the ab projection of the covariant derivative k. 5,.
The remaining equation,

Kigs) =0, (8.33)

following from Eq. (8.28) by varying T, ensures that this
projection vanishes. Taken together, Eqs. (8.32) and (8.33})
tell us that & ¢ is a Killing vector field. This yields a theorem,

Theorem: A generic field with nonderivative gravita-
tional coupling and a quadratic energy density (8.3) has a P-
restricted conditional symmetry if and only if the spacetime
background has a Killing vector.

NkY)T,,
(8.28)
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As a matter of fact, we know from Sec. 5 that such a
symmetry necessarily reduces to an unconditional symme-
try.

The whole argument can be generalized from generic
fields to the fields restricted by the trace condition

Te=T, g°—T, =0. (8.34)
Let Eq. (8.34) be the only restriction on the energy-momen-
tum tensor. Then, 7, T),, and the trace-free part
0.,=T,, —} T, gg,, of the stress tensor can be assigned
arbitrarily, while the trace T, g is obtained from Eq.
(8.34). Varying T, we recover our old equation (8.30}. The

coefficient of 8, in Eq. (8.28) must be proportional to the
metric, which leads to the equation

kK =Ag® (with A=13k°,) {8.35)
The variation of T, then yields
Oy k*+k°N, —1AN=0. (8.36)

Once more, Egs. (8.30) and (8.36) imply that K * and k ©
have the correct behavior under hypersurface tilts. We can
thus conclude that they are actually projections of a space-
time vector field (8.31) and that k_, is the ab projection of
the covariant derivative k,.5,. Comparing Egs. (8.30) and
(8.36) with Egs. (2.16) and (2.17), we see that

k@t — A gab’
Kigyy =0, (8.37)
k= —}A.

Equations (8.37) are all possible projections of the conformal
Killing vector field equation

Kap) = A 8ap-

We have thus arrived at the following:

Theorem: Let the energy—momentum tensor of a field
with nonderivative gravitational coupling and a quadratic
energy density (8.3) be freely specifiable on a spacelike hyper-
surface, except for the trace condition (8.34). Then, the the-
ory has a P-restricted conditional symmetry if and only if the
background has a conformal Killing vector (8.38).

This time we know that this symmetry is truly condi-
tional and cannot be reduced to an unconditional symmetry.

(8.38)

9. CONDITIONAL SYMMETRIES IN THE KLEIN-
GORDON FIELD THEORY

The theorems of the last section deal with the P-restrict-
ed generators. Let us now follow the second route, leaving
the generators unrestricted, but fixing the structure of the
field theory. We choose the simplest possible model, namely,
asingle real Klein—-Gordon field. Qur aim is to enumerate all
possible conditional symmetries such a theory can possess.

The energy density (2.34) of the Klein—-Gordon field is
of the type (8.3). The Poisson bracket [K),,, H ] is thus
given by the expression {8.28). In fact, our general theorem
for mixed generators shows that the coefficient of 7', must
vanish, Eq. (8.16). We can thus express the Poisson bracket
[K«)» Hy ] explicitly as a function of the field variables by
substituting into Eq. (8.28) the expressions {2.34) and (2.35)
for the energy density 7', and the stress tensor 7, of the
Klein—Gordon field.
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The mixed generator brings in two additional Poisson
brackets, Egs. (8.9)and (8.10). However, again by our general
theorem, the coefficients # “(x) cannot depend on X ® and so
the Poisson bracket (8.9) vanishes. For the Klein—-Gordon
field, the Poisson bracket (8.10) takes on the form

(K, HY] = f d’x f d°x' B(x, x')m{x)m(x’)

[ [ NOREBVIE)
54 (x)
where B (x, x') denotes the symmetric biscalar
Bix,x') =} Nx') g~ "*(x')6h (x)/6¢ (x')
+ (x ox’'). 9.2)

Putting the terms (8.28) and (9.1) together, we end with the
conservation condition

(K, Hyl=~ — fa”xA (x)7(x)
—+—J-d3xJd3x’B(x,x’)7r(x)1r(x’)
+Jd3x[ — {6y k' +k°N, + Nk )V

+ Ngl/zk a;b¢'a¢~b ]

- f d3xfd3x’ NERRVE) _ o (93
8¢ (x)

on the mixed generator. Here,
A(x)=}g "8y k*+ kN, — NKk°,). (9.4)

The main complication introduced by the mixed gener-
ator is the presence of the biscalar term (9.2) in Eq. (9.3). Our
first step is to determine the biscalar and through it the form
of the functional % (x)[¢ ].

The quadratic term and the absolute term in Eq. (9.3)
must vanish separately. Substituting B (x, x') = 4 (x)5(x, x')
+ C|(x, x') into the quadratic term, we learn that

J d3x J- d>x' Cix, x'Ymix)m(x') = 0. (9.5

As a consequence, C (x, x') must vanish and
B(x, x') = A (x)b(x', x). (9.6)

To see what are the consequences of Eq. (9.6), replace 2
by a new variable

F—h_ _;_ g'%. (9.7)

Equation (9.6) then reads
N(x) g~ '*(x")6h (x)/5¢ (x')

+ N(x) g~ "%x)6h (x')/5¢ (x) = O. {9.8)
It is true for an arbitrary N (x) if and only if h (x) does not
dependond (x'), & (x) = & (x)[X ]. Ontheotherhand, from the

last section we know that 4 (x) can depend only on ¢ (x') but
not on X “(x’). The consistency of Eq. (9.7) thus requires that
A4 i

Ng = —JA=const, h=p=const. (9.9)
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Recalling the meaning of 4, we see that
5Nkl+k“1\{a—N(k‘;c—A)=0. (9.10)

This equation, together with Eq. (8.19), implies that the coef-
ficients k * and k ? behave as projections of a spacetime vec-
tor field under hypersurface tilts. Once more we invoke the
reconstruction theorem of Sec. 2 and conclude that such a
field exists, Eq. (8.31). The comparison of the generic equa-
tions (2.16) and (2.17) with the specific equations (8.16) and
(9.10) then reveals that

ky=—k, +A (9.11)

and
k1) = 0. (9.12)

At this point, we can also interpret k., as the ab projection
of the spacetime covariant derivative k.5,

To complete the argument, we turn to the absolute term
in Eq. (9.3). Using Egs. (9.7), (9.9), and (9.10), we reduce it to
the form

fd3x N[2V(A — k%) +18"%k" 8,6

+gl/2k a;bgab _#m2g1/2¢ ] — 0’ (913)

where 8, = ¢ ¢, — 16 .4 g, is again the trace-free part
of the stress tensor 7,,.

Because ¥ (x) is arbitrary, the expression in the square
brackets must vanish. We must now distinguish two cases: (I)
m =0, (II) ms£0.

(I) m = 0. Equation (9.13) reduces to

24 —3kc )V +g"%k "%, =0. (9.14)
At each point, V' =} g'/%g*’¢ .4 , and the trace-free 8,, can
be considered as independent variables. Therefore,

A—3k. =0, kgp =AEgup. (9.15)

Contracting the second equation and comparing it with the
first one, we learn that A = A. Equations (9.11), (9.12), and
(9.15) then yield all possible projections

k(a;b) =Agu, k(a;i) =0, ku;u = -4 (9.16)
of the spacetime equation
Kiep) = A 8ap- (9.17)

We know that A is a constant and so k ¢ is a homothetic
motion. We can summarize our results in a theorem:
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Theorem: The massless Klein—-Gordon field always has
the conditional symmetry

K=u fd 3x m(x). (9.18)
Moreover, it has the conditional symmetry
K Ef d’x [k “(X (x))P,(x) — } A¢ (x}m(x)] {9.19)

if and only if the background admits a homothetic motion
k<, Eq. (9.17).

(II) m#0. At a given point, the quantities ¥, 6,,,and ¢
can be considered as independent variables. All equations
derived in Case (I) still hold, but Eq. (9.13) yields now an
additional condition,

mg'(, A$? + pg) = 0.
Because ¢ is arbitrary,

A=0=upu.

The generator (9.18) disappears, while the generator (9.19)
becomes P-restricted and k ® turns into a true Killing vector.
Hence:

Theorem: The massive Klein—Gordon field has a condi-
tional symmetry if and only if the background has a Killing
vector.

We have thus proved that the Klein—-Gordon field does

not have any other conditional symmetries except those
which we have already found in Secs. 5 and 7.

(9.20)
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Time-dependent embeddings for Schwarzschild-like solutions to the

gravitational field equations
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An explicit formula for embedding the Schwarzschild solution in a three-dimensional flat space
with indefinite metric for arbitrary Kruskal timelike coordinate v is presented. The time
development of the Schwarzschild solution can then be represented by a succession of spacelike
surfaces, each corresponding to a different value of v. It is seen that the standard representation of
the Schwarzschild metric, the Flamm paraboloid, is in fact the v = O special case of a similar time-
dependent embedding in a three-dimensional Euclidean space with positive definite metric.
However, this embedding is inadequate in that it is not defined for most values of v. Thus, the
embedding in a space with indefinite metric is to be preferred. The results for the Schwarzschild
case are found to be readily extended to all metrics of a certain class, and a general embedding
formula for arbitrary v results. Embeddings for the Schwarzschild, de Sitter, and Reissner—
Nordstrom metrics are then special cases of this general form. It is seen that all such solutions
behave similarly as v gets large. This suggests an alternate interpretation of the oscillatory

character of the Reissner—Nordstrom “wormhole.”

PACS numbers: 04.50. + h
I. INTRODUCTION

The Schwarzschild line element for a body of mass m
{Ref. 1) is given by

ds’= —@dt>+® " 'drr+rdn?, (1)
where

D=1-2m/r (2)
and

dN?=d6? + sin® 0dg? (3)

is the metric of a unit sphere. Various methods have been
employed to visualize the geometry of spacetime which
arises from this solution. One aproach has been to embed the
entire four-dimensional manifold in a flat space of higher
dimension. Kasner? has shown that, excluding the trivial
pseudo-Euclidean case, no four-dimensional manifold satis-
fying R, = 0 can be embedded in a five-dimensional flat
space. However, Kasner,? and later Fronsdal,* have embed-
ded (1) in a six-dimensional space. The geometry of the 4-
manifold can then be pictured by taking subspaces of the
higher-dimensional flat space.

A simpler approach is that first used by Flamm,’ which
takes advantage of the spherical symmetry of the Schwarzs-
child solution. Taking a constant-time slice of the 6 = 7/2
plane yields the two-dimensional line element

ds’=® 'dr+rd¢?, 4)
which is then embedded by equating it to the metric of a

three-dimensional Euclidean space® (positive definite met-
ric):

ds* = d2* + dP + rPdé>. (5)
Solving for dz* gives
dz*= (@ ' —1)dr?, (6)

which upon integration yields the well-known two-sheeted

® Present address: Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, Cambridge, England.
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Flamm paraboloid:
z(r) = [8m(r — 2m)]"/2. (7)

This equation corresponds to a surface with the topology of
an Einstein-Rosen bridge,’ or “wormhole,” connecting two
asymptotically flat universes. The “throat” of the bridge has
a narrowest region in the z = 0 plane, where the two uni-
verses join along a circle of circumference 47m, or, taking
into account the #-coordinate, along a sphere of surface area
16mm?.

The Reissner—Nordstrom solution for a body of mass m
and electric charge ¢ is given by an expression similar to (1):

ds’= —@dt*+ &~ 'dr+rdn?, (8)
where
D=1—-2m/r+q*/r {9)

and df2 ? is as before. An identical procedure to that outlined
above, with m > |q|, gives the embedding formula®:

- [[152]

_“(r _zrrn:)(:zzr_)}m a. 1o

wherer, =m + (m* — ¢°)'/%.

Both these embeddings suffer from an inability to pro-
vide any geometrodynamic information, that is, neither can
indicate how the curved space develops in time. Yet both the
Schwarzschild and Reissner—Nordstrom solutions are
known to exhibit quite dramatic time evolution. Kruskal
diagrams® indicate that the Schwarzschild ““throat” pinches
off in a finite time'® and the Reissner—Nordstrém “throat”
oscillates between a minimum and maximum circumference
of 27r_ and 277, B

In this paper, we develop a method for embedding any
solution of the form

ds®= —@dt*+d'dP +rdn?,
S=() (11)
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at an arbitrary, but explicit, Kruskal-like time coordinate v.
That is, we are able to portray precisely, rather than merely
qualitatively, embeddings which include the effectively
time-dependent nature of certain black-hole type solutions.
The time development of the solution can then be represent-
ed as a succession of spacelike surfaces, each surface corre-
sponding to a different value of v. These surfaces are only
defined for all v if the flat embedding space is endowed with
an indefinite metric. It will be seen that the standard
Schwarzschild and Reissner-Nordstrém embeddings dis-
cussed above are actually special cases, at time v = 0, of the
embeddings which result from a similar procedure in which
a flat space with positive definite metric is used. Such an
embedding is found to be undefined (becomes imaginary) for
most values of v. We suggest it is physically more appropri-
ate, in representing solutions to the field equations, to use
embeddings that avoid such behavior.

In Sec. II, we present two methods for obtaining such
an embedding for the Schwarzschild metric (1). A succession
of surfaces at different v is given, and the v = O surface is
compared to the standard Flamm embedding. In Sec. 111,
with a slight extension of the general Kruskal-like transfor-
mations of Graves and Brill,® we generalize one of the meth-
ods of Sec. II to any metric of the form (11). In Sec. IV, we
consider several special cases of this general form, including
the Schwarzschild and Reissner—-Nordstréom metrics. It is
seen that all solutions of the form (11) must exhibit similar
behavior as v goes to + <. Consideration of the dissimilar
time evolutions of the Schwarzschild and Reissner~Nord-
strdm solutions, in the light of this result, suggests an alter-
nate view of the oscillatory behavior of the Reissner-Nord-
strém “wormhole.” Rather than crediting the pulsation in
time to the separate and opposing actions of gravitational
pull and Maxwell pressure,® it is simpler to take the view that
the portrayal of the full manifold which results from solving
the equations R,,, = — 87T, for a spherical mass endowed
with charge requires a timelike coordinate v that is itself
oscillatory.

Il. EMBEDDING THE SCHWARZSCHILD METRIC AT
ARBITRARY v

The well-known Kruskal transformation® giving the
maximal analytic extension of the Schwarzschild solution is

(12)

[Z] = (1 — r/2m)"/? exp(r/4m) lsinh(t/4m)]

cosh(t /4m)
for r <2m, and
u cosh(t /4m)
= [{r/2m)—1]'/? 4, [ ] 13
[v] Lir/2m) — 117 exple/4m) | Gonie samy ] 1)
for > 2m. The line element, now free of the coordinate
(“pseudo”) singularity at r = 2m, becomes

ds* =} — dv* +du?) + r*dQ?, (14)
where
2= (32m%/r) exp( — r/2m), (15)

and df2? is as before.
Our goal is to embed the 6 = 7/2 plane of (1),

ds’= —Odt* + @~ 'dr +rd¢?, (16)
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into a flat space with metric given by
ds’= —drP +d? +rdg?. (17)

The choice of this particular metric will be discussed shortly.
We eliminate dt * from (16) in such a way that the time depen-
dence of the metric remains explicit. This is done by solving
Eqgs. (12) and (13) for ¢ as a function of v = const, differentiat-
ing, and squaring the result.!! We obtain
2 vi(r/2m) dr* (18)
[v? — (1 — r/2m)exp(r/2m)] [1 — r/2m]?
for » both greater and less than 2m. Equation (16) then be-
comes

ds2=[

(r/2m)exp(r/2m)
v? — (1 — r/2m)exp(r/2m)
Equating Egs. (19) and (17} gives the embedding formula:

] P + P dgr (19)

(r/2m)exp(r/2m)
v — (1 — r/2m)exp(r/2m)

172
d2=[ +1] dr. (20)
The same equation, with a useful intermediate result, is
more easily obtained by setting v = const. in Eq. (14}. Equa-
tions (12) and (13) give

W —v* = — (1 — r/2m)exp(r/2m) (21)
or

u = [v* — (1 — r/2m)exp(r/2m)]'/? (22)
for all ». We therefore have the requirement that

v2exp( — r/2m)>{1 — r/2m). (23)

This inequality, which is independent of the signature of the
space in which we embed our metric, is a particulary com-
pact representation of the time evolution of the Schwarzs-
child solution, as shown in Fig. 1.

Differentiating (22) with v = const, we obtain

du = (r/8m*exp(r/2m)[v* — (1 — r/2m)
Xexp(r/2m)]~2 dr. (24)

15+

V26~r

3
. 5 * \
T

—_— B ———
0 J,, — - r . ﬁ?ﬂ*\,ﬁ
0 05 1 15 2 25
r

FIG. 1. The inequality v’e ~"» 1 — r (we have set 2m = 1), a necessary con-
dition for the Schwarzschild solution in Kruskal coordinates to be embed-
ded for arbitrary v, is a particularly simple representation of the solution’s
development in time. The embedding is defined only when v%e ~ * {solid lines)
is greater than 1 — 7 (dashed line). The number attached to each curve indi-
cates the corresponding value of [v|. At jv| = 0, the “throat” has minimum
radius 1; as |v] increases, increasingly smaller values of 7 are allowed (the
“throat” contracts). Finally, at |v| = 1 1, » can equal zero (the “throat”
pinches off).
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Substituting this expression into (14) and equating to (17)
yields the embedding formula {20) immediately.

Had we used the positive definite metric (5) for our flat
embedding space, rather than the indefinite metric (17), we
would have obtained

(r/2m)explr/2m)
v> — (1 — r/2m)exp(r/2m)
as our embedding formula. At the Kruskal time v = 0, this
reduces to

_f_r2m)
- (r/2m) — 1
which is just the Flamm embedding (7). We therefore see that
the Flamm paraboloid is a special case of the time-dependent
embedding (25). However, it is clear that the square root in

this equation becomes imaginary for many realizable values
of r and v. First write Eq. (25) in the form

&= |

dz= [ — l]l/2 dr (25)

172
_ 1] dr=(@ ' — 1)\ dr, (26)

exp(r/2m) — v* 172
v — (1 — r/2m)exp(r/2m)
Equation (23) guarantees that the denominator of this

expression is positive. Equation (27) will therefore be unde-
fined (have imaginary square root) whenever

v’ > exp(r/2m). (28)

Such a result is unsatisfactory; we expect a physically accep-
table representation of our curved space to be well defined
for all-time v. This suggests that (20) is a more appropriate
choice than (25), which in turn indicates that the » = 0 spe-
cial case of (20) is a more appropriate embedding than the
Flamm paraboloid.

This result is not surprising. We should expect the
Schwarzschild line element to require a space of indefinite
metric to be embedded for all v. In order to embed an #-
dimensional surface given by

n—1

= 2 8. dx, dx, (29)

uv=0

in an m-dimensional flat space of arbitrary signature, with
metric

(27)

m—1

=S a df?, (30)

i=0
where f; = f(x)and @; = + 1, we must have

n—1 m—1

= 3 8. dx,dx, Z a, df?

uv=0 i=0

af, df;

i
=0 uvZo OJx, Ox,

m—1 n—1

— dx, dx, (31)

whence,

m ! a;, df;
Buv = Y @ LI

i=0 8x,, o'?x,,

(32)

Symmetry of the metric tensor g,, in this equation gives
in(n + 1) first-order partial differential equations in the m
unknowns f;(x). If there are no inconsistencies in the equa-
tions, we have the standard result that any n-dimensional
manifold can always be embedded in a flat space of dimen-
sionm>in(n + 1). 12 In the case of the Schwarzschild metric,
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we havegy, = — 1/g,, and the equations are not consistent.
Equation (32) yields

ot WY,

=_—P= 33
goo i; axo axO ( )
and
st 9 df
P 1= ; 34
8u= z axl 8x, (34)
which give
5aG) --[2-G]
. 35
i;o a (axo ;zo ax, ( )

However, given a positive definite metric (a; = 1 for all J),
m—1 af m—1( 3f,
LR
for any v. Equation (35) therefore shows the impossibility of
embedding the entire Schwarzschild manifold in a positive
definite Euclidean space. The case v = 0 is, of course, an
exception to this result. If v = O, then 7> 2m, and (13) shows
that ¢ = Oidentically for any allowable 7. The Schwarzschild
metric is then no longer indefinite (since d¢ = 0), and for this
special case the entire manifold can thus be embedded."?

- To show the time evolution of the Schwarzschild solu-
tion using embedding diagrams, we choose different con-
stant values of v in (20). For a given v, the equation can then
be integrated numerically to give a spacelike two-dimension-
al surface. It is clear from (20) that the time evolution of the
manifold is symmetric in v about the value v = 0, and that, as
vgoesto + oo, z(r) = r. Embeddings forillustrative values of
v are shown in Figs. 2 and 3. Of particular interest is the
v = 0 embedding, corresponding to the maximum size of the
Schwarzschild “throat.” At v = 0, (20) can be integrated ex-
actly to give

r—m 12
z=v2
v J[r—-Zm
V2 (r—2m)'2 4 (r — m)'/?
—ml g[ 12| °
2 —2m)

2m)]1/2

dr=[2(r — m)(r —

(37)

m)l/2 (

FIG. 2. Equation (20) gives an embedding of the Schwarzschild solution for
any Kruskal-time v. Substituting into (20) a constant value of |v|, the equa-
tion can be numerically integrated to give z = z(r). Here we show the embed-
ding corresponding to Jv| = 0 {maximum size of “throat”), |s| = 0.85, 0.95
(“throat” contracts), and |v| = 1 {“throat” pinches off). To obtain the entire
two-sheeted embeddings, the curves must be rotated about the z axis, and

reflected across the z = 0 plane. We have set 2m = 1.
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FIQ. 3. Identical to Fig. 2, for the cases o] = 1, 1.01, 1.5, 5. The Schwarzs-
child “throat” approaches the line z = r as |v| grows large.

This new v = 0 embedding is compared to the standard
Flamm embedding in Fig. 4. It is seen that the behavior of
the new embedding is qualitatively similar to that of Flamm:
the “throat’” has a narrowest radius of r =2minthez=0
plane, and the surface is asymptotically flat at large r.

lll. THE GENERAL CASE

Graves and Brill® have given a general Kruskal-like
transformation to remove pseudosingularities from metrics
of the form (11), of which the Schwarzschild, de Sitter, and
Reissner-Nordstrém metrics are special cases. It is assumed
that ¢ (r) has zeroes or poles (the pseudosingularities) which
are to be eliminated by.transforming 7 and ¢ to new coordi-
nates (r,¢ ) and v{r,z ), in terms of which light continues to
travel along lines of slope + 1. Insuch coordinates, the met-
ric (11) takes the form

ds? = f2{u,p)du® — dv®) + Plup) d2 2, (38)
where

SHuw) = D (r) exp{ — 2yr*)/44 (39)
and

FIG. 4. The well-known Flamm paraboloid (7) is the |v| = O special case of
an arbitrary » embedding into a space with positive definite metric (25), and
is given by the solid line. The Ju| = 0 special case of an embedding in a space
of indefinite metric, (37), behaves similarly (dashed line); its minimum radi-
usis 1, and it is asymptotically flat for large . Both curves are to be rotated
about the z axis and reflected through the z = 0 plane to give the full two-

dimensional embedding.
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r*= f dr/®(r). (40)

A is an arbitrary scale factor and y is a constant chosen so
that (39) is regular at the pseudosingularity (if more than one
such singularity exists, several coordinate patches may be
required). The coordinate transformation itself is given as.

u(nt cosh(yt
[vir,t ;] =24 exp (yr) [sinh((:t ;} @1)
with the inverse transformation given implicitly by
u? — v = 44 %exp(2yr"), (42)
t = (1/2p)tanh~*[2uv/(u® — v¥)] . (43)
Equation (42) gives
u = [V” + 44 *exp(2yr*)]"/*. (44)

Differentiating this equation and substituting into {38), with
v = const., yields

ds® = 44 2 ~(rlexp(2yr*)
X [v? + 44 2exp2yr*)}~drP + P d022. (45)
Equating (45) and (17) then gives
= [ 44 % exp(2yr*)
D (v + 44 % exp(2yr*
We therefore have a general procedure for embedding any

metric of the form (11) at arbitrary time v. Finally, we note
that (44) provides the general requirement

1| a 46
)1+] .o 149

v¥> — 44 2 exp(2yr*) . (47)
V. APPLICATIONS

For the Schwarzschild metric, Graves and Brill put

y=1/4m, A=}, &=(1-2m/1),

r*=r+2mloglr—2m). (48)
These values give the transformation equations

cosh(z /4m)} . @9)

sinh(t /4m)
Clearly, however, these equations are not valid when r < 2m.
We therefore choose 7* = r + 2m log|r — 2m| in general,
and, in addition to (49), take

(o= 24 xmern ()

for the Schwarzschild metric in the case 7 < 2m. The inverse
transformation (42)—and hence our embedding formula—
now remains unique regardless of the value of r. Finally, to
bring our results completely in line with the transformation
of Kruskal, we take 4 = 1/(8m)'/% Substitution of these val-
ues into (42) reveals that the Schwarzschild embedding of
Sec. IL is a special case of the general procedure presented in
Sec. II1.

As a second example, consider the metric of the de Sit-
ter universe in the static frame.’* We have

&=1-r/R2, (51)

where 0 <7 < R. We restrict our discussion of this metric to
the inequality (47), which, with

[:] = (r — 2m)"/? exp(r/4m) {

(50)

Christopher F. Chyba 1665



R R+r 1
r*=—lo ( ); = ——Ad=1, 52
Sloelo— ) 7 F: (52)
becomes
VAR +7)>4(r—R). (53)

This inequality indicates that r cannot become infinite uniess
[v|>2, in agreement with the usual result."

Finally, we consider the Reissner-Nordstrom metric
{8), restricting ourselves to the case in which the mass ex-
ceeds the value associated by general relativity with the
charge

m>|ql|, (54)

where both are in units of centimeters. While such a restric-
tion avoids so-called “naked” singularities,'® the physical
significance of this metric remains unclear. Misner and
Wheeler'” have shown the condition (54) to be incompatible
with a nonclassical description of charge and mass. In addi-
tion, it has recently been shown that a gravitational collapse
to the Reissner—Nordstrom singularity is impossible for a
broad class of boundary-surface histories. '8

With the condition (54), the metric has two pseudosin-
gularities at

roo=miim?— g2 (55)

Two coordinate patches (i, j) are thus required in the neigh-
borhoods of 7, and r_. Graves and Brill give

rZ
r"=r—{—(————+ )log(r—r+)
r,—r_
r
—|——log{r —r_) (56)
r,—r_
and
yi'__(ri_rj)/zrfr (57)
which yield the transformation
u| e {cosh ¥i t]
{ui]"ZA" r) P =) Yexpir A { g
(58)
where
a; = —Yn/n), (59)

with (i, /) = (4, — or (—, + ). As in the Schwarzschild
case, however, these equations need to be generalized for
values of r other than 7> r_ > r_. Qur criterion is that the
inverse transformation (42) remains unique for each coordi-
nate patch. Thus, our transformations becomes

2
e T
ro—r_
)
— (—‘-—) loglr — r_| (60)
ry—r_
and
U; a;
{ ]=2A}r—r,-|”2|r—rjlfexp(yir)ﬁ,., (61)
Ui
where ¢; is as before and
coshy; ¢ sinh 7, ¢
ol o larl -
sinhy, ¢ coshy, t
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depending on the sign of |r — r,||r — 7, Izaj relative to
(r—r)r=r)7

We can substitute these values into (46) to obtain an
embedding for the Reissner—Nordstrom solution at arbi-
trary v. In particular, the v = 0 embedding

zlr) = J [1—;:1:)—(’.)] v dar (63)

differs from the Flamm-like embedding {10), which results
from a flat space with positive definite metric.

Rather than utilizing two coordinate patches, we could,
at least formally, follow a similar embedding procedure in
the extended Reissner—Nordstrom manifold. Here the met-
ric (8) may be written'? in the form

ds*=F¥ —dy* +dE?)+rdn?, (64)
where
F=F{g) r=r¥s) (65)

and df2 is the usual spherical surface element. However, the
complicated nature of the transformations (65) indicates that
itis in practice simpler to use the series of coordinate patches
(i, j) given by Graves and Brill.

Finally, we wish to consider the time development of
the manifold. Consider the general embedding equation (46),
of which that of the Reissner-Nordstrom metric is a special
case. Itis clear from (46) that, as we let the absolute value of v
in our constant time embeddings grow large, the equation
goes to

ijw=n (66)

which is pinched off at » = 0 in the z = O plane. In particular,
this same behavior holds for the Reissner—Nordstrom em-
bedding. Yet it is known that the radius of the “throat” for
this metric must pulsate periodically in time. This pulsation
has been credited to a “‘cushioning” by Maxwell pressure of
the electric field through the “throat.”® From a considera-
tion of the embedding formula, however, in which the effect
of the presence of electric charge is taken into account by the
values assigned #* and , it seems the “‘throat” must pinch off
as in the Schwarzschild case. This does not take place be-
cause |v| never goes to infinity; for an observer on the
“throat” (u = 0 in the first patch}, v reaches a maximum
value of

v =447 expRy . r.)ry —rlre —r P, (67)
where
l(r_)2 (r+—r4)
a_ = —=——|—], = ’ (68)
2 \r, Vs 2r2+
and
ro>r.>r_. {69}

At this value of » = r_, the observer crosses into the second
patch. Upon return to a patch identical to the first, the ob-
server moves only between two finite values of v, again de-
parting the patch at a time v given by (67). That is, |v} never
approaches infinity, but rather, oscillates between finite val-
ues. We adopt the view that the Reissner-Nordstrom
“throat” pulsates because the timelike coordinate needed to
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describe both patches of the manifold which results from a
spherically symmetric mass and charge distribution must
itself be oscillatory.
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We study the canonical vacuum structure of Yang-Mills theories defined on an arbitrary
{(nonsimply connected) three-space. We find that the presence of flat Yang—Mills connections with
a nontrivial (discrete) holonomy group has profound consequences at the quantum level. In
particular, such connections may lead to either an increase or a decrease in the number of
quantum vacuum sectors. Our method consists of finding a representation for the space of
classical zero-energy field configurations in terms of a function space .Z. A simple assumption
concerning the physical equivalence of these classical configurations then permits a formal
classification of the quantum vacua by the zeroth homotopy set 7,(.Z). Significant progress is
made in the analysis of 7,(.Z) for arbitrary three-spaces and gauge groups, and several specific

questions concerning the vacuum states and their diagonalization are answered.

PACS numbers: 04.50. + h, 11.10.Np

1. INTRODUCTION

In spite of an ever-increasing level of activity, the quan-
tization of the gravitational field remains an unsolved prob-
lem. Currently, much effort is devoted to showing that the
N = 8 supergravity theory is finite, order by order in pertur-
bation theory.! However, there has always been a school of
thought which maintains that progress in quantum gravity
can only be achieved through a deeper understanding of the
underlying conceptual and technical structures. In particu-
lar, attention has been focused on the possibility that, at the
Planck length (G#/C3)'/2 =~ 10 cm, the topological pro-
perties of space and time may differ greatly from those that
are implicit in conventional perturbative quantum gravity.
Even if supergravity theory is found to be finite, a number of
deep and fascinating questions will still exist concerning the
role of spacetime topology.

This interest in spacetime topology has inspired many
studies of quantum fields propagating on a spacetime mani-
fold M whose metric is fixed and unquantized. The aim is to
abstract the effects which are a direct result of the topologi-
cal properties of M from those arising from the background
metric. The present paper lies within this category and con-
tains some initial results of an investigation into the vacuum
structure of a canonically quantized Yang-Mills field o,
that is defined on an arbitrary, orientable, C * three-mani-
fold 3. It is technically convenient to assume that 2 is com-
pact—a condition that could arise in practice by imposing
vanishing boundary conditions on gauge fields originally de-
fined on a noncompact space. According to the Poincaré
conjecture almost all three-manifolds are not simply con-
nected and, as we shall demonstrate, this leads to a vacuum
structure which differs significantly from that arising in the
conventional flat-space theory where R? is compactified to
S3.

We employ the timelike gauge @, = 0 and look for clas-
sical Yang-Mills fields w; (x)(i = 1,2,3) which satisfy the zero
energy condition F; = O (vanishing field strength) with the
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usual assumption that a quantum vacuum functional ¥[w] is
peaked around such a configuration.? On S 3, the only solu-
tions to F; = 0 are of the form

;(x) = £2(x)3,02 (x) ", (1LY

where {2 is a gauge function (i.e., a map from S ? into the
symmetry group G ). Clearly w, (x) is a gauge transform of the
zero Yang-Mills field.

When 7,{Z )70 two new features arise which are most
clearly seen by adopting the standard mathematical picture
of the Yang-Mills field as a connection in a principal G bun-
dle. Now principal G bundles over S " are classified by
7, _ (G ).> However, 7,{G ) = Ofor any Lie group and hence,
in the usual flat space S * picture, the bundle associated with
the canonical fields is automatically trivial. Nontrivial bun-
dles only arise in space and. time considerations of vacuum
tunneling. The situation is different for a general three-mani-
fold ¥ (since G bundles are now classified by elements® of the
cohomology group H *(Z;m,(G )} = H,(Z;7,(G)) and some of
these bundles may admit flat connections (i.e., F;; = 0). It is
clearly impossible to construct spacetime fields w;(x,?)
which interpolate between two connections in different bun-
dles and hence tunneling between bundle sectors cannot oc-
cur. In this sense the “topological charges” in H *(Z;7,(G ))
can be regarded as labels for a type of superselection sector.
We will only consider the case where the G bundles over 2
are trivial and will defer discussion of the general situation to
a future publication.

The second and major effect of (2 ) #0 is the possible
existence of zero energy Yang—-Mills fields which are only
locally like (1.1) and must be gauge patched globally. These
arise when the holonomy group (a discrete subgroup of G ) of
the connection is nonvanishing.” Since F; = 0, parallel
transport around a curve in £ depends only on its homotopy
class and hence leads to a homomorphism from 7 (') into
G.® We shall see in Sec. 2 that the converse is also true and
any such homomorphism induces a flat connection ina G
bundle over X.

The effect of nonvanishing holonomy becomes appar-
ent when we consider the problem of identifying classical
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vacua. Two solutions w and @ of F;; = 0 can be regarded for
quantization purposes as being physically equivalent if there
exists a one-parameter family of flat connections »**' with
0'® = w and @'" = @. Under these conditions » and & may
be joined by a path in time with an arbitrarily small action.
Equivalently, an adiabatic movement from one configura-
tion to the other may be initiated by imparting an arbitrarily
small amount of energy to the system. The quantum vacuum
states are to be labeled? by the equivalence classes of such
solutions and the purpose of the present work is to identify
these classes for arbitrary X and G. When 3 = 53, only the
pure gauge configurations (1) exist and two connections are
physically equivalent if and only if the corresponding gauge
functions £2 are homotopic. This leads to the usual labeling
of the quantum vacua by the homotopy classes of functions
from S 3into G, i.e., by 7,(G ).2 The homotopy classes [Z,G ] of
gauge functions from a general 3 into G may be classified” by
elements of H '(3;7,(G )) and H *(3;m;(G)) which we shall
refer to as the primary and secondary cohomology classes or
“winding numbers.” However, labeling the quantum states
by [3,G ] would be incorrect as it ignores the existence of
connections with nonvanishing holonomy. Such connec-
tions may give rise to an interpolating path of zero energy
Yang-Mills potentials which renders two connections phy-
sically equivalent even though their primary and/or secon-
dary winding numbers are different. This collapsing of vacu-
um sectors is easily illustrated when G = U1 since any pair
of flat connections w and & may be linked by the (flat) affine
sum Ao + (1 — A )@ (for a concrete example see Sec. 2. B).
Alternatively the presence of holonomy can increase the
number of sectors. For example, if ¥ = RP? and G = SU2,
then 7,(2 ) = Z, = (e,a) and connections with the holonomy
group Z, exist which cannot be linked by a zero energy path
to the pure gauge configurations. In this case (Sec. 4.A) each
holonomy sector is associated with a countable set of wind-
ing numbers and hence the total set of vacuum sectors has
twice the number of elements that would arise if holonomy
were overlooked.

It is clear from the definition of physical equivalence
that the main task is to construct a mathematical representa-
tion of the space of zero energy connections and find the set
of arc connected components. This zeroth homotopy set will
then become the labeling set for the quantum vacuum sec-
tors. We shall exhibit such a representation, &, in Secs. 2
and 3 and show that this space is a principal bundle over a
certain subset of the set of homomorphisms from 7,( ) into
G with fiber the topological group of gauge functions. Valu-
able information on 7y(Z) can be extracted from the homo-
topy sequence of this bundle (Sec. 4.A) which is used in Sec.
5, to derive specific results. The problem of diagonalizing the
resulting states and tunneling amplitudes is discussed in
Sec. 4.B.

All spaces will be assumed to possess a preferred base
point and, unless stated to the contrary, all maps will be base-
point preserving. The set of such maps between two spaces X
and Y is denoted Y * and the set of base point preserving
homotopy classes will be written [X,Y]. The set of r-times
differentiable maps between two C ®-manifolds M and N is
written C (M,N).
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The preliminary results of our investigation were sum-
marized in Ref. 8.

2. FLAT CONNECTIONS
A. Construction of flat connections

We start by reviewing briefly a standard technique®'
for constructing principal G bundles with flat connections.
Let 3 denote the universal covering space of 2 and let
Hom(w,(Z ),G) be the set of homomorphisms from (' ) into
G.Then Fisa principal 7 (2 )-bundle over Z'and, given any #
in Hom(r,(Z'),G), leads naturally to a principal G-bundle.
More precisely we define 3 X , G to be the set of equivalence
classes under the 7,(2') action,

}/:3 X G—3 X G,
v, g)=>lyr.h (v~ )g), (2.1)
where yy denotes the usual action of yer, (X ) on 2. Then the

C = manifold 3 X » G is a principal G bundie over 3 under
the group action

g':s XhG—PS X;,G,

b, 8] = [v.gg’l, (2.2)
with projection map 7 defined by 7y, g]: = r{y), where ris the
natural C ® map from 2 onto 3.

Let 7 » x, be a differentiable loop in = starting at the base
point x,€3 and let  » y, be the covering path in 3 starting at
the base point y,€5. Then the horizontal lift of x, in £ X, G,
passing through the point {y,, g], is defined to be

tor(y,.8]. (2.3)

Now y, = y,¥, where yer,(Z ) is the homotopy class of the
loop t = x,, and hence

b1 8] = Dov, 8] = o (Vig] = Do 818~ ' (Vlg, (2.4)
which shows that the holonomy group of the point [y,, g] is
Adg™ ' h(m|(Z)).

Different homomorphisms may induce inequivalent G
bundles but in the present paper we will only consider the
product case. Thus let  denote the set of all elements A of
Hom(7,(Z),G ) such that ¥ X , G is isomorphic to the trivial
bundle 2’ X G. For any such homomorphism there is a trivia-
lizing bundle map:

3 %,6—3 %G,

b, gl=(ry).D (v)g), (2.5)
with

D{yy)=Dyh(y) forallyinz(Z). (2.6)

The condition (2.6} on the map D from 3 into G ensures that
(2.5)is independent of the choice of representative elements y
and g in the equivalence class [y, g]. In terms of the fixed
product structure 2 X G, the horizontal lift (2.3) becomes
tws(x,,D (y,)g), which is to be compared with the lift tm»(x, , g)
corresponding to the trivial connection in 3 X G with a van-
ishing Yang-Mills field. Using standard results in Ref. 6 it
follows that the Yang—Mills field on 3 X G associated with
the homomorphism 4, is the Lie-algebra-valued one-form on

b

@,(x) =DpIF,DY)~", ry)=x, (2.7)
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where g, is defined by lifting the local coordinates in 3 to 3
By virtue of (2.6), the right-hand side of (2.7) is independent
of thepointy in the fiberin 3 lying over xe3. Equivalently, »
may be defined as the projection into 5 of the r,(Z )-invar-
iant, Lie-algebra-valued one-form on 3’, D ~'(9), where 8is
the Cartan-Maurer form on G.

Since every flat connection on 3 X G'can be obtained in
this way® we see that the set of zero energy C = Yang—Mills
fields on the trivial G bundle is in bijective correspondence
with the set

D' = {DeC =(3,G)|3heR such that

Dyy)=Dyh (y)Vyem(Z)}. (2.8)
Note that gauge transformations appear in the form
D (y)wr2(riy))D (y). (2.9)

Ifﬂ)&o’ =D (O)aiD 0 —1 and w(l) =D (l)a_D (-1 then a
one-parameter family »*’ of interpolating flat connections
may be written as

olx)= C,(19,C,(0) " with Cy() = C, (), (7),
(2.10)
where Co =D'?, C, = D", and Amsh, is a path in & whose

end points are the homomorphisms producing the functions
D (0} and D (l).

B. A U1 example

To illustrate these ideas consider a Ul example with
3 =S"{hence £ = R). Let D V(y) = ¢ and
D@(y) = ™. Then, if S ! is parametrized by an angle 6
lying between 0 and 1, the period of the covering space R is
one and D " and D correspond to pure gauge functions
with primary winding numbers » and m and potentials
@Yy = — i27n and 0 = — i27m, respectively. The affine
sum 0" = Ao}’ + (1 — A4 )w? is associated with the func-
tion C, (y) = expi2my{An + (1 — A )m}, which satisfies

Cily + 1) = C  (ylexp{i2mA (n — m)} (2.11)

and the holonomy group of w**’ is Z if A is irrational and
Z, . _ m ifA = p/qwith p and g having no common divisors.

Note that although C; interpolates smoothly between D
and D ? the holonomy group changes discontinuously.

3. TOPOLOGICAL PROPERTIES OF &
A. The topology on &

In Sec. 2 we constructed C * connections using C =
maps from 2 into G. However, it is difficult to decide a priori
what degree of differentiability is really appropriate. In or-
der that F; can be constructed, the functions D from 3 to G
must be at least twice differentiable and it is natural to extend
the treatment of Sec. 2 to C” fields and define

D = (DeC"(5,G)|3heR such that

D(yy) = D) (y)Vyem(Z)}. (3.1)
Thus in principle we might obtain different vacuum-state
classifications by 7,(Z ") for different r’s.

This problem cannot be resolved without first specify-
ing the function-space topologies. Again there is no obvious
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unique choice but there are two natural requirements. The
gauge transformation map (cf. 2.9) C(Z,G) X Z"—-Z ",
(£2,D )»{2-rD, should be continuous and if D, isa convergent
sequence (or net) of C functions, then D,3,D ' should
also converge. These criteria are met easily by employing the
compact open C " topologies on C "(2,G )and C "{X,G }and by
giving 2" the subspace topology. In the Appendix we prove
the useful result that, for all , 7o(Z ") = 7,(Z ). This ena-
bles us to concentrate on the space & =2 which is readily
subject to an algebraic-topological analysis.

B. The bundie of flat connections

The continuous action in Sec. 3.A of G* on Z is free
and suggests that 2 might be a principal G bundle over the
quotient space /G *. Moreover Z /G * is clearly in bijec-
tive correspondence with &2 via the projection map which
associates with each DeZ the homomorphism 4 for which
D (yy) =D (y)h (). If & were indeed a bundle over # the as-
sociated homotopy exact sequence would provide potent in-
formation on 7y(Z).

The first step is to put a suitable topology on
Hom({7,(2),G). Since 7,{Z ) is a discrete group, the natural
choice is the point open topology in which the open sets are
arbitrary unions and finite intersections of all sets of the form

N, = {heHom(m,(5),G)|h (1)CO }, (3.2)

where e (2) and O is an open subset of the Lie group G.
Weil has observed that Hom(m (2 ),G) is a real analytic var-
iety.!! This is shown by considering a presentation of 7,(3 )in
terms of n generators and m relations (n and m are finite
integers since X is compact). If F is the corresponding free
group then Hom(F,G ) is a product X /_ , G of n copies of G
and Hom(m (X ),G) is the real analytic subset of X _ , G on
which the m relations are satisfied. Analytic sets are locally
arcwise connected and hence the path components of
Hom(w,{2 },G} coincide with the topological components.
All homomorphisms in a path component induce isomor-
phic principal G bundles 3 X, G and in particular the set %
of homomorphisms which induce the product bundle is a
union of components of Hom(7 (% ),G).

Let ¢ be the projection from & onto & which maps D
into the defining homomorphism. Since D is base-point pre-
serving, D (y,) = 1,andhenceD (y,¥) = h (y). Thusaconcrete
representation for ¢ is

gD Yr): = D or). (3.3)

We have the important result

Proposition 3.1. & isalocally trivial, principal G bundle
over % with projection map g.

Proof: (a) g is continuous since
g YN, ) = (DeZ|D {ysy)C O}, which is open in the com-
pact open topology. The action of G on & is continuous
and free.

(b) The main step is to show that & is locally trivial. As
an analytic set Hom({,(3 ),G) is triangulable and hence each
element possesses an open neighborhood that is contractible
overitself. Furthermore, since Hom({7 (X },G) is a closed sub-
space of the compact space X /_, G it is itself compact and
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can be covered by a finite number of such sets. We will prove
local triviality by constructing a continuous local section o,
over each contractible set VC Z%.

Let ¥ be such a set with a map F:V X I—¥ with
F(h,0) = hand F(h,1) = h for some k. This induces a defor-
mation retraction of 3 X Vonto 2 X {h }. Definea (3 )ac-
tionon 2 X ¥V X G by

v:(p.h, g vy (v~ ') (3.4)
and let (3' X V)X G denote the set of equivalence classes
under this action. This is a principal G bundle over 2 X V'
with the projection map #[y,h, g] = (r(v),4) and right G ac-
tion [y,k4, glg": = [»,h, gg']. Now the map /.3 X V-3 XV,
(x,h )m»(x,f1 ) induces a pullback from (2 X V'} X 7G to givea
bundle that is isomorphic to the trivial bundle (£ X; G )X V.
Moreover f'is homotopic to the identity and hence
(3‘ X V)X ;G is also a trivial principal G bundle and there-
fore admits global cross sections. These are of the form

@ (x.h) = kD ~',h)], (3.5)
where D (py,h) = D (p,h )1 (y).

Thus o(h )(y): = D (y,4) is the desired local section
over V.

(c) Finally we show that & is homeomorphic to 2 /G *.
The projection map p: % —<Z /G % is continuous and open
when & /G % carries the usual quotient topology. The na-
tural map j: 2 /G *—%# j[D ]: = q(D ) is continuous and bi-
jective with an inverse :%—2 /G *,ilh ;= (D, ] where D,
is any element in & with g(D ) = A. Over a contractible open
set ¥, i,, = p-0y is continuous and since % is covered by
such sets, 7 is continuous on &% . Hence &% is homeomorphic
to 2/G=. Q.ED.

Although the bundle is locally trivial it will not in gen-
eral be trivial and global cross sections will not exist. Thus
we have a type of Gribov phenomenon,'? although it should
be emphasized that our bundle of flat connections is quite
different from the bundle of irreducible connections consi-
dered in Refs. 13 and 14.

4. THE HOMOTOPY EXACT SEQUENCE FOR 7¢(%)
A. The exact sequence

Considerable information on 7,2 ) may be extracted
from the homotopy exact sequence of the fiber bundle in
Proposition (3.1). & decomposes into disjoint pieces over
the components of % and in each one we choose a base point
D, lying over the base point 4 in the corresponding % com-
ponent C,. The group G * is injected into the fiber over 4 by

the map i:2~»2D, . The homotopy exact sequence of the
bundle is

AT ) > 5,6 ] —> 1o\ DDy) o Bt )5}, (41)

where the last two entries are sets (not groups) whose base
points are the components containing D, and A, respective-
ly. Note that we have used 7,(G *) = [2,G ] and that the sur-
Jection of g. follows from that of q.

The general theory'® of this exact sequence of sets and
groups provides the crucial result
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9, '(Cy) = [2,G 1 /keri.
=[2,G /3w (R,h)). (4.2)

Thus in principle we have achieved a complete specification
of mo(Z) in terms of the components {C, | of % and the
abelian group [2,G 1/3(m(#,h )). Note that, if 7, (#,h) =0
for all A, the vacuum-state classification is simply

Tl D) = [2,G X mo(R). (4-3)
In particular, if ¥ = S *then7,(3) = 0and % = [} and the
usual classification by [S*,G ] = 7,(G ) is reproduced. An-

other example where Eq. (4.3) is applicable is ¥ = RP* and
G =SU2. Then 7,(%) = Z,~(e,a) and Hom(7(Z ),G ) pos-

10
sesses just two elements given by 4 (@) = (0 1) and

h(a)z(o

and Z,-holonomy groups, respectively. Since all SU2 bun-
dles over a three-manifold are trivial® it follows that
Hom(m (2 ),SU2) = % and 7( ¥ ) is the disjoint union of two
copies of [3,G] = [RP*,SU2] = Z.

0 L. . . ..
1), which induce connections with trivial-

B. The quantum states

We will denote the states corresponding to C, and
€[2,G/8(m (#,h )) by |C,,I ) and assume that, as usual,
there is a gauge transformation operator T, acting on these
states such that

T!)|Ch’l>=|ch’[n]l>~ (4-4)

Thus the states are not only invariant under ‘“‘small gauge”
transformations (i.e., those that are homotopic to a constant)
but also under those whose homotopy classes belong to the
littlegroupd {(m(#,h ). We may diagonalize the gauge action
in analogy with the usual flat space theory and construct the
“@-vacua”

|C,s0) =Y 0(1)|C,0), (4.5)

where @isacharacter of the abelian group [2,G 1/8(7 (#,h ).
These new states are gauge invariant up to phase factors and
have the inner products

<Ch16|ch’6’> 2599’2<Ch’0|ch’l )9(1)’ (4-6)
]

where the sumis over [2,G ]/d(m (4,4 ). They also diagona-
lize the tunneling amplitudes within a fixed holonomy sector
(i.e., the “in” and “‘out” states have the same C, label) but
there is no reason to expect that transitions between different
elements of 7,(%) can be easily diagonalized.

Tunneling is expected between different holonomy sec-
tors on a compact 3 because the affine sum of any two flat,
nonsingular connections describes a configuration of zero
energy. In other words, the time-dependent configuration
@, (x,t} defined by

w;(x,t ) = A (t)o'x) + (1 = A (¢ )olP(x),

wofx,t): =0 (4.7)
interpolates between the two flat, static connections »!" and
«® with finite Euclidean action L {4 ]. This configuration can
contribute to the transition amplitude within the functional
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integral approach to quantum field theory, even though w,
is not a solution to the classical field equations. It is interest-
ingtonotethatthefunctiond (r): = A4 () — Iwhichminimizes
L [A ] satisfies

(ili)z_ ﬁ(}ﬁ_i):(), (4.8)
dt K, 4
where

Kl: ___f d3x ([(1)(” _ c0(2)] A [a)(l) _w(ZD])2’
£

KZ: — j d3x (a)(l) _ 60(2))2.
z

Equation (4.8) can be recognized from standard ¢ * theory to
have a kink solution. '® (Note that the above argument will be
inappropriate if J is originally noncompact and boundary
conditions are imposed that lead to non-square-integrable
fields).

It is clear that the main mathematical problem is to
represent the boundary map d in as concrete a form as possi-
ble. In terms of the bundle &, this map is obtained by taking
aloop p in # such that p(0) = A, and considering its lift to a
curve Axw»D, in & with D, = D, . Then the homotopy class
of DD, ' in G is independent of the choice of lift and
d[p] = [DoD , ']. Thusd defines the characteristic class’ of
the bundle & restricted to the component C,, of % and may
be viewed as an element of

Hom(m,(#,h),[2,G 1) = H '(C,;[2,G ]). (4.9)

C. Prime three-manifolds

It should be noted that a special role is played by prime
three-manifolds. Such a manifold cannot be decomposed
into a topological sum X+, unless either X, or 3, is S * and
conversely every compact three-manifold can be decom-
posed into a connected sum of a finite set of prime manifolds.
Now 7,(Z*2,) is the free product'’ (X )*7,(Z,) and hence

Hom(7,(2,*2,),G) = Hom(r(Z,),G ) X Hom(r,(Z,),G).
(4.10)

Thus the computation of Hom(,(2 ),G) may be reduced to
that for prime manifolds. As an example consider the prime
space S ! XS 2 with 7,(S ' X S ?) the free group Z. Then

R ~Hom(m (2 ),G) =G and (4.1) becomes

o (G) > [5G ] - mo| D) x),s (@.11)

where for simplicity it has been assumed that G is connected
so that 7,(G ) = {«}. It follows at once that if 7,(G ) = O then
7o\ D) = [2,G] = [S ' X § %G ] = Z and so the vacuum states
are labeled by a single integer. On the other hand if
3 =(S5'XS?)*(S'xS? then Hom(m (L ),G) = G X G and
{4.11) now contains 7,(G ) X 7,(G ). Once again 7y(Z) = Z if
m(G) =0.

In general it is very difficult to compute Hom(r,(Z ),G)
directly and information on d needs to be obtained by other
means.
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5. SOME RESULTS ON THE BOUNDARY MAP 9
A. 7y (2) is infinite

We will now discuss the computation of @ for the com-
ponent of % which contains the trivial homomorphism
holy) = 1. Let theloopspace 2 Hom(r,(2 ),G) carry the com-
pact open topology.'® Since the loops pass through the base
point h, we have 2 Hom(w,(2),G) = 2% and hence
7R ho) = mo{f2 Hom(r (X ),G)). Our first result is

Proposition 5.1. 7 (% ,h,) = O unless 7,(X ) contains ele-
ments of infinite order.

Proof: Let y = 7,{Z) be such that +* = 1 for some p.
Then (4 (y) = 1 for all ~cHom(7 (X ),G ). The exponential
map is a local diffeomorphism from the Lie algebra of G onto
G and hence there is some open neighborhood U of 1€G such
that g’ = 1 ifand only if g = 1. Define V: = {h |h (y) = 1}
and V,: = {A |k (y)¢U }. These are closed subsets of
Hom(m7 (2 ),G )withV,nV, = @and VUV, = Hom(7,(2 ),G ).

Now consider pef2 Hom(r (2 ),G ). Then
w;:=p " '(V) = {4eS"|p{A J{y) = 1} and
w,: =p~ (V,) = {1eS"|p(d )(y}¢U | are closed subsets of S'*
with §' = w,uw, and w,~w, = @. Thus w, = w and hence
w, is open. But S'' is connected and therefore w, =@ or S'".
However, p(0)(y) = 1 and so w, #0 which implies w, = 0
andw, =S "'. Thus p(4 )(y) = 1 and so p is trivial if all ele-
ments of 7,(2 ) are of finite order.

In particular, if 7,(3') is finite, ¢, (C, ) = [2,G ] and
the quantum vacua in the C,, holonomy sector are labeled by
the winding numbers in [2,G ].

B. Reduction to a lifting problem

Assume now that 77,(2 ) is infinite and that p is a nontri-
vial loop in 2%. We seek a curve C; in & such that
C\(y) =1land C,(yy) = C,(y)p(4 )(v) as then 3 [p] is equal to
the homotopy class of C,eG %. The computation of C, is
equivalent to finding the pairs of gauge functions that can be
linked by paths in & in the sense that £2, can be joined to {2,
if and only if £2 42 ;' can be joined to the identity. The ho-
motopy class of C, lies in [X,G ] and can be classified by the
primary and secondary winding numbers belonging to
H'(3;m,(G))andH *(Z;m,(G )),respectively.Ideallyonewould
relate the group elements to the homotopical properties of p
and the rest of this section is devoted to deriving results of
this type.

Let E, beacurvein & satisfying Eyy) = E,(y}) = 1 and
E,(yy) = E,; (y)ol4 )(). If such a curve exists then
CiwY)E i '(vy) = C,()E i 'y) and hence C, (y)E ;= '(y) may
be viewed as a function £2, from ¥ into G. However, 2, = 1
and £2, = C,, so that A ~> (2, is a homotopy from C, to 1.
Thusd [p)is trivialif and only if an E; exists. We will startan
investigation by studying the obstructions to the construc-
tionof E; .

Let £2G denote the loop space of G equiped with the
compact open topology. This function space is a topological
group with the product law

(@ @) ): = @,(4 Joold ). (5-1)
Of course £2G is also an H space under the loop composition
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(@ Va)d)=w,(24), 0<A<)
=24 — 1), i<A<] (5.2)
and these two H structures can be shown to be homotopic,'®
ie,w;w,~w,Vw,forall pairs w, and w,. There is the natu-
ral homeomorphism

02 Hom(m,(3),G }—+Hom(7,(Z),2G),

PrY (5.3)

where y,(v)4 ): = p(4 )(¥) and Hom(r(2'),£2G) has the point
open topology.

Let (Em,n,,B) be a universal 7,(J ) bundle with a map
u:3— B inducing the universal covering space 2 and a cor-
responding bundle map #:3—Esm. By analogy with the dis-
cussion in Sec. 2 we may regard E7 as a principal (flat) 2G
bundle via the homomorphism

X, (2 )G (5.4)
Thus we form the quotient EmX , 2G of Em X £2G by the
(2 )-action yle,w) = (ey,x, (V)™ 'w) and define a projection
nmEmX Xp!)G—»Bvr, nle.w]: = 1. (e) and a right 2G-action
[e,0]w': = [e,ww']. This principal £2G bundie is induced by a
map By, into the base space of a universal £2G bundle. We
show in the Appendix that there exists such a bundle whose
base space is G and we have the picture

02G E’ITXX nG
e i
¢ - ‘
-
b - Brr G. (5.5)
u B“

Now a lift ¢ of u is necessarily of the form
¢ (x) = [B),E ()], with E ()1 ) = E (»)(4 }p(4 )(¥) and
E (y)(0) = E (y)(1) = 1. Hence the definition £, (y): = E (y)(1 )
provides the one-parameter family of functions that we seek.
Conversely, any such E; givesrise to a lift §. Butpisa
principal fibration with classifying map By, and hence u lifts
if and only if By, -u is homotopically trivial*>*' Since By, -u
is a map from  into G it is classified’ by elements of the
cohomology groups H (3;7,(G ))and H 3(3;m,(G )),andanE,
exists if and only if By, -u ~ %, which will be true if and only if
both group elements vanish (x denotes the constant map
from X into G).

C. Obstructions to constructinga C,

Before discussing the cohomological relations between
By, and p let us return to the problem of C, . By analogy
with the above, we construct the principal £2G bundle
EmX PG over B X G with the projection map
t [e,p] = (7., (e),p(0)) and £2G action [e,p]w = [e,pw]. Consider
the map (4,4 }:-Z—Br X G, (u,4 )(x): = (u(x),4 (x) '), where
A€G 2, and contemplate the lifting problem

0G—ErX PG

P
S

s
X BrxG

{u, A} f

G. (5.6)
Lifts of (u,4 ) are in one-to-one correspondence with curves
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C, in Z such that C, (y,7) = C, (v)o(4 )(7), Cilp) =1, and
Coly} = 4 (ry)), where r is the projection from 2 into 3. Thus
the main problem is to find the homotopy class of 4 in terms
of p and the first step is to compute the classifying map /.
Proposition 5.3. The classifying map / is given by the
chain of maps
Byx1

u°
BrxXG — GXG—G and #g1 82): = 818>

__ Proof: (a) There is an £2G-equivariant map
By:Em X, 2G—PG of the form Bf[e,a)] = L (e)w, where
L (ey) = L (e)y(y) for all yer|(Z'). Define PG X ;PG by the
equivalence relation (p,,p,)=(p,0,0 " 'p,)VweNG. Then
PG X PG is a principal £2G bundle under the action
[pip2]o = [p),p.w] and there is a bundle-map pair
L X1:ExX 2G—PG X PG; By X 1:Br X G—G X G with

the projection PGX PG > G X G, 8(p,,p,) = (9,(0},p5{0)).

(b) There is another bundle-map pair PG X ;.PG—PG,
[P1p2] > pip2; G X GG, (g,,85) »» 818> and hence Em X, PG
is isomorphic to the pull back of the universal bundle PG by tne
composition of these two maps. Q.E.D.

Lifts of (#,4 ) (and hence C,) exist if and only if
I(u,4 ) ~ «, which in turn is true if and only if the correspond-
ingmembersof H '(2;7,(G ))and H 3(Z;m,(G ))vanish. Theele-
mentin H (37 (G ))is/-(u,A }*¢, where., is the characteristic
element®inH '(G;7 (G )) = Hom(r (G ),m,(G ));[itistheiden-
tity homomorphism from (G ) onto 7,(G }] and we have

Lemma 5.4: If heH \(G;m,(G)) then
I (u,A )*h = ((By-u)* — 4 *)h.

Proof: Any heH (G ;m,(G)) is primitive and hence
u*h)=h X1+ 1xhin H (G X G;r\(G)). Thus
I*(h)=By*(h)X 1+ 1Xhin H'(BrX G;m,(G)). Now
(2,4 ):Z2—Bm X G may be factored as

a

uXA Ixwv

22— I XZ — BrXG — BrXG,wheredis the diagonal

map x~»(x,x) and v(g): = g~ ', We have the exact sequence
O—H (Z7\(G ) @ H '(Z5m\(G ) —H "(E X Z;7,(G))
—H!Z;m\(G))m\(G) @ 7,(G )+ H X Z;m,(G )0

and,onthesubgroupH '(Z;7(G)) @ H '(2;7,(G )),themapA *
is4 *a,b)=a+ bin H'(Z;m,(G)). However, I *(h ) has no
components in the torsion-product parts of
H'(BrXG;m\(G))and s0 4 "(u X 4 ) (1Xv)"1"(h)

= (By-u)'(h) — A "(h), which proves the resuit. Q.E.D.

Similar considerations apply to the pullback of the gen-

erator ¢, of H *(G;m,(G )) which is isomorphic to Z if G is
simple and nonabelian so that 7,(G ) = Z. [Of course there
are no secondary numbers if 75(G ) = 0. If (G ) =Othen¢,
1s primitive and, as in Lemma 5.4,

(MuA ))'e = (By-u) — A" (5.7)
for all¢ in H *(G;7,(G )). If 7,(G )0 then ¢ may not be primi-
tiveand p'(e) = ¢ X 1 + 1X¢ plus terms in
H*GZ)e H(G;Z) and H*G;Z }+H*G;Z ). Now (G is
abelian and, if finite, it is a sum of cyclic groups and hence
HY(G;Z) = Hom( (G ),Z) = 0. On the other hand if
m(G) = Z, then the Serre exact cohomology sequence?>??
applied to the fibration G—G—Br,(G) (8 is the universal
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covering group of G ) shows that H %(G,Z ) = H *(B,(G );Z)
=H*BZ;Z)=H?*S";Z)=0. Thus there are no
H*G;Z)® H \(G;Z) terms for any 7,(G ). In addition,
H?*G;Z)+H *G;Z ) contains only elements of finite order
and these can be neglected since their pullback to H3(3;Z)
must vanish. This is because H *(3;Z )~ Z for 3 compact
and orientable (which we are assuming). The net effect is that
¢ acts as if it were primitive and we have shown

Lemma 5.5: If 1eH *(G;m,(G ) then
Mu Y= (Byu) —A4 ).

We can now derive the important result

Proposition 5.6: The map &7 (72, h}—[2,G1is
dlpl = [By,u].

Proof: A curve C, in & linking 4 to 1 exists if
I-{u,A )~ #, which is true if /(u,4 )¢, = 0 = I(u,4 )"t,, which
by the results above, is equivalent to (By,-u)"t, = 4 ", and
(By,u)’t; = A "t,. However, the homotopy class of a map is
uniquely determined by its pullback of ¢, and ¢, and conse-
quently /{u,4 )~ xiff[By,-u] =[4].Butdlp] =[C]=1[4]

Q.E.D.

Thus, in the component of Z containing 4,, we have in
principle solved the problem of computing the vital map d in
terms of the homotopy properties of p. In practical terms it is
most advantageous to represent [ By,-u] cohomologically
and the next step is an attempt to compute the primary and
secondary classes associated with this map thus splitting the
problem into two parts.

D. A representation of the primary class

We want to relate the properties of y:7,(Z )G with
By :H (G;7\(G)) —H '(Bm;m,(G)). Now H (G:7,{G))
= Hom(r,(G),7,(G)) and H '(Bm;7,(G))
~Hom(7 (¥ ),7 (G )) and it suffices to study By on the iden-
tity homomorphism ¢,. In this language the primary coho-
mology class of By is

Proposition 5.7: (By"1,)(¥) = [x(7)] the homotopy class
of y {¥) in 2G.

Proof. 1If heHom(r (G ),7,(G)) then
(By'(h))(¥) = h (By.(y)) for all ¥ in 7,(Z), where By. maps

(X} into 7,(G ). The homtopy exact sequence of the fibra-
By

tion [cf. (5.5)] EmX , 2G—Br — G is
1\ (ErX G > E )7, (G)
—TEm X G |y Brr)—*,

where,sincer (2 lisdiscrete, B {2 ) = K (7 ,(2 },1)andhence
(B} = 7,(Z ). On the other hand, by mapping S ° into the

Y
sequence’ —>7 (3| —~0G—EmX 2G—Br we get

X+

= (ET X 2G ) > (2 ) — To(QG |>\Em X, 2G 10| B7r)

where y. is the composite map
X €
m(Z) > 26 — 7y(2G ) =7,(G) with €{w) = [@]. Thus

By.(y) = ex(y) = [x(¥)].
Q.E.D.

We note that ¢":H (Bm,m (G )}—H "(Z;7,(G)) is the
identity map from Hom{,(Z ),7 (G )) onto itself and hence
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Corollary 5.8. The primary class in H '(2;m,(G }) repre-
senting By, -u is just the homomorphism y~»[y ()] from
m{2 ) into 7,{G ). In particular the primary class of the end-
point C, of the curve C; must be y~s{y (¥)].

As an illustration of Corollary 5.8 we can consider the
case G = Ul, where there is no secondary class (7,(U1} = 0).
Let A be any function from 2 into U1. Then 4. is a map from
(2 )into 7,(Ul) = Z and we define pef2 Hom(r (2 ), U1} by

PNy = """ = x, (VA ). Then 4. (y) = [y()] for all
yem,(2 ) and so for any A€U1” there exists a p such that
A~ By, -u. Hence the boundary map d is onto. Furthermore,
o #) = {*] and hence 7,(Z) = {*] i.e., there is just a sin-
gle vacuum sector in this canonical quantization scheme. Of
course this is already obvious from the observation that the
affine sum of two zero-energy U1l connections is itself zero
energy.

More generally let 4 map £ into any compact Lie group
G and consider the exact sequence

102G )y2G —> 7,(G |0, (5.8)

where (£2G ), is the base component of £2G. If 4. is the in-
duced homomorphism from 7,(Z ) into 7 (G ), we seek a ho-
momorphism y from 7 (&) to £2G such that .y = 4.. Now
7,(G ) is abelian and hence A, factors through

o ()7 (2 )7, (2 )] = H\{2;Z ), whichisasum of b, {the first
Betti number) copies of the integers Z plus a set of cyclic
groups. It is clearly sufficient to find a homomorphism ¢
from H,(Z;Z ) into £2G such that e-.¢ = 3, where 4. = S«
and « is the canonical projection from 7,(Z ) onto H,(Z;Z ).
Now suppose for example that 7,(G ) = Z, or Z with gener-
ator u and choose wef2G such that e{w)=[w] = x. The map
¢ must vanish on the cyclic groups (proposition 5.1) and we

1M

defineiton & ,Z by ¢ {n,,...,n, ): = w}sz‘ , where the
integers m, are defined by 4.(0,0,...,1,0,...,0) (1 in the ith
place) = u"™. Then €4 (1.1, ) = "™ = Au (1 eresty, )-
Hence, given any 4:2—G and provided that b, > 0, we
can find a y such that the primary cohomology classes of 4
and By-u are equal. Thus d maps onto the primary classes in
[2,G ] or, more precisely, there is a surjective map
8:[2,G }—H '(X;7,(G))and §-dis surjective. For most groups
(SO 3 is one exception) & splits and {F,G ] can be expressed as
a direct sum,’ in which case d maps onto the H '(Z;7(G )
subgroup. Thus in the holonomy sector C, the primary
classes drop out of the vacuum state classification. We do not
know if this is true for the other sectors. Note that if &, =0
then the primary classes may reappear in the classification.
We have been unable to find a general expression for the
secondary winding number comparable to that in Proposi-
tion (5.7) although, since y ~ y, implies By ~ By, only the
homotopy class of y can be relevant. However, in a few spe-
cial cases it is possible to show that the secondary class van-
ishes and this might always be so. For example, if 7,(Z') is a
free group with generators ¥,¥,,...,¥, and y is a homomor-
phism into £2G, let @,,...,», be the loops in G such that
x 7:) = w;, i = 1,...,n. Now suppose that (G} = 0. Then
there are paths o' in £2G such that 0! = w,; and 0{ = 1
(the trivial loop). Define Yy, ¥, -) = o' for any
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word ¥, ¥, - Then tm»y"*) is a homotopy of y with the trivial
homomorphism and hence By is homotopically trivial. Thus
the secondary winding number of By-u vanishes identically.

A more interesting example is afforded by the case
when 7,(X' ) is abelian.

E. Abeuan 7¢(2)

Only prime manifolds can have an abelian 77,(Z ) and the
only possibilities,'”?* with 7,(Z ) infinite, are 7 (X ) = Z (eg.,
S'xXSHorZeZeZ (eg., S'XS'XS"). Any homormor-
phism of Z into G necessarily factors through a U1 subgroup
which in turn is mapped into G via a maximal torus. Thusifp
is a loop in Hom(,(Z),G), p,; factors as

i

ZUl>T—G:
(5.9)

Ci fa iz

ZoZoZ -UlXUIXUl 5> T-—G.

Now any two maximal tori are conjugate and hence y,, fac-
tors as

a e 2 Adp
Z->0NUl - 0T - 02G — G,
c ! i Adp
ZoZeoZ - NUIXUIXUI) - 02T — 2G — G,

(5.10)

wherea(n)(A ): = a, (n), etc. and (Adp){A ): = Ad(p, ) for some
curve p; in G. This latter term has no effect on By, and we
finally obtain

Be

Ba i
By,:BZ Ul —T—G,

Be

B, i
B(ZeZ@Z)—»UlXUlXUl—f»T-»G, (5.11)
and werecallthatBZ~S'andB(Ze Zo Z)~S'XS!'XS".

Now suppose that G has rank 1 or 2, such as G = U],

U2, SU2, SU3, SO3, S04, SO5, etc.,; then H*T,Z) = 0 and
hence By* must vanish on H *(Z;m,(G )}—there is no secon-
dary number. On the other hand since dim3 = 3, simple
obstruction theory!>? shows that

[2,Un)] = [2,U2]  n>3,
[2,SU(n)] = [3,SU2]  n>3, (5.12)
[2,S0(n)] = [3,S05] n>6,

and so the secondary numbers of By, vanish in these cases
too.

F. Nonhomotopic C, paths

Let us conclude this study of the map @ and the paths
C, by observing that in Eq. (5.6) homotopically inequivalent
lifts may occur. The corresponding curves C; still link 1
with 4 (x) but they cannot be deformed into each other. The
classes of inequivalent lifts are labeled by [Z,2G | = [S3,G]
where S is the (reduced) suspension of 3.2%2! These homo-
topy classes may be expressed cohomologically using the
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type of Postnikov technique described in Ref. (7). Some sam-
ple results are

[S2,805] = [S3,SU2] = H(3,Z,)e HYZ;Z)

=2Z,0H\|(%Z), (5.13)
[SZ,SUn)] = H\(Z,Z), n>3, (5.14)
[S2,SO(n}] =H\(Z;Z), n>6, (5.15)

and it is worth noting that even in the conventional S’ case
we get such an effect since [S (S *),SU2] = 7,(SU2) = Z, and
so there are two classes of curves linking 1 with 4. On the
other hand, 7,(SU(n)) = 0if n>3 and in this case the pheno-
menon is absent. Thus there is a new type of *“‘topological
charge” associated with the SU2 vacuum states but its phys-
ical significance is unclear to us.

6. CONCLUSIONS

We have seen that the canonically-quantized Yang-
Mills field on a general three-space 2 has a vacuum structure
that differs significantly from the familiar one where 3 = 3.
New phenomena arise from the nonvanishing of 7,(2') and
the corresponding possibility of a nonvanishing discrete ho-
lonomy group giving zero energy solutions that are not pure
gauge. These can either increase or decrease the naive [2,G ]
classification by respectively increasing the holonomy sector
or by permitting new zero-energy paths which enlarge the
class of gauge functions that are physically equivalent.

We have identified the space of zero-energy solutions
with the function space 2" (r>2) and classified the quantum
vacua by 7,(Z). A crucial result is the exact homotopy se-
quence (4.1) and the ensuing enumeration by
g, '(C,) = [2,G 1/9m (# ,h ) of the states associated with
the holonomy sector C,,. States and transition amplitudes
can be diagonalized using the characters of this group and in
Sec. 5 we have presented a number of results on d7,(%,h ).
The major problems that remain to be solved are:

(1) The calculation of the secondary winding number of
[By,-u] in terms of the homomorphism p for a general
(2 ) (i.e., other than abelian).

(2) The derivation of analogous results in holonomy sec-
tors other than C, .

(3) If (1) is impossible in general it would be useful to
solve it for at least a selection of prime manifolds such as
those having nilpotent or solvable fundamental
groups.”‘zs'"'

(4) An exhibition of a definite example in which the
secondary winding number of [ By, -u] is nonvanishing.
This would drastically change the appearance of the 6 vacua.
Alternatively, one would like a proof that this number van-
ishes for all ().

{5) The entire construction should be repeated for the
case where the G bundle over 2 is nontrivial.

It is possible to write down analogs of the lifting prob-
lem (5.5) which apply to an arbitrary holonomy sector, but it
is difficult to recast the information into a usable cohomolo-
gical form. A useful tool in this respect is the “dual” version
of (5.5) or its extensions. We have the dual relation
G * = G % and, for example, Eq. (5.5) dualizes as
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(EmNR)r X G

¢ -
s

/7 pAu
SAS=SS——=Br AR, (6.1)

where A denotes the smash product of pointed spaces and
the equivalence relation on (E7 A %)X G is
(e,h.g)=ley.h,h (v) " 'g).

(cf. (£ X V)X +G in Sec. 3.B). A lift ¢ is necessarily of
the form ¢ [4,x] = [i#(y),p(4 ),E (A,y)] and thus we recover the
E (A,y) function.

We hope to return to these problems in a later paper as
well as to the question of the analogous effects in the canoni-
cal quantization of the gravitational field.

APPENDIX

Proposition A.1: m( D) = m (D) for all r where
D=gO

Proof: There is a natural map i. from 7,(2") into
7o(Z) which we wish to show is a bijection.

(a) To prove that i. is surjective it suffices to show that
any element of & is homotopic to some element of 2. We
know, however, that there is a one-to-one correspondence
between elements of & induced by a given homomorphism
heZ and cross sections @ of the C = fiberbundle 2 X ,G—2
with ¢ (x) = [y,D (y)~']. Every continuous cross section of a
C ~ fiber bundle over a compact base space is homotopic to a
C "section?’?® and hence for every element of & there exists
a suitable element of 2",

(b) To show that i. is injective, we must show that any
two elements of D, and D, of " which can be joined by a
pathof D*in & can also be joined by a pathin &2, First we
triangulate the real analytic set # with h, and 4, {the homor-
phisms corresponding to D, and D,) as two of the vertices.
We deform the projection of Av»D; in # into a path Avsh
which lies entirely in the one-skeleton of %. Since & is a
fiber bundle (Proposition 3.10) the homotopy lifting proper-
ty?®?? guarantees that D, can be simultaneously deformed
into a new path D, in & such that D, = D, and D, is homo-
topic to D,. Thus D,(y) = £2 (x)D,(y) with £2 (x) homotopic to
1 through a one-parameter family A~»{2, (x) of C " functions.
Then A2 !, (x)D, () is a path of continuous functions
whose initial and final points equal D, and D,. Thus without
loss of generality we can assume that A~sD, covers the de-
formed path Awsh, in the base space Z.

The curve A, intersects the singular set in Z# at a finite
number of vertices which we will label with the correspond-
ing values of A sothat 0 <A, <4, < <A, < 1{hyand/or h,
could also be singular points). Consider the interval
I, = [0,4,] and construct the trivial principal G bundle
(& XI,) X G over 2 X1, with the equivalence relation
(v.A.8)=(yyA.h i '(7g) and projection r:[y,A,glw(r{y),A ). A
continuous cross section is of the form ¥(x,A ) = [y,4,D ;'
()] and, because X X, is a C © manifold (with boundary),
there exists a C " cross section®® ¢”(x,4 ) such that
d(D, (y),D {(y)) < € for all A€[0,4,] and with € sufficiently
small that D, ~D{. Here d( , }is a metric on G.
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Now D {(y) = @ (x)D,(y) for some C" function & (x)
which is homotopic to 1 through a family tm»®, of C” func-
tions. We can replace D {(y) by the family of C” functions
DYy) =@ 11, DYy} which satisfies D ' = D, and of
course d(D,(y),D {(y)) < €. We can repeat this procedure for
the finite set of intervals { [4,,4,, , ]} and end with a contin-
uous path AwsD, (r) of C" functions with the property that,
by choosing € small enough, D {~ D,. Once again one uses a
family £2, of C” functions in order to set D {" = D, while
leaving alone the condition D §! = D,,. This final curve in
Z" is the one we seek.

QED.

Proposition A.2. There is a universal £2G bundle whose
base space is G.

Proof: (a) Let PG denote the space of paths in G, whose
endpoint is 1, equipped with the compact open topology.
Then P G is a topological group and £2G is a closed normal
subgroup. Form the canonical £2G bundle

2G—PG — PG /12G, where PG /£2G is given the usual quo-

tient topology (which is compatible with its group structure).
The projection map a is a continuous, open, homomorphism
with kernel £2G.

We define m:PG—G by m(p) = p(0) and #:PG /2G—G by
t[p] = p(0). Then 7 and ¢ are continuous and ¢ is a bijection.
However, 7 is a homomorphism from the metrizable group
PG to the compact group G and hence 7 is open [Ref. (30) p.
98] which in turn implies ¢ is open. Thus ¢ is a homeomor-
phism and we obtain the principal £2G bundle

2G—PG — G.

(b) To prove local triviality, let U be a neighborhood of
1€G such that the exponential map is a diffeomorphism onto
U. Define a map o:U—7"'(U) by o(g) = {g, } where 1 g, is
the unique geodesic in U withg, =gandg, = 1. Thenoisa
continuous local section and local sections can be construct-
ed everywhere by pulling o around G = PG /2G with the PG
action.

(c) PG is a contractible space and hence the locally tri-
vial bundle 2G—PG—G is a univeral £2G bundle. Thus G is
a model for B (122G ).

Q.E.D.
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Boson operator representation of Brownian motion
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In the framework of the classical theory of Brownian motion the time evolution of the distribution
function in the full phase space of a particle immersed in a fluid is governed by a Fokker-Planck
equation. The reduced distribution function in coordinate space fulfills the Smoluchowski
equation in first approximation. This work improves previous derivations by including higher
order corrections and by using an expansion which permits the discussion of the size of the error
made by truncating the infinite series. The derivation is based on the adaption of a powerful
mathematical tool used in quantum field theory: The Fokker—Planck equation is written in terms
of boson operators. Conditional equilibrium averages of operators are defined which play the role
of vacuum expectation values. The time-ordered cumulant expansion is used to calculate the
formal diffusion operator in terms of conditional equilibrium averages of powers of the “Liouville
operator in the interaction picture.” It is shown that all these averages can be obtained from a
Gaussian generating functional which is explicitly calculated using the time-ordered version of
Glauber’s theorem. The resulting diffusion equation, a fourth order partial differential equation
in the position space, is obtained by calculating the cumulant expansion up to sixth order.
Conditions on the potential are established which guarantee that these equations are dissipative
and it is shown that all solutions approach the Boltzmann distribution as #— o« . Curvilinear, non-
Euclidean coordinates are introduced in order to interpret these diffusion equations. Nonlinear
diffusion equations and their application regarding the self-avoiding random walk are discussed.

PACS numbers: 05.40. + j

1. INTRODUCTION

The motion of a particle immersed in a fluid is governed
by the Smoluchowski equation. This is the time evolution
equation for the reduced probability density P (t,g) as a func-
tion of the time # and the position g. Under the influence of an
external potential U and the fluid the reduced probability
density changes with time according to

2 purg=2o\L + L% )pug
ot dq dq kT Jq
D denotes the diffusion constant, 7'is the temperature, and k
is the Boltzmann constant.

A simple example shows that the Smoluchowski equa-
tion cannot be completely correct in general. The Smolu-
chowski equation is an approximation in contrast to Ein-
stein’s result, which holds in absence of external forces and
turns out to be exact'—compare Sec. 4.

For instance, consider the harmonic oscillator under
the influence of random forces described by the Kramers-
Liouville equation— a completely solved problem.” The first
moment of the reduced probability density is*

(git)) = (g(0))e ~ > \cosh w,t — sinh w,t)

mo,
with the friction coefficient ¢, the mass m, the frequency o,
and w, = (c2/4m® — »*)'/%. The time dependence of (¢(?)) is
in good agreement with the Smoluchowski equation for the
reduced probability density P (t,g).

d d ( d ma?®

I ppg=-2a(2 &
2 0= 3o M 5 YT

JPiea @)
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for large times, >, ', if Einstein’s diffusion coefficient
Ay = kT /c is replaced by the w-dependent expression
1/2
A=A(e)=Aoﬂ, 3)
2
with € = (mw/c)>. In the limit as é—0, A (€) approaches A,
As an infinite series

A(€) = Aol + €+ 26> + ). (4)

This example shows that, in general, the diffusion equa-
tion contains higher order corrections which depend on the
potential.

A very good survey of previous derivations of the Smo-
luchowski equation (and corrections) is contained in Ref. 4.
The present work improves these derivations in three ways.
First, the boson operator representation and the introduc-
tion of appropriate conditional equilibrium averages reduces
the calculation to a purely algebraic problem. Secondly, we
are able to show that all necessary averages in the momen-
tum space can be obtained from a Gaussian generating func-
tional. This important result makes it possible to calculate
the time-ordered cumulant expansion up to sixth order,
which leads to new corrections of previously published diffu-
sion equations. Thirdly, the expansion used here is physical-
ly motivated though all calculations are exact and do not
contain any further approximations. It is necessary to keep
the physical picture in mind because some mathematical
manipulations are only formally correct. In our picture the
correlation of the momenta can be viewed as a particle which
decays exponentially.

The starting point of our discussion is the Fokker-
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Planck equation for translational Brownian motion, which
is called the Kramers—Liouville equation in the following.
We consider the Brownian motion only in the Markovian
limit.’

2. CUMULANT EXPANSION OF THE OPERATOR G

The time-ordered cumulants give an explicit expansion
of the formal diffusion operator G describing the time evolu-
tion of the reduced probability density P (t,g),

g; P(t.q) = G (Lg)P(14),

Glng)= 3 G"ita) (5)

n=1

The description of the motion of a particle moving in a
fluid leads to the Kramers—Liouville equation.” This serves
as a starting point for the description of a particle influenced
by an arbitrary external potential U (g) and a “Brownian flu-
id.” The fluid is considered to be composed of particles
which exert a fluctuating force with vanishing mean on the
particle immersed in the fluid and it is assumed that this
force has a white spectrum. The only constants entering the
description are the Boltzmann constant k, the temperature T’
with 8 =(kT)~", the mass m, and a friction coefficient ¢
which depends on the size of the particle and the viscosity of
the fluid.

The Kramers-Liouville equation is a first order partial
differential equation describing the time evolution of the
probability density f(¢,¢,p) which depends on the time 7, the
position ¢, and the canonical conjugate momenta p. g and p
are vectors in R. the Kramers—-Liouville equation is

%f(t,q,p) — (L +K)/(tgp) (6)
- -1, 99U 3

L= mop dq dq 8p’ )
INE RN

K=l (m BT ) (8)

L is Liouville’s operator and K denotes Kramers’ operator,
which describes the effect of the random force acting on the
Brownian particle. Equation (6) describes how the initial dis-
tribution, given by a function f, = f(0,¢,p), changes in time.
Any initial distribution will approach the Maxwell-Boltz-
mann distribution g5 in the limit as #— . With the parti-
tion function Z,

&melgp) =272~ le = Alr/2m+ Vil (9)

For a large particle moving in a dense fluid, the main
contribution in Eq. (6) is due to the Kramers operator. The
Kramers operator forces the relaxation of the momentum
distribution to the Maxwell distribution gy,

gu(p) = 2m/B) > %~ FEAm, (10)

In order to calculate that diffusion operator G of the
time evolution equation

d
—P=GP
R (11)

for the reduced probability distribution P (2,g),
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Pua)= [ dfian) 12

an approach very often used in quantum mechanics turns
out to be useful here, too. In analogy to the interacting pic-
ture used, for instance, for the quantum mechanical treat-
ment of radiation, the time dependent transformation

fle)=e*Fie) {13)
leads to the Kramers—-Liouville equation in the “interaction
picture”,

a~_ — Ky KT 7
Ef—e Le™ f=Lt)f. (14)

In order to calculate this new operator L {¢ }, and also for
the further analysis, it is useful to introduce the following
operators:

a=-(2)"Z (L)%, (15)

B) & \m
a*z(%)mg;, (16)
N
b+E(mL5)”2§q_, (18)

These operators consist of three components, e.g.,
a = {a,,a,,a;). The operators a and a' are dimensionless, but
the operators # and 4 * have the dimension of an inverse time.
The Liouville operator L and the Kramers operator K are
L=>b%a—ba, {19)
K= —c¢/mata. {20)
The dot ““-” denotes the usual scalar product of two vectors
with three components. The commutator algebra of the
components of the operators a, a’, band b " is
(ava,] = [a}a]] =0,
[a:.a] ] =6;
[a:b;] = [anb]] = [alb,] = [alb]] =0, (21)
[bob] = [b16]] =0,
;U
94,9
The Liouville operator in the interaction picture is giv-
en by the infinite series

[:0]]=m~"

7 L —tky K = t" (n)

L{t)y=e "Le —,,zon!A . (22)
The operators 4 ™ are defined by recursion, 4 ® = L and
A"tV =1[4" K ]. This identity is proved in Ref. 6. The
commutator algebra of the components of the operators a
and a'—a three dimensional Weyl algebra—and the fact
that all a-operators commute with all b-operators, Eq. (21),
leads immediately to

A= ( =< )nb ta — ( £ )nb.a*. (23)

m n

Substituting these expressions into the sum on the right-
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hand side of Eq. (22) gives
Lit)=b't)a—b(t)d"
bl(e)y=bte =t/ (24)
b (t )=be'’™",

In order to take full advantage of the properties of the
operators introduced by Egs. (15)—(18) it is useful to consider
the scalar products

woy= d% g 'w*(phl ol (25)

«mn=[ aa ' e rHashion. 6

The inverse of the Maxwell distribution, respectively, the
Maxwell-Boltzmann distribution, serves as weight function.
Consequently

{au,v) = (u,a'v), {27)
(afih)) = ({fa'h)), (28)
((bfiR)) =({fibTh)). (29)

These identities hold for all functions which vanish suffi-
ciently rapidly at infinity; they are proved by integrating by
parts. The operators @' and b ' are the formal adjoint opera-
tors of a, respectively b.

The definition of the scalar product (.,-), Eq. (25), can
be extended to functions which depend also on g.

= dpga'riashion)
= (fh)q) (30)

We will see that the diffusion operator G can be ex-
pressed in terms of a sum of products of operators of the form

[ @LithL g 31)

Keeping the definition (30) in mind, this expression can be
interpreted as the conditional equilibrium average of the nth
order product L (t,)--L (t,,),

(L ()L (t,))=(gm.L (t,)~L (t,)8m )
— [ @Lith-Lie. 32)

The cumulant expansion, which will be used to calcu-
late the diffusion operator G, is based on the following
theorem:

Theorem 1 (Theorem on time-ordered exponentials):
For an arbitrary operator M (¢ ), the nth cumulant average
(M (t)-M(t,)). fort,>1t,>->t, is defined by

ME)-Mt)h= Y (—1)}7'Y

partitions of n

k_ ["pls)
1:[ <,HM(t‘ﬁ(s)J)>' . (33)

The sum runs over all ordered partitions of the first » inte-
gers in k Subsets (i 1,...,0,, )= (i 1 s--sikn, s With i}, < i, for
r<s,alll,andi;, = 1. pisa permutation of the integers 2,...,k
and p(1)=1. Then the following identity holds:
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<Z exp J:ds M (s)>

= Z’ exp Ltds[<]:exp Lsds’M (s’)>c - ]1]. (34)

The time-ordered exponential is viewed as a formal power
series,

14 o 1 Sy — 1
T exp fdsM(s) =14+ ) ds,---f ds,M(s,)-~-Ms,).
e 0 n=1J0 0
(35)

Equation (34) is provide in Ref. 7.
The connection between the operator cumulants G !
and the cumulant average (33) is

G "(t,) = f'dtz---f" Cdn (MMt (36)

The complete cumulant expansion G {t ) = i G '"(t)canbe
n=1

written as the cumulant average of the time-ordered expo-
nential of the operator M (t),

Git)= <Z’ exp JotdsM(s)>c — 1.

Again, the time-ordered exponential is viewed as a formal
power series in the operator M (¢ ). The cumulant average of
powers of the operator M (¢ ) of the form (M (z,)--M (z,)). is
given by Eq. (33).

The Theorem on time-ordered exponentials shows that
the cumulant expansion leads indeed to the time evolution
equation for the reduced probability density P (¢,q) if the ini-
tial momentum distribution is Maxwellian
f(0,q9,p)=g,, P(0,q). [This is only an apparent restriction
since, as it turns out, the diffusion operator G () is indepen-
dent of the initial momentum distribution in the limit as
t—o0]. We have

P(t7q) = <gM»f> = <ngeIK}‘> = <e(er/m)atagM ’]>
= @) = (T exp [ dsLis)iog

=T exp J.tds G (s)P(0,q). (37

Hence, the reduced probability density P (¢,g) fulfills the evo-
lution equation (3 /Jt )P = GP.

Sometimes it is useful to have a recursive definition of
the cumulant averages (for instance, for the proof of the clus-
ter property for cumulants). The nth cumulant average
(M(t,)--M(t,)). can be expressed in terms of the average
(M (t,)--M(t,)). withm <n.

Theorem 2 (Inversion formula

(M(t,}-M1,))

8.9):

= 2 (Mt

Iyy

JM (2, ) (M (1, )M 2, ) . (38)
partitions of n

The sum runs over all partitions of the first n integers in k
Subsets (7, 5,...»1,, )+{ik 1 »-sikn, ). The subsets are ordered
i, <i, for s <r. The order of the cumulant average is deter-
mined by the condition i,, </, for /<!’

Proof: Using the Theorem on time-ordered exponen-
tials, one obtains a functional equation. For all functions
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The second cumulant gives the first diffusion equation
for translational motion. Evaluating the time integral and
replacing the operators b and b by the original definitions

As)RT—C,

(T exp | ds A (M (5)
(39)

= Z exp J:ds[(z exp Josds' A (s’)M(s’))c — 1].

Taking the functional derivatives 6"/ II SA (t;) and setting
i=1

A (t,)=0 gives the desired result (38). This completes the

proof of Theorem 2.

3. DIFFUSION EQUATIONS

In this section the cumulant expansion up to sixth order
will be calculated. The first nonvanishing term, the second
cumulant is exactly Smoluchowski’s result.

Equations (33) and (36) give an expansion of the diffu-
sion operator G in terms of the averages,

(L (1)L (t,)), (40)

The first step consists of calculating all necessary averages of
this form. Though this procedure seems simple enough, the
higher order corrections, the fourth, sixth, etc., cumulants,
have never been calculated before because this calculation

becomes very cumbersome. A breakthrough can be achieved
by realizing the simple structure of the Liouville operator in
the interaction picture: L (¢ ) is linear in the creation and de-
struction operators a' and a. Their properties are summed

up by

[a,a]] =6, (41)
(a,up) = (u,alv), (42)
a8y =O. (43)

However, all this means that for each / the operators a; and
a] are a pair of destruction and creation operators formally
identical with the boson operators used in quantum field
theories. ' The properties of these operators are much
simpler than the properties of the original differential opera-
tor d /dp and the multiplication operator p. They also allow
the construction of an orthonormal basis for the momentum
space, 11,12

_ (a))" (@) (ah)™
T ) 2t g 2

(44)

The Maxwell distribution g,, corresponds to the vacuum in
quantum field theory.

The first cumulant G ", Eq. (36), is the average of L (¢).
This operator contains only first powers of @ and a'. How-
ever, the expectation value of these operators vanishes,

(a) = 0and (@'} = 0. Hence G "(t) = (L (t)) = 0. The sec-
ond term of the cumulant expansion (5) is according to Eq.
(36) equal to f; ds(L (¢)L (s)). Using the orthogonality rela-
tion (¢, ¥, ) = (Snl,l;(S,%cS,,‘n3 for the base functions (44)

leads to (L (¢)L (s)) = — b1(z)bs).
G(l)(t) =0,

Got)= — f tdsb*(t b (s). (45)
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(17), (18), and (24) leads to

2 Pltg)=G®(t)Plg
- _(%.A (t)(B-C;—;] + aiq)P(t,q) (46)
- _a‘_’q_.A (t )e—ﬂ"g; &UP (1,g), (47)
e

Af)= 2 "Bc

The reduced distribution P (t,9) fulfills the Smoluchowski
equation (46). The diffusion coefficient A (¢) is time depen-
dent and vanishes for +—0 because initially the momentum
distribution is Maxwellian. At the beginning, there is no cor-
related motion because the average momentum { p) vanish-
es for £ = 0. The diffusion coeflicient becomes stationary
after a short time (long, however,compared with m/c).

The calculation of the higher order corrections is based
on a formula for the averages (L (t,)-L (t,)), which shows
that the operator L (¢ ), and a Gaussian random variable X
with mean zero, have an important property in common: All
moments of X can be expressed in terms of the second mo-
ment {¥?)=0". The odd moments vanish and the even mo-
ments are {(¥*™) = 1.3. ...(2m — 1)*™. The following
theorem represents a generalization of this Gaussian proper-
ty. It is an important results of this work.

Theorem 3 (Gaussian Property)"*:

Fort,>t,>>t,,,

(L (0,)L ()L () (48)

= 5 1 (o DHE 1))
partitionsof 2m* j=1

with (L (t)|=b'(¢)and |L (t))= — b (¢ ). The sum runs over
all partitions of the first 2m integers in subsets
({182)(i3m — 1§2m) With i; | < iy;. The operators on both
sides of Eq. (48) are time ordered.

Proof: The moments of theoperator L (¢ )can be calculat-
ed using the generating functional ¢ [1 ],

¢ [A ]E<T expf dtf d’q d3q'{---}>, (49)
b 0 R* R*
{~)=[b"t99)a—b(tgq)a"]11(6q.q).
The distributions b (1,q,¢’) and b (1,9,¢’) are obtained by ap-
plying the operator & (¢ ), respectively, b (¢ ) on the delta func-
tion (g — q').
b'(t.g.9')/=b"(t)5lg — '), (50)
b(t.g.q')=b(t)blg —q').
The delta function & (¢ — ¢') is considered as a function of q.
If the support of A is bounded, the integral in Eq. (49) is finite
and hence ¢ [A ] < .

The moments of the operator L (t ) are generated by tak-
ing the functional derivatives of ¢ [4 ] and setting A to zero.
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(L (1)L (2,))f (go)

fd qr fd 9. — i
]R Haﬂ’(t”q1~l!q1)

i=1

41 ] f(qn) (51)

¢ [A ] is a real valued functional, but taking the functional
derivatives leads to a generalized function, a distribution in
the variables ¢,...,2,, go,....q, . This distribution multiplied
with f (qn) glves, after integrating over R*", the function

<L (£1)-L (2,)).f (qo)-

Smce the argument of the exponential in the definition
ofé [A],Eq. (49),islinearinaanda’, the functional ¢ [4 ] can
be calculated using the time-ordered version of Glauber’s
theorem.'® Along the lines of Ref. 15 one obtains

s121 = exp | — [ as [ st
)—fwdqf @[ aqf ay (52)
X Z {b]651.9.9' 1 (51,99

Xb)(s,9".4" M (52,4".4")}-

3
The sum z in Eq. (52) can also be written as the scalar
I=1
product b '(s,,4,9')-b (s5,¢",¢"). The argument of the exponen-
tial is a quadratic form in the test function A. Taking the
functional derivatives according to Eq. (51) gives, therefore,
the sum of partitions in ordered subsets of two elements. For

instance,
54

. ¢14]
l:Ila/{ (£:59;: - 1:4:)

A=0
= b"(t1,90:9110 (121,920 "(13,92,93)0 {14G3.9.)
+ b (21,4090 (83,2:5)b 1(22,91,92)b (£4:92:94)
+ b(2,,90:91)6 (193,940 T(22,91,92)b (13,92,95)-  (53)
Integrating over the variables g, to g, gives
(Lit-L () = blt)1b (618 ")t 1) (54)

bt bt
+bI ()b (tz)b! (ts)llJ (ta) + &7(0)5 12)f )8 {24)-

In this equation the lines indicate how the scalar products
have to be calculated, e.g., the last term is equal to

Zb b [(2,)b;(1:)b,(t,). This illustration concludes the proof

of the Theorem 3.

Equations (38) and (48) provide all tools needed for the
following calculation of the fourth and sixth cumulant. Only
the results are listed here; for more details see Ref. 16. The
calculation is cumbersome but patience leads to the goal.
The results are, adopting Einstein’s convention of summa-
tion,

G(4)(t)=( . Et —{c/m)t__ef(Zc‘/m)r)
m

im Py
dg; e aqfaqj aqj

+ 8;/) (55)
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o~ {3c/m)t

_( L3¢, —emi_ 3¢, —oome_ 1
2 m m 2

9 ,—tesm 9 71/))”’2
— Ze c/m +__e c/m)t ____{_"}
2 e’

2
_ £e~- le/mit = 2e/mlt o _5_e~126/m11]ﬂ2(...),
m 2 ¢
aZ
{}= Gada U,
Z) aU ., d aU
(B S )
Ly (s 2)
Jd d oUu
- —8—(],_UU(B lo’?qj + 'a—qj‘)
d _, 0 aU
o)
= 5 (B 5 ) o W )
c? U
o)
d ., d U
X£@1£+£)a
+2a‘z u,u, (/3 5‘3—1+ a:). (56)

The matrix U, stands for the second derivative 3°U /dq,9q;.
In the limit as ¢ goes to «, one obtains

G ¥(o0) = 'C" %U”(B_lb% + %,) (57)
and for the sixth cumulant
X@”ET*“)
Discussion

The higher order corrections G “, G ©, etc., vanishin the
absence of external forces. This follows from the fact that the
cumulant averages (i (t,)~L (2, )). vanish for n > 2 if the
operators b and b t commute. In general, the second cumu-
lant is exact for a multiplicative stochastic Gaussian process
if the stochastic operators commute.'” Einstein’s result,

aiP(tq)

is therefore exact. The stationary value of the diffusion coef-

= limA (t) = 1/Be.

1—> 00

In the presence of external forces the second cumulant

A (t)V?P(t,q), (59)

ficient is obtained in the limitas t—c , D
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leads in the limit as #— oo precisely to the Smoluchowski
equation. This equation can be interpreted as the conserva-
tion law of the current,

j=JP, (60)
-1 4 1 U
= - — 61
d Bc dq ¢ dq (61
a —d .
L p=__2 62
E» % J (62)

Adding the corrections given by the fourth cumulant,
one obtains a diffusion equation with position dependent dif-
fusion coefficients.

ﬁ P= — J

ar g,

D, =6, + (m/cAU,,. (64)

This equation agrees with the results given in Ref. 4.

It can be shown that all solutions of the Smoluchowski
equation (62) tend toward the equilibrium distribution, the
Boltzmann distribution gy as -~ 0. This is not always true
for Eq. (63) because the diffusion coefficients D,,/c8 become
negative if Uy, has a negative eigenvalue smaller than
¢~ ?/m. Obviously this is nonsense. The diffusion equation
(63) can only be applied if the potential is sufficiently smooth.
If the curvature of the potential U is very small, Eq. (63)
reduces to the Smoluchowski equation. If the curvature is
very large the new equation leads to significant changes of
the solutions. On the other hand, if U, is very large the high-
er order corrections may become more and more important.
In this case it is also questionable if the cuamulant expansion
converges. Equation (63) can be tested directly for simple
cases, for example, the harmonic oscillator. Equation {63)
gives the first correction of the diffusion coefficient given by
Eq. (4). This series converges only if € < 1/4. This means that
the correction given by Eq. (63) and (64) can lead to a quanti-
tative change of the diffusion coefficient in the order of 0-
25%.

Equation (63) is further improved if the sixth cuamulant,
Eq. {58), is included. This leads to

Dy s (63)

a a [ m
Idp= _ Su+ MU
ar aa. ke + 2 K
2m? m? m? .
+ - UuUy + e Ui Ui + W Ui | Ji
ad 3m? a
_ = U, —ij. 65
9a, (zcw ¥ Gq, )” ¢

It seems that for the harmonic oscillator the higher order
corrections lead always to a second order partial differential
equation of the same form as the Smoluchowski equation but
with a modified diffusion coefficient.

In the next section we will show that all solutions of Eq.
(65) reach the Boltzmann distribution as t— « if the poten-
tial is sufficiently smooth.

In general, for a diffusion equation

a
—P=AP
o (66)

one requires that the diffusion operator 4 is dissipative;!®
this means
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Re((¢, A¥))<0 forall yeD(4). (67)

The scalar product used in the following discussion is
defined

on=| deervrs. (68)

We denote by H the set of all functions ¢ on R® which are
measureable on R? such that the expression {({¢,¢ }) defined
by Eq. (68) exists, ((#,4 )) < «. Functions which are equal
almost everywhere are identified. The norm on H is defined
by

g l[=((g,¢ ))'/* for geH. (69)
The diffusion operator given by Eq. (62) is dissipative
because for 4 @ = — (3/9q)-J,

Re({(%,4 ) = Re (), —;—qﬁww

== i Re{(J,¢,J.¥) MeB)~'<O0. (70)

i=1
Similarly one shows that the operator4 ) = ( — 3/9q, \D,,J,
is dissipative if all eigenvalues of the symmetric matrix D,,
are non-negative.

These concepts are useful because one can now prove
that the solution of these diffusion equations approach the
Boltzmann distribution in the limit as #— . First, the norm
I|P()]| of a solution of the diffusion equation (66) decreases
monotonically in time,

d ,_ d
EIIP(f)Il = Re((P(t).P(t)))
=2Re ((P(t), 4P (1))
<0. (71)

The norm || P (z )| must reach its minimum as r—c because
|2 {t}|| is bounded from below, ||P(t)||>0. Hence,

d 2 _
o Pl =0. (72)

This means that Re{(P,4AP)) = 0 at t = . But the equa-
tion Re({P,AP)) = 0 implies that P = g, in the case of the
diffusion equations (62), 4 = A ®, and (63), 4 = 4 “. For in-
stance,

Re((P,-9_.JP)) =0,
dq

=((J,PJ,P)) =0 for/=1,2,3,
=J,P=0 for/=1,2,3,
=DP=gy.

Therefore, by requiring that the diffusion operator A is dissi-
pative and also that gy is the only function which fulfills the
equation Re{{gs.,4g5 )} = 0, one makes sure that all solu-
tions reach finally the Boltzmann distribution gg.
Calculating higher order cumulants leads very fast to
extremely complicated expressions for the diffusion opera-
tors. The sixth cumulant leads to a third partial differential
operator; compare Eq. (58). From the investigation of 4 “
one suspects that, again, the diffusion operator
A% =G®? + G“ + G®isonly meaningfulifthe potential U
is sufficiently smooth. This is actually the case. Without go-
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ing into all details the result may be stated as follows:

(IRe((¢, 4 ) = 0=¢p = g, (73)

(ii)4 © is dissipative if

1 —4; — 34,30, (74)
with

vy v !
A; = sup|D U \g)|-|D kU(q)‘<i>ml/ZBk—l/2’
c

geR* v, > 1,

[=vi| + =+ vl (75)
The derivatives D ¥ are defined D ¥
= (0/3q,)°(0/99,(8/3q,)', v = (a, B, ) and
V=a+B +7.

A, is dimensionless constant which is typical for the
cumulants G *' for k>! 4 2. For more details see again Ref.
16.

From Eqgs. (73) and (74) and from the previous remarks
it follows that all solutions of the diffusion equation
(3/3t)P = A'®P, P (t = O)eH, approach the Boltzmann distri-
bution as — eo (for sufficiently smooth potentials). This is an
important result because the form of the operator A4 ' differs

very much from a typical diffusion operator, for example,
suchas 4 “.

4. INTERPRETATION, APPLICATIONS, AND REMARKS
ON THE CONVERGENCE OF THE CUMULANT
EXPANSION

Position dependent diffusion coefficients. First, we con-
sider the diffusion equation (63). It was already pointed out
that one must require

;U c?
< —
dq,0q; m

foralli,j. (76)

The diffusion equation (63) can be reduced to a diffusion
equation with constant diffusion coefficients. This is
achieved by introducing new variables Q = Q (g), a coordi-
nate transformation which has an interesting physical inter-
pretation, illustrating the interplay of the Newtonian dyna-
mics and the pure Brownian motion.

Consider the symmetric matrix D,,(q) defined by Eq.
(64). It is possible to find a square root g,;(g) such that

8.519)85,19) = Da, (), (77)
8ap\9) = 8palq)-

We introduce the new variables Q,, Q,, Q; by
dQ, =g '..44,. (78)

The new coordinates Q,, @,, Q, are the coordinates in a non-
orthogonal coordinate frame. These coordinates belong to a
differentiable manifold with the metric

dQ, dg,
dg, dq,

The metric is the inverse of the diffusion matrix [D,,, (¢)].
The new coordinates @, (q,, ¢, q5) are well defined by

Eq. (78) if @, is an exact differential. This condition can be
written
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e’ 08
dq, dq

mn

=0. (80)

The new density P'(¢,Q} is obtained from the density
P (1,g) by the transformation

P'(1,Q) =gPt,4(Q)), (81)
with

g=det (g,z). (82)
In order to derive the diffusion equation for the new distribu-

tion function P'(t,Q ), Egs. (78) and (81) are substituted into
Eq. (63). This leads to

d 1 d d

—PtQ)=g—g —D, e Plgl —

ot ( Q) gcﬁg;ta (9Qa © € gB aQB
X% 'P(1,Q). (83)

It is convenient to write current operator J in the form
J=(—kT /cle = ¥P(3/9g)e"". The potential U is now consi-
dered as a function of Q,

U=Uqgl@)=U(Q) (84)

The derivative (9/3Q, )gg,..' vanishes as a consequence of
the integrability condition (80). Hence Eq. (83) can be written

2P = L0 ewins 2 _gu-wspis) (85)

at B 3Q, Q.
This is the diffusion equation in the new coordinates Q. In
these curvilinear coordinates, the diffusion equation looks
like a diffusion equation in an Euclidean space with constant
diffusion coefficients 6,5(1/cf ) and potential

U—B 'Ing.”®

The transformation Q = Q (¢) has a physical meaning.

Recall that the inverse of the square root of the matrix D is
in first order in m/c? given by

m &PU
2c* 3q,0q,
The approximation is consistent because the matrix D is
accurate only up to first order in m/c?. The higher order
corrections would be specified by the higher order cumu-

lants. The expression (86) satisfies the integrability condition
(80). The new variables Q are

(86)

—1
gyv gé‘uv -

t,’a
0=g+ 20 ®7)
2
¢, is the correlation time of the momenta,
t, =m/c. (88)
al(g) is the acceleration due to the force — dU /dg,
- 9U
a,lg)= —-m~'—. (89)
dq,

It is easy to verify the Eq. (87) is a solution of Eq. (78) and (87).

Equation (85) shows that the “effective potential” in the
new variables Q is equal to U — 8 ~' In g. We use again the
approximation (86). Hence,

PU
U=U—f8"Ing=U— 2 det( ) 90
g g 2B 94,94; o)

The diffusion equation (62) can now be written
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9 piror— _ 9 5 p 1
—67P(t,Q)- 30 JoP'(t,0), (91)
with
1/ 0 au’
= - —(Z ). 92
J, cﬁ(aQ +8 aQ) (92)

Equation (92) has the same form as the Smoluchowski
equation (46) obtained for translational diffusion in first non-
vanishing order. But Eq. (92) describes a different process.
The new interpretation is given by the coordinate transfor-
mation {87) and the new potential U’ defined by Eq. (90).

Comparison of Egs. (87) and (91) shows a competition
between the Newtonian dynamics and a Brownian motion.
Equation (87) is the orbit of a Newtonian particle under the
influence of a force which is constant in time:

q(t) = go + vot + at?/2. In Eq. (87) the term containing the
initial velocity v, vanishes. the Newtonian dynamics applies
only for a very short time the correlation time of the mo-
menta ¢, . Applying the transformation (87) shows that ever-
ything else is a pure Brownian motion with external poten-
tial U’ governed by the Smoluchowski equation (92).

Nonlinear diffusion equations. In a manner similar to
the preceding presentation the diffusion equation can be der-
ived for NV interacting particles.*'® This is leads to a partial
differential equation in the 3N dimensional position space.
There are only few applications for the N particle diffusion
equation because it cannot be solved in general for large N.
On the other hand, one may ask the question if the reduced
density

p(t,q)=f dng---f d’mf d3p1---f d’p,
RJ RJ RJ RJ

Xf(t’q’%wqu,Pn---sPN) (93)

fulfills a simple diffusion equation if N is large and the inter-
action between the particles is weak. [In Eq. (93)
f(6.9:93,...g x5 P1s-...0 ) is the probability density in the 6V di-
mensional phase space.] If the correlations between the par-
ticles can be neglected, the N body problem reduces to the
one particle dynamics. For this case we propose the follow-
ing diffusion equation: In one dimension,

d

Ep(t’q)
_p 9 m FUlpl \( 4 | p3Ulp]
=b dq (1 Tz dq )( dq +h dq )p(t,q),

(94)

and similarly in three dimensions. The potential U is now a
functional of the density p. For a specific two particle inter-
action potential ¥ (g) one can write (only the one dimmen-
sional case is considered in the following)

Ulpli = [ daVig—q)pig) 9
RJ

The diffusion equation (94) can be used to describe ex-
cluded volume effects if one chooses the potential

Vig) = ablq). (96)

a monitors the strength of the excluded volume force. Com-
bining Eqs. (94)}—96) leads to
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P =quq
+ B[ ppg + (pq)2] +C [(pqq)z + PPggq ) + . (97)

p.andp, denotethe partial derivatives(d /3t ) pand (3 /dq) p,
respectively. This equation serves only as a simple illustra-
tion and therefore we did not write out the terms proportion-
al to a?. The constants are 4 = D, B = aD /kt, and
C=amD /c*.

Equation (97) represents a description of the self-avoid-
ing random walk.? For classical diffusion (or random walk)
the variance o of the distribution p(¢,q) increases propor-
tional to time. One expects that the distribution p(t,q)
spreads out faster in the case of the self-avoiding random
walk.

Equations for the first and second moment of the distri-
bution p(t,g) can easily be obtained from Eq. (97).

d
— =0 8
It <q) ’ (9 )

+

d 0 + =
Ly =uU+B| dipta+C[ s g+

- (99)

The first term in Eq. (99) alone would lead to the old result
o° ~t. The second and third term are always positive; the
variance ¢” increases now faster in time. In the sense of a first
approximation one can assume that the distribution p(t,) is
Gaussian for all times if the initial distribution was Gaus-
sian. This approximation leads to a simple differential equa-
tion for the variance o*:

LISy + B_ o + ¢
dt 272 2(2m)!/?
For large values of o* the higher order corrections can be
neglected. In this case one obtains again o ~ ¢ '/2. On the oth-
er hand, if o is small the contributions of the higher order
terms become more and more important. If the right-hand
side of the differential equation (100) is dominated by the
third term one obtains the relation o~ /5. In this case the
higher order corrections of the diffusion equation do not
only lead to a quantitative modification of the solution but
they lead to a qualitatively different solution.
Remarks on the convergence of the cumulant expansion.
The following remarks are not a substitute for a rigorous
proof of the convergence of the cumulant expansion. From a
practical point of view it is more important to understand the
physsical implications and to establish criteria which allow
identification of the physical situations (type of potentials,
possible values of the parameters m, ¢, 8) which are best
described by the diffusion equations derived in the previous
section and to be able to distinguish these situations from
those where these diffusion equations cannot be applied. In
this case one would have to go back to the Kramer-Liouville
equation.
Consider the cumulant expansion

o 4 e, (100)

G= S 6",

n=1

(101}
There is a formal similarity between the cumulant expansion

and Mayer’s expansion of the grand canonical partition
function for the real gas.?! Furthermore, the cumulants have

U. R. Steiger and R. F. Fox 1685



a cluster property analogous to the cluster property of the
Ursell functions. The cluster property for the cumulants is a
consequence of the following factorization property. We say
that the moments (M (z,)...M (z,)) satisfy the factorization
property if, for all n and 1<i<n — 1,

(Mo, + )M (6 + M (1 - (1)

— (Mt )Mt + 7)Y (M(t;,)-M(t,))—0. (102)

One can show?? that, if this factorization property holds, the
cumulant averages go to zero if the “distance” 7 between two
“time clusters” becomes large. We have for all n and
I<ign — 1

(Mt, +7)-M (6 + 1M, , )M (2,)) . —O. (103)

The cumulants are appreciably bigger than zero only if the
time moments 7,,...,¢, are clustered together, for instance, if
all variables ¢,,...,t, are contained in a short interval of time.

One can easily verify that the factorization property
(102) holds also for the Liouville operator in the interaction
picture, L (¢} [compare also Eq. (48)].

(Lit,+ 7Lt +7Lt; ) -L(t,)
—(L(ty+ 1L (t; + 1)) (Lt )L (2,)) ~e = ™7.(104)

This means in physical terms: The momentap(z ) and p(z + 7)
become independent random variables if 7>, = m/c, since
the momentum p(¢ + 7) has been changed by many random
collisions with the Brownian fluid particles. Therefore, the
operator L (¢ ) can also be considered as an independent ran-
dom operator acting on the spatial distribution of the time
difference 7 is large compared with the correlation time of
the momenta z,.. The autocorrelation function of the mo-
menta and also the expression (104) decrease exponentially
in 7, the lapse of time.?

Equation (96) represents a strong version of the factori-
zation property (94), which leads to a strong cluster property

(Lt 47 -Lit; + DLt )-Lt,)y.~e ™ (105)

This equation and the invariance of the cumulant averages
under time translations,

(Lt + 1)Lty + 7)) = (L)L (1)), (106)

can be used to show that the limit of G as +— o exists for
all n. Moreover, the cluster property (105) shows that the
higher order cumulants are very small if the correlation time
of the momenta, ¢, = ¢/m, is small measured on a macro-
scopic time scale with units ¢,,,.. The nth cumulant is pro-
portional to (¢, /t,...)" ',

G~ (t /b )" (107)

In the following it is useful to represent the exact solution,
obtained by solving the Kramers—Liouville equation P (t),
graphically. We assume that the time-ordered exponential

P(t)=(T exp fdsf.(s))Po (108)

converges for some macroscopic time ¢, which can be small
but still large compared with ¢, = m/c. The time-ordered
exponential can be represented graphically.
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(T exp J,ds Lis) = (109)
1 + —v— + W

DL T TR

The straight lines denotes the z axis. The circles represent the
operators b, respectively, b ' and wiggled lines "~ /P A=

stand for a factor e ~ <™ %),
t axis
o : bt
® : bj
—c/mit, — 1)
LHANANNGNINNN e 50. (110)

It is understood that an integration over all possible
ordered sequences of time ¢ >, > -+ > ¢, >0 is performed in
all diagrams.

The lines ~A~ ¥~ can be interpreted as the
propagator of a virtual particle describing the correlation of
the momenta.

Equation (109) is an expression of the Gaussian proper-
ty. The first diagram is the second moment of L),

(L (t,)L (t,)). The next three diagrams add up to the fourth
moment, etc.

The graphical representation (109) is very convenient to
compare the exact solution P (¢) gained from the Kramers—
Liouville equation with the approximate solutions, for in-
stance the first approximation P (¢ ) which is the solution of
the Smoluchowski equation (3 /9t )P'?(t) = G PPt ). The
function P?(¢),

PP(t)=T exp fds G2s)P,
bt (0]

= T exp [ — J:dsJ:ds'b Y(s)-b (s’)]Po, (111)

could also be represented graphically but the operators
b¥(t)and b (¢) are no longer time ordered in the expansion
{111)! All nonoverlapping graphs appearing in (111) agree
with the corresponding graphs in (109). These graphs are

—W—_ W— etc. (112)

On the other hand, the expansion (111) also contains terms of
the form

b (t))-b (82)b7(£3)-b (24), (113)

with ¢, > 13> t, > t,! The corresponding term in the expan-
sion (109} is the time-ordered product of (113) given by

t t iy t

et e

The two expressions (113) and (114) are not equal if the oper-
ators b, and b, do not commute. The *“errors” which arise
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from the incorrect ordering of these operators in the expres-
sion (111) are corrected if the fourth cumulant is included.
The fourth cumulant is therefore proportional to the com-
mutator [bi,b}] . Multiple “overlaps” are corrected by
higher cumulants. The higher cumulants generate nested
commutators, which lead to expressions in terms of deriva-
tives of the potential U. For instance,

2
[b.b]=m2Y_
aqiaqj
>FU
b,, bA,bT — _m—3/2B—1/2____’ (115)
[ [ J I]] aq'aqjaql

etc.

If the operators b; and b] commute, only the second
cumulant survives. Rotational diffusion has also been stu-
died.**** In this case the higher order cumulants do not van-
ish even in the absence of an external potential, quite con-
trary to the translations diffusion without external forces.
These corrections, which have been calculated up to fourth
order,?* are due to the noncommutativity of the operators
M., M,, M,, the infinitesimal generators of SO(3), which cor-
respond to the operators

t g 1 4 1 4

i 543’

i d¢ i dg,
and the infinitesimal generators of the translations in R>.
The main reason why the cumulant expansion gives
such as excellent description of the diffusion process is given
by the fact that not only the first few diagrams in (109) but
also the higher order diagrams are represented correctly to a
large extent if the correlation time ¢, is small.

5. CONCLUDING REMARKS

It has been shown that the diffusion equation for trans-
lational Brownian motion can be calculated using a boson
representation of the Kramers—Liouville equation and the
time-ordered cumulants. The first six terms of this expan-
sion have been calculated. They have led to a fourth order
partial differential operator. It has been shown that Ein-
stein’s result is exact in the limit as #— . In general, the
higher order cumulants are small because the cluster proper-

ty holds.
The boson representation can be extended to coupled

translational and rotational diffusion of molecules or arbi-
trary shape.'® The Gaussian property [Eq. (48)] does not ap-
ply for rotational diffusion but rules have been derived for
calculating the moments (Z (t;}-L (¢,)) in the most general
case.'® The boson representation allows one to calculate or
estimate the higher order corrections in a straightforward
manner. This work generalizes earlier results on rotational
diffusion® and coupled translational and rotational
diffusion.?>-¢

It can be shown that the effects on diffusion due to the
so-called long time tails,”” the nonexponentially decreasing
tails of the velocity autocorrelation, are very small in three
dimensions. These non-Markovian aspects of Brownian mo-
tion will be discussed in an upcoming publication.
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Note added in proof: It has been brought to the author’s
attention that a one dimensional version of Eq. (65) and the
proof of the conjecture on the harmonic oscillator below Eq.
(65) have been published previously.?®
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Definitions of the nonintegral effective dimensionality of recursively defined lattices (fractal
lattices) may be based on scaling properties of the lattices, or on the qualitative behavior of
cooperative phenomena supported by the lattices. We examine analogs of these definitions for
regular (i.e., periodic) lattices supporting long-range interactions. In particular, we show how to
calculate a harmonic oscillator effective dimension, a scaling dimension, and a random walk
effective dimension for simple cubic lattices with a class of long-range interactions. We examine
the relationship between these three dimensions for regular lattices, and conjecture a constraint

on the analogs of these dimensions for fractal lattices.

PACS numbers: 05.50. + q

{. INTRODUCTION

Lattices of effectively nonintegral dimensionality have
been studied recently by a number of authors™ with a view
to obtaining information about the effect of dimensionality,
degree of symmetry, and topological structure on critical
phenomena. Such lattices are frequently defined recursively
(and consequently are hard to visualize), but have the advan-
tage that renormalization group techniques are easily ap-
plied and analytic results are sometimes available.

There is no a priori method for assigning a numerical
value to the dimension of a nonstandard lattice, and several
definitions currently in use fail to asssign the same dimen-
sion to particular lattices (although they do coincide, as they
should, with the usual value of the dimension of any Bravais
lattice). Nelson and Fisher! and Gefen, Mandelbrot, and
Aharony? employ a definition based on scaling properties,
while Dhar? uses a dimension based on lattice dynamics.”
Neither of these definitions gives the value 1 for the lower
critical dimension of the Ising model.® To gain insight into
the relationship between the inequivalent definitions, we
consider here some model systems in which the effective di-
mensionality of a simple cubic lattice is changed when the
physical processes (interactions) it supports are long ranged.
We are able to calculate a harmonic lattice dimension 4 (in
the manner of Dhar®), a scaling dimension /* (analogous to
that of Nelson and Fisher' and Gefen et al.?), and a random
walk effective dimension r (proposed by Hughes, Shlesinger,
and Montroll”#).

Il. EQUATIONS OF MOTION

We begin by writing down a few results from the theory
of lattice dynamics™'° and the theory of random walks,'""?
and noting certain mathematical similarities between them.

*'This research was supported in part by a postdoctoral fellowship from the
Commonwealth Scientific and Industrial Research Organization of Austra-
lia, held by B. D. H., and by DARPA.
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Consider an s-dimensional simple cubic lattice of coupled
harmonic oscillators, each oscillator possessing only one de-
gree of freedom (for simplicity). If x(1,¢ ) denotes the displace-
ment of the oscillator at site 1 and time ¢, and each oscillator
has mass m, then the equations of motion of the lattice may
be written in the form

m 2 xihe) = S AN+ ) = <l t

here the interaction constants are assumed to satisfy the rela-
tion #(1) = ¥ — 1)>0 to ensure stability of the lattice. The
trial solution

x(1,2) < exp(i@-1 — iw? ) (2)

leads to the dispersion relation
o’ = W(8) = (1/m) ¥ ¥{)[1 — exp(i8-1)]. {3)
1

For a random walk on the same lattice commencing at
the origin, the probability P, (1) of the walker being at the site
1 after n steps may be easily calculated in terms of the single
step jump distribution p(l), since

P, ()= 2p1l—1P, (). 4)

Here we assume that the walk is symmetric, i.e., p(l)
= p( — 1), in addition to the usual requirements that 2,
p(1) = 1 and p(1)>0. It follows immediately from Eq. (4) that

P, =P, = P pIHP A+ 1) =P, M}, (5)

and the similarity between the right hand sides of (1) and (5)
implies a mathematical relationship between the solutions of
the lattice dynamics and random walk problems, as first

pointed out by Montroll."? In terms of the structure function
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A0)= 3 pll)e™, (6)

the random walk generating function

Pla= 3 P, )
n=20
is given by
1 exp( — 11-0)d ‘0 8
e = (27):L 1—2z4 () i

the volume integral being taken over the first Brillouin zone,
i.e., the hypercube B = {8 = (6,,0,,...6,)] — m<6,<7}.
Writing

£=>n) and p(l)=¢ '), 9)

we set up the explicit mathematical correspondence between
the lattice dynamics and random walk problems, so that the
dispersion relation (3) becomes

o' =W(0) = /m{1—-A(0)} (10)

In the terminology of probability theory, 4 (0) is the
characteristic function of the discrete probability distribu-
tion p(l). Although it is clear that |2 (8)| <1, with equality
holding at the points (27m ,2mm,,...,27m ), m; integral, i.e.,
the centers of the Brillouin zones, it is not obvious at which
other points A (8) may attain the value 1. [This is an impor-
tant question, because such points influence the asymptotic
properties of the walk, as can be seen from Eq. (8).] A neces-
sary and sufficient condition that no such additional points
exist has been given by Spitzer'* (the walk must be “aperiod-
ic” in a certain sense}. In the Appendix we give a short proof
that in fewer than four dimensions no such additional points
may exist, provided that p(l) is nonzero for certain nearest-
neighbor transitions.

11l. HARMONIC LATTICE DIMENSION

Let g(w) denote the distribution of frequencies®'® and
G (?) the distribution of squared frequencies for a lattice of
harmonic oscillators. For a simple cubic lattice of spatial
dimension s, with nearest-neighbor coupling only, it can be
shown that as w—0, g{w) <« @® ~ ', or equivalently

2

J: glo')de’ = f Glw)d (@)~ A, (11)

with A4 constant. For any infinite lattice of oscillators, '
Dhar defines the dimension of the lattice as A4 if

H(o)= J;w G (@Y (w?*)~A4(ww" asw—0, (12)

with 4 (w) bounded, but not vanishing, in the neighborhood
of @ = 0. [The need to allow for nonconstant 4 in generaliz-
ing Eq. (11) is seen from Dhar’s analysis® of the truncated n-
simplex lattice.] For nonperiodic lattices, the determination
of H (»?) is a matter of some difficulty.'® In contrast, for the
translationally invariant lattices considered in the present
paper, H (w?) is easily found from the dispersion relation of
the lattice at small wavenumbers. For the remainder of this
paper, let C denote a constant, the value of which is not
necessarily the same from line to line. Since
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G(w) = Cf Slw? — W(0))d "0, (13)
it follows that
H(wY)= CJ O (w*> — W(8)d “0, (14)
B

with @ denoting the Heaviside unit step function. For suffi-
ciently small values of w only the local behavior of W (8) in
the neighborhood of its zeros contributes to the asymptotic
form of H (w?), and from known properties of lattice walk
structure functions we will usually only have zeros of W (0) at
the centers of the Brillouin zones (see the Appendix).

If the coupling constants (1) of the lattice satisfy the
condition

S Pl < o (15)

or, equivalently (in the random walk terminology), if the
mean-squared displacement per step,

® =3 3= 3P, (16)

Jj=1 1
is finite, then it is not difficult to establish that

1-2(8)~ — 3 (I7)6 17)
2 &
Consequently, for small @, it follows from Eq. (14) that H (o?)
is given by the volume of a hyperellipsoid with semiaxes pro-
portional to w, i.e.,

H (oY)~ Co'. (18)

The harmonic lattice dimension #4 is thus the same as the
usual dimension s of the space lattice unless the coupling
constants are so long ranged that Eq. (15) is violated (or,
equivalently, the associated random walk has infinite mean-
squared displacement per step). We consider the canonical
example of an interaction for which 4 > s:

1-4(0)~C|6 (19)
where u < 2. Gillis and Weiss'” have shown that Eq. (19)
arises if

P~ClI—°~# as [l —o. 20)

It is easily shown that for the lattice system governed by Eq.
(19)

H{(0wY)~Co™™, 21)
so that
h=2s/u. (22)

Not only does # exceed s but also, by choosing u sufficiently
small, # may be made arbitrarily large. In Secs. IV and V we
study random walks with structure function similar to Eq.
(19).

IV. SCALING DIMENSION

For self-similar lattices (as considered in Refs. 1-6), it is
possible to define a scaling dimension or fractal dimension'®
as follows. Suppose that the lattice is generated by breaking a
finite portion of it into N identical parts, each similar to the
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original, but scaled down by a linear factor L. Then
f=InN/InL (23)

is the fractal or scaling dimension. An analog of this for
random walks or lattice dynamics on cubic lattices may be
considered’® by building a self-similarity property into p(l).
In one dimension the canonical example is the “Weierstrass
random walk””’

a—-1 & _,
pl)= 2a n;() ¢ {61.b" + 61, ~b" } (24)
{a,b> 1; b integral}, for which
-1 =
A0)=12 " cos(b "0
(@) p n;o a”"cos(b"0)
1 a—1
=a~ AbO)+ cos(@ ). (25)

The mean-squared displacement per step is infinite when
b?>a, and the long-time behavior of the walk is not Gaussian
if the inequality holds strictly (which we now assume).

The walker makes on the average about a jumps of
length 1, forming a cluster of sites visited, before making a
jump of length b to begin a new cluster; about @ such new
clusters are formed before a jump of length b % occurs, and so
on. While this self-similar cluster formation is obvious for a
walk of limited duration, it is necessary that the random
walk be transient, i.e., not every point is certain to be
reached, for the clusters to persist for a walk of infinite num-
ber of steps. In one spatial dimension, transience of the walk’
requires the inequality b > a. The set of points visited in a
walk of infinite duration may be assigned the fractal dimen-
sion

f=Ina/lnb, (26)
provided that the walk is transient, i.e.,
0<f<1. (27)

The quantity f arises as a scaling dimension not only from
this probabilistic argument, but also directly from the func-
tional equation [Eq. (25)]. It can be shown that if < 2, the
small 8 behavior of the structure function is given by

A(60)—1~161Q(6), (28)
where Q is a continuous but highly oscillatory function [be-
ingperiodicinln|6 | with periodIn b,1.e., @ (8) = Q (b@)]. As
17— 0,

ply=0(1=' ) {29}
there is an effective power-law decay {cf exponent — 1 — f)
with some superimposed noise.

A well-defined scaling dimension does not exist for gen-
eral one-dimensional long-tailed jump distributions for
which p(/) = O (|I| ~' ~*) with 0 <u <2, such as the exam-
ple of Gillis and Weiss, "’

AO)=¢(l+p)™ S n='"*cos(nb), (30)
n=1

where £ is the Riemann zeta function. However, by analogy

with the Weierstrass walk, we assign to it the fractal dimen-

sionf = u. Forthecasep(/)~C |l| ~' ~*#as |l |, we have

scaling in the fail of p(!), but not for small values of /. With
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# =1n N/In L, the scale change /-—L!’ transforms p(! )d!
from C|l|~'~#dl to N "'C|I'| =" ~#dl" =N ~'p{l")dl".
Analogs of the Weierstrass random walk may be constructed
in higher dimensions,® but are most naturally discussed in
terms of continuous space and we do not enter into these
questions here.

V. RANDOM WALK EFFECTIVE DIMENSION

Pélya'® showed that the probability « for a symmetric
random walker, taking nearest neighbor steps on a simple
cubic lattice, to return to the starting point is unity in one
and two dimensions, and less than unity in three or more
dimensions. These results are most easily obtained!"?° from
the generating function P {1,z) [Eq. (8)], whereu =1 — R ~',
and in s dimensions,

= lim P(0,z)= lim ! J- 48 : (31
2l — -t - (27) Jg 1 — 24 (0)

For Poélya’s walk, and for any symmetric walk with finite
mean-squared displacement per jump, 1 — A (8} ~con-
stant-|8|’ as |§|—0. Pélya’s conclusions must be modified
when 1 — 4 (8) = O(|8|}), as in Eq. (28), and the following
argument shows that in this case the random walk may be
considered to take place in a space of effective dimension
greater than the Euclidean dimension.

We restrict our attention to the case when the only zero
of 1 — A (0)in Bisat @ = 0. The convergence or divergence of
the integral is determined by the behavior of the integral in a
small hypersphere (of radius p) centered on the origin. Intro-
ducing polar coordinates, we see that if the mean-squared
displacement per jump is finite then

S ‘4 s -1
J _.,_d_e__~c —\-ngd|9|, (32)
o1<p 1 —A(0) o 10]
while if
1-AB)~Cl8* O<u<2), (33)
then
j d’o ~ij |8°~'d |0]
lo1<p 1 — A4 (8) o |0}
14 |6|(s+27;;)-—1
:cj L dlel. (34)
0 )2

We infer from Eqgs. (32) and (34) that for a walk on an s-
dimensional space lattice, if Eq. (33) holds then in analogy
with Eq. {32), the effective dimensionality of the random
walk”® is

r=s4+2—u. (35)
For example, even in one dimension the random walker need
not return to the starting point if £ < 1, and thus the random

walker exhibits the qualitative behavior of a walker in a high-
er dimensional space. We note that as 0 <2 <2, we have

s<r<s + 2. (36)

The above definition of effective dimension is of course not
the only one which may be based on random walk properties.
Other random walk statistics (such as the mean number of
distinct sites visited in n steps®') may also be used to define a
random walk dimension.
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VL. DISCUSSION

To cast light on the problem of assigning useful dimen-
sions to nonstandard lattices, we have considered the prob-
lem of nonstandard interactions on an s-dimensional simple
cubic lattice. We have shown that it is possible to define a
harmonic lattice dimension 4, a scaling dimension f, and a
random walk dimension 7. The examples considered yield
the following inequalities and relations among the dimen-
sions:

h>s, 0<f<2, s<r<s+2,
h=2/f, r=s+2—F.

If we eliminate s from the preceding equations we find the
relation between £, A, and r:

M=2Ar+f-2]. (37)
Since r> 1, it follows that
32 f-1] (38)

Although this inequality has been derived for cubic lat-
tices supporting fractal interactions (necessarily restricted to
the case f < 2) we conjecture that it holds for a class of fractal
lattices with f the usual fractal dimension and # the harmonic
lattice dimension, calculated with nearest-neighbor cou-
plings only. It is easily verified that the truncated n-simplex
lattice® [ f=1nn/In 2, & = 2 In n/In(n + 2)] and the modi-
fied rectangular lattice® [ f = 2, h = 1.5] are consistent with
(38), and indeed the inequality holds strictly. Counterexam-
ples to (38) might be able to be constructed by forming suit-
able direct products?? of fractal lattices, but the authors have
encountered none to date. A systematic investigation of pos-
sible relations between A and the key topological parameters
of a fractal lattice (such as f; lacunarity, ramification,? etc.)
would be of considerable interest.

APPENDIX

It is well known?® that for a one-dimensional lattice
walk, A (6 ) = lifand only if @ = 27m/a (a = lattice spacing,
m =0, + 1, + 2,...). Itis not possible to generalize this in the
obvious manner to an s-dimensional cubic lattice [A (@) = 1
only at the centers of the Brillouin zones] without some
further restrictions on the walk. We prove {(for a lattice of
unit spacing) that ifs = 2 ors = 3, the structure function A (9)
attains the value 1 at no point other than 8 = 0 inside or on
the boundary of the first Brillouin zone B = {8| — =
<6,<w}, provided that certain nearest-neighbor transitions
have nonzero probability. [Equivalently, in the lattice dyna-
mics terminology, W (0) vanishesin Bonly at 8 = 0, if certain
nearest-neighbor couplings are nonzero.]

We assume that for 53>2 and unit lattice spacing,

A8)=3 exp(il-0)p(l) (A1)

attains the value 1 at some point ¢ in B, with ¢ #0. It follows
from Eq. (A1) that

0= 3 [explil-) — 1]p(1)

= Y [cos(l-) — 11p(l) + 7 Y sin(1-8)p(1). (A2)
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As the summand in the real part of the right-hand side of Eq.
(A2) is never positive, we deduce that p(l) can be nonzero at
most at points 1 lying on the family of hyperplanes,

lé=2rm (m=0,+1,4£2,.) (A3)

If we define d = 27/|®| and /i = ¢/|$|, we may rewrite the
family of hyperplanes as

1 = md, (A4)

with d the distance from the origin (1 = 0} of the two hyper-
planes closest to the origin which do not pass through the
origin. Since ¢ lies in B, |¢|><s7?, with equality if and only if
¢ lies at a corner of B, and so

d>2s— "2, (AS)

In particular, if s = 2 or s = 3, then d > 1, and the nearest-
neighbor sites for which p(l) > O can only lie on the line or
plane through the origin (1-é = 0). Hence fors =2 ors =3,
if p(l) > O for s orthogonal nearest-neighbor transitions,
A(8) = 1in B if and only if @ = 0. When s = 4, (AS) shows
only that > 1, with equality if and only if ¢ is one of the 16
vertices of the Brillouin zone B, so that if p(l} > O for four
orthogonal nearest-neighbor transitions, A (8) = 1 on B at
0 = 0 and at most also at the 16 vertices of B. For s > 4, the
present argument gives no information.

The hypothesis that certain nearest-neighbor transi-
tions have nonzero probability cannot be removed. To see
this, we note that a nearest-neighbor random walk on a
body-centered cubic lattice (in three dimensions) can be de-
scribed in terms of a random walk or a simple cubic lattice,
with nearest-neighbor transitions forbidden. It has been
pointed out by Joyce** that for such a walk, singular points
other than the origin must be considered in Eq. (8).

The breakdown of the simple argument used here to
examine where A (0) = 1 for s > 4 appears to be another cur-
ious example of the strong qualitative difference between
walks in four or fewer dimensions and walks in more than
four dimensions.?52¢
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It has been known for a few years that the Heisenberg field of the extended object can be obtained
in expanded form as a power series of quantum operators and creation and annihilation operators
by solving the Yang-Feldman equation. Such an expression is called a dynamical map (mapping
of the infield into the Heisenberg field). We will show that the Heisenberg field thus expressed (the
dynamical map) is Lorentz covariant if it satisfies the equal time canonical commutation relation.
In this paper we limit ourselves to the invariance of the first order term. Also, our Heisenberg field
is (1 + 1) dimensional and is of the tree approximation. In the course of the calculation, we find
that the quantum mechanical operator and the quantized field may be mixed by the Lorentz

transformation if the space derivative of the classical field soliton solution is assumed to decrease
not faster than 1/x% It indicates that the Hilbert space may not be the direct product of two sub-
Hilbert spaces, even though it is a product of two subspaces, one of which is a Fock space of the

quantized field and the other is of the quantum mechanical operator.

PACS numbers: 11.10. — z, 11.30.Cp

I. INTRODUCTION

In the last few years, through the study of extended
objects in quantum field theory,' great progress has been
made in our understanding of physical systems which pre-
sent both quantum mechanical and quantum field proper-
ties. One of the main approaches to the subject uses the so-
called boson transformation method,” which is applied to
systems described by the scalar field theory.

In this method, first using the Yang-Feldman strategy,
the scalar Heisenberg field is given by a functional of the
asymptotical free field. The trick is to introduce a C-number
function which obeys the same homogeneous equation of
motion as the free field. Thus the Heisenberg field is now, by
means of the boson transformation method, a functional of
the sum of the free field and the C-number function. This full
Heisenberg field, called the dynamical map, describes the
extended object, and due to the boson transformation
theorem,” obeys the same Heisenberg equation of motion as
the free field. Now, if we consider only static extended ob-
jects, i.e., where the C-number function depends only on the
space variable, the requirement that the dynamical map
obey the equal time canonical commutation relation implies
the introduction of classical quantum coordinates. As has
been shown in the tree approximation, these quantum co-
ordinates reflect the invariance of the dynamical map under
space translations.® Moreover, in {1 4 1) dimensions, if Lor-
entz invariance is assumed for the description of the ex-
tended object in the one particle approximation, then the
dynamical map depends only on two generalized coordi-
nates* X and 7. Therefore we can assume that the dynamical
map can be written as ¥ (X, T ) at least in the tree approxima-
tion.

 Present address.
® Postal address: Centre de Recherches Nucléaires, Physique Théorique des
Hautes Energies, 67037 Strasbourg Cedex, France.
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Our purpose in this paper is to show in the tree approxi-
mation that ¥ (X, T") describes completely the extended object
in the second order in quantum coordinates and field opera-
tors. Thus if the equal time commutation relations are as-
sumed, then in this approximation, by calculating the energy
stress tensor, we obtain the infinitesimal Lorentz transfor-
mation of the dynamical map ¥ (X,T) to first order in the
quantum coordinates and field operators. Therefore as ex-
pected, by the Lorentz transformation, quantum coordi-
nates and field operators mix together.

The paper is organized into five sections. In Sec. II we
recall briefly the main results which concern the dynamical
map in the tree approximation. In Sec. I1I, in this approxi-
mation, assuming that the extended object in (1 + 1) dimen-
stons is described by the dynamical map ¥ (X, T} and that this
latter function satisfies the equal time commutation rela-
tions, we obtain the equal time commutation relations of the
quantum coordinates and field operators up to third order.
Section IV is devoted to the calculation of the second order
field stress tensor and to the first order infinitesimal Lorentz
transform of the quantum coordinates and field operators.
In the final section we draw some conclusions.

1. USEFUL PROPERTIES OF THE DYNAMICAL MAP IN
THE TREE APPROXIMATION

If one begins with the Heisenberg equation of motion
for the full scalar field ¥(x,t),

o
8y’
and performs a static boson transformation over the free
field @, i.e.,

Polxst )@olx,t ) + fx), (2.2)
which together with the C-number static function f{(x) sa-
tisfy the homogeneous part of Eq. (2.1), then by virtue of the

0 —m?y= (2.1)
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Yang-Feldman method and by the boson transformation
theorem,” the dynamical map ¥ (x,¢ ), which describes the ex-
tended object, is given in the tree approximation by the Tay-
lor expansion

W) = % S Ylx,e), 2.3)

+n=0
where y'” stands for the vacuum expectation value ¢ (x) of
the dynamical map ¥ and ¢ is an n-order field operator in
the free field . In addition the field operator ¥ is deter-
mined by a recursion formula,® which gives the different
equations of motion up to third order:

s OV
O-mip=22, 24)
(@ — m2y = % o, 2.5)
2 BV o _ 8V
(D m 52¢>t/l a (2.6)

From the fact that the equal time commutation relation
must have the canonical form, it follows that the field " is a
sum of a field y, which describes both the scattered and
bound states, and a quantum mechanical piece (the quantum
coordinates) so that in (1 + 1) dimensions we have>

v+ ‘_/‘IH 0.6y + ‘/LMaxqs =idx —x),  (2.7)

with
lgp] =i (2.8)
Here and in the following, the prime index stands only for

the space argument and the constant M is the mass of the
classical extended object defined by

M= f (0.6 dx. (2.9)

With the use of the recursion formula, it has been shown that
we can check the dependence of the ¥ on the quantum co-
ordinates to all order.>* The solution v of the Euler equation
(2.1) thus obtained is not unique. The 4 given in Refs. 4and 5
is the one obtained by replacing in (2.3) the coordinates (x,¢)
by the generalized quantum coordinates (X,T"), which are
given by*?

X=xcoshA +tsinhA4 + B, (2.10)
T =tcoshA + xsinh 4 + Btanh A4, (2.11)

where the time independent operators 4 and B are defined,
in terms of the covariant quantum coordinate* ¢, by

coshA = (1 — g%~ '2, (2.12)
sinh 4 = g(1 — )=, (2.13)
B =q(0)1 — g% "" (2.14)

We can obtain another solution by adopting the following T
given in (13.18) of Ref. 6, instead of (2.11).

T =t cosh A + x sinh A. (2.15)

In fact there are infinitely many other solutions whose T°’s

differ from (2.11) and (2.15). Then we cannot expect that all
of these solutions can satisfy the canonical commutation re-
lation. Only some of them should do. In this paper, however,
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we expand the ¥ into a power series on 4, B, and y, and limit
ourselves to the second order. Then, in this paper we find
that all of the canonical solutions should be identical in this
approximation.

ill. SECOND ORDER EQUAL TIME COMMUTATION
RELATION OF THE QUANTUM MECHANICAL AND
FIELD OPERATORS

The Taylor expansion of the dynamical map (2.3) in
terms of the generalized quantum coordinates (2.10), (2.11)
or alternatively (2.10), (2.15), up to the third order in the
quantum mechanical and field operators, is given by

YX,T)=6¢(x)+ ¥ Vx,t) + ¥2x,t), (3.1)

where for convenience we have defined the first and second
order pieces of the dynamical map as®

vx,t)=Ca. ¢ + ¥, (3.2)
Y Oxt)=4C?3 ¢ +1x4%9,¢
+C3,x + xAy + W (3.3)
Here the quantum mechanical operator C, defined as
C=B+ 4, (3.4)

with the use of the commutation relation (2.8) and the defini-
tions (2.12), (2.14) of the operators 4 and B, is seen to satisfy

[CA]=i/M. (3.5)

Now if we assume that the equal time commutation relation
holds for the dynamical map (3.1), we must have

(¥, ¥]=ibx —x), (3.6)
[¢,¥]=0. (3.7)

Actually, with the use of the commutation relations (2.7) and
(3.5), it is easy to check that the first order piece ¥ " of the
dynamical map satisfies these two commutation relations so
that their expansion yields two sets of expressions. One set is
given by their first order vanishing piece and the other is
obtained in keeping only the second order piece, which is
proportional to the quantum mechanical operator C.
The first order piece leads to

—A’-iax'«zs Oex +x1)+ 1 v 0]

+ Ai[axqsc?x,x' +1 [¥?x] =0, (3.9)
i N ] l 1] C ‘
T R L W) — XDy + ) [4?x] =0.(3.9)
As for the second order piece we have
G, ((L9.4 00 +30) +3 )

+ca, (—;;lax¢3,'x’ + [w"",jz]), (3.10)

Cca, ( jx&,:ﬁ Y+ idxS + | [ X',lﬁm])

v (—Lxasy —uxs s wa) B

The fact that the expression {3.9) does not appear exactly in
{3.11) does not matter here because to have an exact second
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order piece, we must deal with the third order expansion of
the dynamical map ¥ (X,T).

It follows from the two latter sets of relations that the
different equal time commutation relations are

[92x'] =§;a,,¢'(a,x + xi), (3.12)
. ' 2

P =23 .43 v, 3.13
' ¢] 7 é'd.x (3.13)
(23] = ;—;xa,, é'1. (3.14)

It is easy to verify that these three commutation relations are
self-consistent.

As expected, the time derivative of the commutator
(3.14) is given by the difference of the commutators (3.12)
and (3.13). Also summing the time derivatives of the two first
commutators (3.12), (3.13) and using the equations of motion
(2.5), (2.6) we obtain the condition

(=5 = 5 e

2/ .
=29.6'20 .y +x¥)
v é'(2d,x +xy)

(3.15)

which by virtue of the equation of motion (2.5) is exactly
fulfilled by the expression for the commutator (3.14).

In addition we can notice that the last commutator is
proportional to the space argument of the two particle field
¥, so that near the origin this commutator behaves like that
of the free fields. Moreover in this case the first two commu-
tators are equal.

At present, we can calculate the generators of the infini-
tesimal Lorentz transformation to second order in the quan-
tum mechanical and field operators.

IV. LORENTZ TRANSFORMATION
A. The second order field stress tensor

In (1 + 1) dimension scalar field theory, the generator
of the infinitesimal Lorentz transformation is given by

M, = f(xToo + tT,, ) dx, 4.1)

where T, is the usual energy stress tensor. If we take the
second order expression (3.1) for the dynamical map and
write the potential as a Taylor expansion in terms of the
classical field ¢, then by use of the equation of motion (2.4)
and the asymptotical properties of this field [due to the fini-
teness of the classical part of M, ,x(d, ¢ ) vanishes as x goes
to infinity], the generator of the Lorentz transformation be-
comes in the tree approximation

My, =MQ + M) + MY, (4.2)

Here the zeroth, first, and second order pieces in the quan-
tum mechanical and field operators are defined by

M8 = [x[i0.6 7+ 267+ vig) d 3)

M) = —MB+ | x3,0.8y)dx +t f 9.6 dx, (4.4)
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M®P =Jx [lll/“’z+l(8 q,m)2+_1_<mz+ 52V) pur
Ox 3 NVx 2 52¢

+ax“p(2)ax¢)] dx +tf(g/(l)axq/11)

+ ¥?9_¢)dx, (4.5)

M being the mass of the classical extended object. The M ! is
merely a constant. In addition the first term of expression
(4.4) is the generator of the Lorentz transformation in the no-
particle sector.’

B. The infinitesimal Lorentz transformation of the fuli
first order dynamical map

Using the equation of motion (2.5) of the one particle
field, it is easy to see that

[x'x]=0. (4.6)
Therefore, since this field also commutes with ¥ " and all the
quantum mechanical operators, it follows that

[XI’MOX] :fx [('I/H)[Xr’(j/‘l)] +8x([X,rl1/(2)] ax¢ )] dx

+ tf (L, w10, %"+ [y, ¢?)d,4)dx. (4.7

The quantum mechanical operators 4 and B are time inde-
pendent, so from the expression of the first and second order
pieces (3.2), (3.3) of the dynamical map and the equal time
commutation relations (2.7) and (3.12), (3.13), keeping in
mind the asymptotical property of the classical field ¢, we
can verify that

[x:Moy | = iixy + 13, )
~Lo4 (0 b V0¥ 1z )

Here the term proportional to the time variable in the
bracket comes from the expression

f(x;} +2d,x)3. 6 dx, (4.9)

by using the equation of motion (2.4), (2.5). As for ¥, it is
the first order piece of the dynamical map defined in (3.2).
The last commutation relation shows that in the Lorentz
transformation the one particle quantum field, the classical
field ¢, and the quantum mechanical operator 4 mix togeth-
er in a coherent form. In the asymptotical limit it becomes

(Mo, ] = tlxxy + 10, %) .. (4.10)
which, in this case, gives as expected the infinitesimal Lor-
entz transformation of the asymptotical free field. This re-
sult is not surprising since the asymptotical limit of the equal
time commutation relation (2.7) has exactly the canonical
free field form. If the space derivative of the classical field
decreases more rapidly than 1/x* as x goes to infinity, then
the bracket of the right-hand side of (4.8) vanishes, and there
is no mixing in the Lorentz transform of the one particle
field. This is the case for the sine-Gordon model.”

To calculate the infinitesimal Lorentz transform of the
quantum mechanical operators 4 and B, it is better to modify
the expression T} of the energy part of the generator M 2!
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From the equation of motion (2.5) it follows that

TG =4[P"V + 9, (W09 ¥+ 29,49 — y¥].
(4.11)

Then with the help of the commutation relation (3.5) and the
asymptotical property of the classical field, we obtain

[AMy]=i— j{ [x(20,89.x + B dy)] * =, (4.12)
[B.M,, ] = ﬁ [x(23,80.x + Fox)] =

+ j [x3,6 (x¥D 4+ 13, W M)] + 2. (4.13)

Thus the first order Lorentz transform of the quantum me-
chanical operators 4 and B has a one-particle free-field part.
From these last commutation relations, the generator M,,,
being written to second order in the quantum mechanical
and field operator, we can obtain the exact Lorentz trans-
form of the generalized quantum coordinates (2.10), (2.11) up
to the second order terms. They are

[X:Mox] =iT‘”+AL4[xo'?x¢(x¥/“’+tc9x¥/“’)]i:,
(4.14)

[TMo] =X~ = [x20,40,x + &i6y)] 12, (41
where, as usual, 7" and X " stand for the first order expan-
sion of the generalized quantum coordinates. If the term
xd,¢ vanishes as x tends to infinity, then we see that the
generalized quantum coordinates play the role of the space-
time variable for the extended object in the no particle sector.

What about the first order infinitesimal Lorentz trans-
form of the dynamical map? In order to have the exact first
order piece of the Lorentz transform of the dynamical map,
we must deal with its first and second order pieces (3.1).
Owing to the expression (4.8) and (4.12), (4.13) of the Lorentz
transform of the one particle field y and the operators 4 and
B and to the fact that the sum of the three last terms of the
second order piece (3.3) of the dynamical map commute with
thefirst order piece (4.4) of the energy stress tensor, it follows
that

[¢ + W(Z):M()x] — ix(gb + Q/(l)) + i, (¢ + .1/(1))'
(4.16)

The first and second order pieces ¥ " and ¥ '? are defined in
(3.2) and (3.3). So up to the second order the dynamical map,
which describes the classical, quantum mechanical, and one
partical field properties of the extended object, is at least in
the tree approximation, a relativistic covariant entity. But if
we dissociate the extended object into its classical and quan-
tum mechanical pieces on the one hand and its quantum field
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piece on the other, then the transformation relations (4.8)
and (4.12), (4.13) show that in a change of reference frame the
quantum mechanical piece mixes with the quantum field and
that the quantum field piece mixes with classical field and
quantum mechanical operators. In this sense the quantum
mechanical or field aspect of the extended object depends on
the frame of reference, just as the magnetic or electric aspect
of the electromagnetic field.

V. SUMMARY

If we construct the dynamical map of a static scalar
extended object using the Yang—Feldman method, the dyna-
mical map is not determined uniquely at each order of the
perturbation expansion due to the zero energy modes of the
soliton solutions. In Ref. 5, it was shown that if we assume
the canonical commutation relations to be held for the set of
quantum mechanical and quantum field operators, then the
dynamical map can be given exactly, at least to the second
order, by ¥ (X,T).

In this paper we have shown in the tree approximation
that the first order piece of the dynamical map is Lorentz
covariant, assuming that the static scalar extended object is
described by the dynamical map ¥ (X,7") and that the equal
time canonical commutation relations work. Thus the static
scalar extended object in (1 + 1) dimensions is fully de-
scribed by this dynamical map: In order to have the dynami-
cal map of the nonstatic extended object, we have to perform
a Lorentz transformation. Moreover, the main result is that
the quantum mechanical and quantum field aspects of the
extended object depend on the frame of reference if the space
derivatives of the classical field soliton solution do not rapid-
ly fall off to zero. If it appears that this fact is a general
feature of an extended object with more degrees of freedom,
as for instance spin and colors, then this could be very attrac-
tive for our understanding of hadron physics.
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We introduce scalar interactions for the relativistic spinning particle in such a way as to preserve a
supersymmetry that leaves a special position-variable invariant. This generates systems of
particles in scalar interaction with a supersymmetry for each spinning particle. For two-particle
systems the supersymmetry eliminates all spin complications and reduces consistency problems
to those of a purely bosonic system. Once the latter are disposed of, our approach leads to
consistent systems of quantum mechanical wave equations.

PACS numbers: 11.30.Pb, 11.10.Qr

In the last six years, many authors have applied Dirac’s
constrained Hamiltonian mechanics to interacting spinless
particles to obtain consistent systems of relativistic wave
equations.' In a previous paper,” we even used such techni-
ques to extend a nonrelativistic heavy quark potential devel-
oped by Richardson? (for the 4 and Y families) to the relativ-
istic domain of the light and intermediate mass vector
mesons. Although our formalism gave a good account of the
ground states and observed radial excitations, it neglected
quark spin from the start. Quantum mechanical descriptions
derived from classical constraint systems are not easily ex-
tended to include spin, however, without upsetting the deli-
cate consistency of the original classical dynamics. One way
to avoid this difficulty is to build a consistent version of clas-
sical or “‘pseudoclassical” spin into the canonical formalism
before quantization. For the free particle in an external
field,** and system of particles with a collective spin,® these
problems have been overcome by other authors through the
use of one-dimensional, locally supersymmetric actions
analogous to those for supergravity.” However, in order to
deal with the more complicated system of two interacting
particles, each with its own constituent spin, we need to find
a way to introduce a supersymmetry® for each spinning par-
ticle and preserve all of them against breaking induced by
interaction.

We shall see that when an initially free supersymmetric
spinning particle is put in scalar interaction with an external
agent, a spinless particle, or a second supersymmetric spin-
ning particle, the requirement that the interacting system
remain supersymmetric determines the spin-dependence of
the potential. The resulting supersymmetric actions even-
tually lead to first-class Hamiltonian constraint systems
suitable for quantization.

First, we remind the reader of the corresponding treat-
ment for spinless particles. A free particle is described by the
arc length action

S= J‘Ld‘rzf—m(‘—xz)”zdr, 1)

which leads to the mass shell constraint on the particle’s
four-momentum,

X =p* + m*=0. 2)
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One introduces interaction with an external scalar field by
letting m—sm(x) in (1) and (2). A similar Lagrangian for two
spinless particles leads to two mass shell constraints

Hy=p’+m?2=0, ¥,=p,’+m?>=0. (3)

Todorov' found that such constraints become compatible
(i.e., {#,7,} = 0) when the potentials m, obey

m,%(x) — m,%(x) = const, (4)

where x = x, — x, depends only on the components of x per-
pendicular to the total four-momentum. That is,
m; = m,(x,%/2),° where

Xt =(g" — P* P"/Px,, (5)
with P= p, + p,.

We introduce spin at the pseudoclassical level*®
through anticommuting degrees of freedom (elements of a

Grassmann algebra) that, together with ordinary degrees of
freedom, satisfy

AB = ( — l)fAGBBA; €odq = 1, €oven = 0. (6)

We describe a single free spinning particle by modifying a
Lagrangian recently proposed by Galvao and Teitelboim® so
that its odd Lagrange multiplier v is a coordinate (instead of a
velocity).

S= de¢= f[—m(—fcz)”z[l + (-0 + 65)]
+ %{9-9+ 5[9595 dr, (7)

where & = x/( — x*)"/?, while 8, 6, and v are odd Grass-
mann functions of 7. This action consists of a bosonic length
of world-line piece, plus an odd constraint that leads to the
Dirac equation, plus a kinetic term for the spin degrees of
freedom. It leads directly to Galvao and Teitelboim’s Dirac
and mass shell constraints in phase space

S =pb6+mbs=0, ¥ =p*+m’=0. (8)
This action is left invariant (on shell'°) by the supersymmetry
transformation

ox = €0 — poOs), 60 = —iep,

850s = —ie( — pA)'?, Sv= —ie/(—x)'? (9)
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[where p=dL /dx = mil + iv8s) — imv6,
p= p/(— p?)''?] whose Noether generator is
G = p6+(— p)'"%s (10)

That is, 8S = L fd+ (d /d7) (€G ) =O0. Since our generator G
differs from S, our supersymmetry transformations (9) and
their consequences are to be contrasted'' with those in Refs.
4-7.

With pseudoclassical Dirac brackets replacing Poisson

brackets,* 712
55 5 3
ox* dp, ap* ox,
i 2 ;0.9 (1)
a6~ 36, | 36, 36,

the constraints ¥ and 5 in (7) are consistent,
{,7) =i =0,

[ =S F)) =0 (12)

and are left (weakly) invariant by G. G has a strongly vanish-
ing bracket with itself, and hence might be termed an abelian
supersymmetry generator. Two supersymmetry transforma-
tions generated by G do not produce a reparametrization of
the world-line, in contrast to those generated by %.*~7

We start with this description of a free spinning particle
and add interactions in such a way as to retain supersym-
metry. An important consequence of the transformations (9)
is that they leave invariant a special position variable,

% = x + i065/m. (13)

For the free particle, X has linear 7~ development for arbitrary
v and is a position variable with v-dependent Zitterbewegung
subtracted out."® Thus, if we start with an initially supersym-
metric Lagrangian (7) for each particle and insert an x depen-
dence for each through X, we will obtain a supersymmetric
Lagrangian that describes interaction.

To introduce scalar interactions, we first modify each
mass m to a mass potential m(x) just as we would for spinless
particles. Then we replace x by its supersymmetric counter-
part X wherever x appears. This prescription leads to a self-
referent definition of x in the interacting case

X, =x; +16,605/m;, m, =mi({ij})‘ (14)
Since the 6’s belonging to a given particle anticommute, '*
(14) leads to a terminating Taylor-series expansion that de-
termines X in terms of ;, 85;, m, and m’s ordinary deriva-
tives with respect to the x;. The resulting Lagrangians give
constraints of the form

S = p;0; +m;0s;=0 (15)
for each spinning particle, and
X, = p:+mi=0 (16)

for each particle (boson or fermion). For each fermion,
{F ;7 ,;) =i ;=0and {& ;7 ;}=0, so that the con-
straints for each particle are self-compatible.

Mutual (first-class) compatibility of interacting parti-
cles requires that { %, ;} =0, { %, ;} =0, and
{5, ;| =0 for all i# j. The Jacobi condition for the
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pseudoclassical Dirac bracket

S Ny {Aqs{Ag,d, }}=0, (17)

cyclic
where 7, = I,;( — )*, relates all constraint brackets to
{77 ;} for two fermions, or {.%,,5# ;] for one fermion
and one boson. Hence, if these brackets vanish strongly, then
so do all the others. For the two-body case, this will lead to
the same problems as that solved by Todorov for the inter-
acting system of two spinless particles as in Eqgs. (3}—5).

For a supersymmetric spinning particle in scalar inter-
action with a spinless one, our constraints become

Sy = prO +M,05,=0, ¥,= p;+m; =0,
m; = m;(x2/2).0 {18)
Here
X, =& —x) =x, +16,,05/m,. (19)
Using the Grassmann-Taylor expansion, we find

my=m, + ix, 6,0s;m;/m,,
. . (20)
m, =m, + ix,-0,0;;m}/m,,
where the prime denotes derivative with respect to argu-
ment. Then the constraints take the form

F 1= pi0 +m0s = p,0, +m,bs, (21a)
Hy = —’i{yl!'yl}zplz_*";ﬁlz’ (21b)
Hr= pi’ + iy, (21¢)
where
my* =m,* 4 2ix,-6,05,m],
(22)

,? = my? + 2ix, -0,0s,m,’my/m,.
Application of the Jacobi identity (17) leads to

{%2’%1} = - i{%z,{f,,f,}]

= — (S {# P 1}}

But, if m,>* — m,® = constant, then

(X0} =2x(p — p)m} —m3)6,s/m; = 0.(23)
So, the constraints % |,5¥"|,5% , are all first-class. In the
static limit m,— oo ,m, finite or m,— c0,m, finite, (21a}+21c)
reduce, respectively, to the correct constraints for a spinless
particle or for a supersymmetric spinning particle in an ex-
ternal scalar potential.

For two supersymmetric spinning particles in scalar in-
teraction, the constraints are

Sy = pr6, +M,05,=0, 5= py,+ My05,=0. (24)
Once again A=m(¥}/2),'* where X, now becomes
X, =% — %) =x, +1i6,,05,/m, — i6,,05,/m,. (25)
A Taylor expansion makes the spin content of X, explicit:
-il =X, + ie,l951/m, -— i921652/m2
— 0,,65,x,-6,05,m; /mfm2

— 6,,05x; ‘91651’"5/’"22’” 1° (26)
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Thus, we find that
m, =m, +ix,-6,05m;/m, — ix, -0,05,m1/m,
+ 6,,(0,, 05,05,/ m my)m]

+ X, -0,05,x, 0,05,(m;/m m,). (27)
Then the constraints become
S = prb, +mbs, — ix -0,05,05,m] /m;=0, (28a)
Py = prr8, + my0s, + ix,-0,05,65,m5/m; =0, (28b)
Hy= LI I ) = p+ 0, (28¢)
i
Hy= L (S0 F0) = i+ L0, (284)

i
Once again we find that { #,,.%,} = 0 provided that
m,? — m,* = constant. Jacobi identities lead to the vanish-
ing of all other brackets, so that all are compatible. For ex-
ample, { %, %} = —2{5,{ X5, }}
= —4{7,{5,,{71,,} 1] This time the two static lim-
its each produce a single supersymmetric spinning particle in
an external scalar potential. So, once spin complications
have been disposed of by the supersymmetric structure of
(28), compatibility problems reduce to those of the purely
bosonic case. In fact, our system (28) might be regarded as
the “square root” of Todorov’s bosonic one. '

We quantize these systems by turning brackets into ca-
nonical commutators (anticommutators), '

1
{,}Hg[,]i- (29)

The y matrices emerge as the operator versions of the fer-
monic variables

0 —ilfi/2) Pysy, Os—ilhi/2)'?ys. (30)

Then the constraints ., (and 7#°;) become a consistent set of

coupled Dirac (and Klein—-Gordon) equations. For example,

in the spin-one-half-spin-one-half system ., =0 and

5, =0 become

L= (Ys1V1e by + myys; — ((A/2)x -y ysimi /mo)p =0
(31)

and

F o = (V522 P2 + Ma¥sz + (i#/2) x -y 1y som; /my ) =0,

which reduce to ordinary Dirac equations in either static

limit. The quantum consistency condition

[#,,.7,] _ ¥ =0 can be verified in direct analogy to the

classical condition { % ,.,} =0. Because of the equiv-

alence in form of the Poisson bracket relation

{AGAB’A}'} =Aa[AB’Ay§ + 1?37’{‘40"'48 }Ay (32)

and the quantum commutation (anticommutation) relation
[4.4p4, ] - L 4,454, ] - Moy

+ My [Aardy ] -5, 450 (33)

the verifications of classical and quantum consistency are
virtually identical.'”

To summarize, we have extended two-body relativistic
constraint mechanics and its quantization to include con-
stituent spin. The introduction of supersymmetry is crucial
for eliminating spin complications. This is achieved through
the replacement of the relative coordinate x with an X vari-
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able that induces a particular spin dependence for direct sca-
lar interactions whenever fermions are present.

We can extend our approach to include interactions
other than the scalar. The resulting wave equations may lead
to realistic spectra for confined systems of spinning quarks.

We wish to thank Professor Ingram Bloch for useful
discussions on various aspects of this work.
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We contemplate deriving a wavefunction approach to Coulomb-distorted nuclear scattering. The
theory of ordinary differential equations supplemented by certain well-known properties of
higher transcendental functions has been found adequate for the purpose if the nuclear potential is
a nonlocal separable one with exponential form factors. The method presented will work for
potentials of arbitrary rank. We have derived specific results for Jost function and Fredholm
determinants for scattering by (i) Coulomb plus Yamaguchi and (ii) Coulomb plus Mongan case

IV potentials.
PACS numbers: 24.10. — i, 24.90. +d

I. INTRODUCTION

Experiments which involve scattering by additive inter-
actions are analyzed by the use of the Gell-Mann-Gold-
berger scattering-by-2-potential theorem' (GG theorem).
Applicability of the GG theorem is directly related to the
existence and/or completeness of the wave operators for the
scattering system.” The wave operators exist under strong
limits when each of the associated interactions is of short
range, but they do not exist in the presence of a Coulomb
force. To deal with long-range interactions, the wave opera-
tors are judiciously modified by relaxing some requirements.
Recently, the situation with regard to this has been nicely
summarized by Chandler.? On several occasions van Haer-
ingen,* van Haeringen and van Wageningen,” and Kok and
van Haeringen® have used the GG theorem based on modi-
fied wave operators to derive the basic statement of the scat-
tering theory for Coulomb-modified nuclear potentials.

The purpose of the present paper is to develop a math-
ematical framework for the Coulomb-nuclear problem
which does not make explicit use of the GG theorem. For
our development we shall use only the theory of ordinary
differential equations together with certain properties of the
higher transcendental functions. We shall see in the course
of our study that the merit of the present approach is its
simplicity. For the nuclear part of the interaction we use
nonlocal separable potentials. This is justified by the obser-
vation that the short-range local potentials can be approxi-
mated by finite-rank separable potentials’ and also that the
nonlocal potentials can describe a much wider variety of
phenomena than that encompassed with short-range local
potential.® The method proposed will be applicable for Cou-
lomb plus separable potentials of arbitrary rank. The plan of
the present paper is as follows.

In Sec. II we briefly describe the conventional method
of treating the separable nuclear interaction with emphasis
on the Yamaguchi potential® and judiciously modify the ap-
proach to develop a mathematical framework which is ade-
quate for dealing with the Coulomb—nuclear problem. In
Sec. 111 we present results for the Jost function and associate
Fredholm determinants for the Coulomb plus Yamaguchi
potential. Similar results are presented in Sec. IV for the
Coulomb distorted Mongan case IV potential.'® For simpli-
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city of presentation we consider the s-wave case only, with
the subscript / = 0 omitted, and work in units in which #>/
2m is unity. The higher partial-wave generalization of our
results is really trivial. We present some concluding remarks
in Sec. V.

Il. WAVEFUNCTIONS FOR NONLOCAL SEPARABLE
POTENTIALS

Yamaguchi® has introduced a one-term separable po-
tential to describe the nucleon—nucleon scattering. We begin
by describing a method to calculate the wavefunctions for
this potential, which is a little unconventional compared to
what exists in the literature. The Schrédinger equation for
the Yamaguchi potential can be written in the form

d ? 2 — —ar
(25 +k2)uten =dikle (1
where
dik)=2 f " e~ ik sids, 2)

with 4 and @, the strength and range parameters of the po-
tential. We shall solve (1) by treating the integral in (2) as a
constant. The unknown constant which appears will be de-
termined by substituting the solution back in the defining
equation for d (k ) and matching the desired boundary condi-
tions. For example, if we are interested in the Jost solution'
flk,r), we write from (1)

dk,r) = flk,r) =e* + [dk)/(@® + k?)]e ™" (3)
Using (3) in (2), we get

dk)=A/la —ik)Dik), (4)
where the Fredholm determinant
Dk)=1—A2ala®+ k7). (5)

Substituting (4) in (3), we get
flkr)=e* + [A /la — ik )l@* + k*)D(k)le .  (6)
Clearly, f(k,r) in {6) satisfies the Jost boundary condition

since

flk,r) ~ e*. (7)

r--ow
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From (6) the Jost function is

Sflk)(= f(k0)=D*k)/Dk) (8)
where
D*k)=Dk)+ Ala+ik)/(a®+ k?? 9)

is the Fredholm determinant associated with the physical
(outgoing wave) solution. The method outlined above has
been used by one of us'? to construct analytic expression for
off-shell Jost and physical solutions for realistic separable
nucleon—nucleon interactions. We indicate below how this
method should be suitably modified to treat the Coulomb-
nuclear problem.

We change the dependent and independent variables in
(1) by substituting

Ylkr) = ¢ (k,r) = re™g(r),
(10)
r= —z/2ik
and get
z% +(c—z}% —aglz)= — %’;—)e’”, (11
where
a=1, ¢=2, and p=(a+ ik)/2ik. (12)

Complementary functions of (11) are given by the confluent
hypergeometric functions

. I'(c) I'(a + n)z"
D (a,c;z) = Ta) nz Te (13)
and
Dlacz)=z "Pla—c+1,2—c2). (14)

Note that,for ¢ = 2, (14) is not an acceptable solution of (1).
However, @ tends towards the solution'® of (1) when ¢ ap-
proaches 2. In our subsequent discussions we shall always
mean that limit. This is no loss of generalization. See, for
example, the treatment of Coulomb field by Newton.!* An-
other solution of (1) defined within the framework of the

the method of variation of parameters.!® Thus we have

dk )[ J' & (a,c;2)
= ——| —Dla,cz)|] ——e"dz
&= S|~ %)
+@ (a,c;z)f Placz) e "’dz], (16)
zW
where the Wronskian
W=W@®P)= —(c— 1)z (17)
The integrals in (16) can be performed by expanding e #* in
powers of z and making use of the integrals'®
f e 27 " P (a,c;z)dz
=z " *[{o — 1)@ (a,¢;2)
X6,_(a+ 1+ 1;2)
—(a/c),la,c;2)P(a + 1,c + 1;2)] (18)
and
fe ~ 20+ (a,c;2)dz
=z *[{o — 1)@ (a,c;2)
Xoa_ 1(0 + lyc + l;z)
+ (¢ — 18, (a,c;2)P (a + L,c + 1;2)], (19)
where

& llo+a+nmlo)o+c—1) 2

0,(a,c;z) =2°
rsollo+allc+n+ )0+ c+n)

g

_ z
olo+c—1)
Finally we obtain

FrlLo+ao+lo+cz2). (20

(122)

2 O+ p". (21)
To write (21), we have made use of the Wronskian relation
{17). Combining (10), (13), and (21), the solution regular at

the origin will be given by

g,2)= —

same limiting procedure is ¢ (k,r) = re™ @ (1,2; — 2ikr)
- % d (K
¥ia,cz) = _Li=¢ & (a,c;z) - ’elk"‘(‘?’)
F'a—c+1) 2ik
-1 = = 6,(1,2; —2ik
=1 Fiaca) (15) 612 — 20kr) 22)
I(a) = (n— 1)t
Given @ and @, we find a particular solution of {1) by Substituting (22) in (2), we have
J
A’ + k?
d(k) = 2 ~ o L — (23)
1+ A [@® + ke —ik)] 20 (— 1)' e + ik )/la — ik )], Fo(l; — 2ik /{a — ik )
!
In deriving (23) we have used the following integrals: o
- f e~ *2'0 |a,c; pz)dz
J- e 2P (a,c;pz) 0
o _Tv+o—1) p°
=L+ 1)/AY " LF ey + Liep/h) (24) olo+c+1) Avtor!
and X3Flbo+av+ o+ Lo+ 1,0+ ¢, p/A) (25)
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together with the reduction formula'’

qu(alrBl’7/1"";a2’Bl!72"";z)

=, 1Fy o any e Yaz) (26)
for the generalized hypergeometric function ,F,. The inte-
gral in (24) has been given by Landau and Lifshitz'® while
thatin (25) can be proved by expanding 8, (a,c; pz) as a power
series in z and integrating term by term.

Since Fo(l; — 2ik /la — ik )} = [(@ — ik M/ (a + ik)), it
can easily be shown that the denominatorin (23)is D (k ) given
in (5). This result is quite expected because the Fredholm
determinants for the regular and Jost solutions are equal for
a symmetric nonlocal potential.'® Thus we write (22) in the
form

& (k,r) = re™® (1,2, — 2ikr)

. ikr /l
(@®+ k2D (k)
1 & 6,(1,2)—2ikr)
— Y ———p" (27)
2ik = (n—1)

The integral representation of the Jost function f(k ) in
terms of the regular solution ¢ (k,7) is given by

flky=1+4 fw e “e'ds f e “plkndr. (8)

Applying the results in (24} to (26), it is easy to see that £(k ) in
Eq. (8') is in exact agreement with that given by Eq. (8) ob-
tained earlier by a rather simple technique. However, we
note that only a relatively complicated formulation of the
problem outlined above can be extended to treat the Cou-
lomb-nuclear interaction.

1. JOST FUNCTION FOR COULOMB PLUS YAMAGUCHI
POTENTIAL

The radial Schrodinger equation for the Coulomb plus
Yamaguchi potential is given by

( a’ +k2——2—77k—)¢(k,r)=d(k)e‘“’ (28)
dr? r
with
dik)=21 f " e g (ks)ds. (29)
o
Here 7 is the well-known Coulomb parameter
7 = z,2,*/v. (30)
The transformations in (10) reduce (28) in the form
28 oL e = - e
where
= (a + ik )/2ik. (32)
The complementary functions of (31) are
gilz2) =P (1 +in,2;2) (33a)
and
glz) = @ (1 + in,2;2). (33b)

As in (16), the particular integral of (28) is given by
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gp(z) = -

dik)| _ 8:2)
2k g‘(Z)J w & w

+ gl [ 8 e, 34)
Following the procedure outlined for the pure Yamaguchi
potential, g,(z) can be written in the closed form
dk) & 0,1 (14+1m,232)
2ik n=20 n!
In terms of (35) the regular solution for (28) is obtained as

g, 2= — P (35)

& (kr) = re™® (1 + in,2; — 2ikr)
. d(k ) reikr
2ik
= 0.(1+in2;— 2k
% (I1+1m ikr)
n=1 (71 — 1)'

Pl (36)

Theunknown constantd (k }is obtained by substituting ¢ (k,7)
from (36) in (29). Thus we have

dlk)=Ae*"/\a® + kD (k), (37)

where the Fredholm determinant D (k ) associated with the
regular solution is given by

LS (2

Dk)=1+

(@ + k*)a —ik) =) a — ik
2ik
><2F.(1,1+n+i77;1+n; - = ) (38)
a—ik
Here
y=tan" 'k /a. (39)
Combining (36) and (37), we get
¢ (k,r) = re™ [«D (1 + in,2; — 2ikr)
Ae*™
 2ik(a® + k3D (k)
) m—l
szzl 0.1 + in,2; 21kr)( il (40)

In Appendix A we present a Laplace transform method to
solve (31) and arrive at (40). This method appears to be
simpler than the approach outlined above.

The appropriate Jost function f (k ) can be obtained from
the following integral representation'*2%2'

f(k)=f:(k>+/1f:e—“fc<k,s>

xdsf =@ (kyr) dr, (1)
0
where the Coulomb Jost solution and Jost function are

[filk,r) = (— 2ik)e™re™ W (1 + in,2; — 2ikr) (42)
and

eﬂ"q/Z
folk)= ——, (43)
(1 +in)

respectively. Using (40), (42), and (43) in (41), we have
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_ (1 + ing)e*™
flk)= fitk)|1 k/l_——_(a2+k2)D(k)I]
D~ (k)
D)’ (44)
where
D*(k)=D(k) =" 4 et e
X[R (a, y) + B(y] (45)
with
Rla,y)=a+ 29ke*™{ —in/2 +i/2q
+ ¥(1 + i) — (1)
+ In(2k /y) — § In[1 + (k /y/*1} (46)
and
B(y) = 2nke*™ Zl (— ;"'W)p
21
izl @7)

l
<3
In the above B,, and ¢ stand for the Bernoulli numbers and
logarithmic derivative of the gamma function, respectively.
To write (44), we have used the result of the integral

I= f se =W (1 + in,2; — 2iks)ds (48)
0

in addition to those in (24) and (25). The method for the
evaluation of 7 has been shown in Appendix B.

IV. JOST FUNCTION FOR COULOMB PLUS A RANK-2
SEPARABLE POTENTIAL

A rank-2 separable potential has been introduced by
Mongan'? in fitting the 's, nucleon-nucleon phase shifts.
The Schrodinger equation for the Coulomb plus Mongan
case IV potential can be written in the form

d 2 2 277k)
k?— gk,
( dr? + r ¢ (k)
=d\(k)e™ %" +dylk)e” = (49)
with
dk) =/1.f e~ (k,s)ds (50a)
(V]
and
dlk) =25 | e~ = s)ds (50b)
0
The regular solution of (49) is obtained as
¢ (k,r) = re®® (1 + in,2; — 2ikr)
— __l_reik’
2ik
< $ 6,(1 + in,2; — 2ikr)
g (n— 1)
X [dk )7~ + dolk o3~ '] (51)

The unknown constants d,(k ) and d,(k ) are obtained by sub-
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stituting ¢ (k,7) in (50a) and (50b) and solving the resulting
simultaneous equations. We have

dik)= {(a/z + kz) +/1j [(a_/2 + kz)Xn(aj)
- (a'2 + kz)Yn(ai’aj)]}

2ny;
Ae ™

. D(k)e? + ka2 + k3’ (52)

i=12, j=12, i#}],

where the Fredholm determinant D (k ) associated with the
regular solution is given by

Dk)=1+4,X,la)) +A.X,(a))
+ Ao [ X, (@)X, (@)
— Y, (@)Y, (ana))]- (53)
In Eqgs. (52) and (53)

1 a,~+ik)"
Xn a;)= -1y .
@)= (@, — ik)al + k3 ,,Zl( ! (a,.—zk
zFl(l 1t n il 4 n; —2K ) (54a)
a; — ik
1 = a; +ik\*
Y La;) = _ln J
lena) (@ + ik, — ik’ P (a,-—ik)
X2F1(1,1+n+i77;1+n; ‘2’7‘), (54b)
a;, —ik

i=12, j=12, i#j

Theappropriate Jost function f{k )canbe obtained from
the integral representation

Flk) = folk) + A, f “em @ £ (k) ds

X fw “e k,r)dr

+/l J‘ azsf
X f — ¢ (k,r) dr. (55)
(o]
The Jost function comes out to be
Sflk)=D ™ (k)/D(k), (56)
where
™2 ™2
D *(k)=Di(k) -
(1t +in) I'(1 + in)

X z A [R (@, y) + B (3]

i=1

1

x{ez”"‘D(k)— S S
(@ + k7

X [Mn(ai’aj)Xm @) +M, (aj!ai)Ym(ai’aj)]] {57)
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with
M, (@) =2e" (e} + k)
+4; (@} + k)X, (o))
— (@} + kY, (@a;)]}, (58)
Ria,y)=a, + 2pke’""
X{ —im/2 + /29 + Y1 + in) — ¥(1)
+ In(2k /y,) = {In[ 1+ (k/»,)*1},  (59)

C o (=2 p)P
Bly) =2k S (—29x)
p=1 p
P 221B 2/
XS (=12 (60)
~ QIN2l + p)
and
yi=tan 'k /a;,, i=12, j=12, i#]. (61)

Thequantity D *(k }in Eq. (56)is the Fredholm determi-
nant associated with the physical solution. A useful check on
the fairly complicated formulas for D (k )and D *(k ) consists
in showing that when the Coulomb field is turned off by
allowing 7—0, the well-known results for Mongan case IV
potential are reproduced. It is about trivial to see that the
appropriate results of Mulligan er a/.® are obtained from our
expressions for D (k) and D *(k ) as n—0.

V. CONCLUDING REMARKS

In this work we have proposed a wavefunction method
to calculate Jost functions and other appropriate Fredholm
determinants for scattering by a Coulomb-modified nuclear
separable potential. The method proposed depends only on
the theory of ordinary differential equations and is quite gen-
eral. The specific results presented refer to scattering by (i)
Coulomb plus Yamaguchi and {ii) Coulomb plus Mongan
case IV potentials. To our belief, most of these results have
not appeared before. Some applications of our results will be
the following:

(i) The Jost function f(k)in Eq. (56} can be used in
cotd = [flk)+ f{— k)il flk)— f(— k)]Jtocomputethe
scattering length and effective range for the Coulomb-modi-
fied potential considered in this paper. We have already
checked that the results of van Haeringen® are reproduced
ford,=0.

(ii) The Mongan case IV potential can support spurious
states and bound states embedded in the continuum for some
selected values of the parameters. As discussed by Mulligan
et al.,® these states are analyzed in terms of zeros of the Fred-
holm determinants associated with the regular and physical
(outgoing wave) solutions of the Schrodinger equation. Our
expressions for D (k Jand D * (k ) may be used to examine the
effect of the Coulomb potential on these states.

APPENDIX A

This appendix derives a Laplace transform method for
solving the inhomogeneous differential equation
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d’glz) . dglz)
z dz? tle=2 dz
(k)

- _ 2, pz

Sk e (A1)
Since confluent hypergeometric functions are of exponential
order, and the right-hand side of (A 1) also is exponential, the
Laplace transform method is expected to serve as one of the
best techniques to solve this. If Re ¢ <2, both parts of the
complementary functions have transforms, if ¢>2 only one
part has. Taking the Laplace transform of {A 1), we get

— aglz)

4151 — s)gis)] + cs — algls)
ds
di) 1 A2

= o= lgl0) — 20—

where g{s) = .2 { g(z)}. This is a first-order differential equa-
tion in g(s) and can easily be written in the form

d l4a—c,l —agz
-a;s-[(S~1) s gls)]
(c — 1)g(0) +d(.k)
ss— 1)~ 2ik

1

” . : (A3)
s%s — 1) %s — p)
Integrating (A 3) between the limits s to o we write
g(s)=s“*‘<s—l)f"'“"l[AHc—l)g(O)f __do___
s 0w — 1)°7¢
LY . (A4
2k Js ol — 1) Yo —p)

where A is a constant. The first two terms on right-hand side
of (A3) gives the complementary functions of (A1) while the
last term gives the particular integral. This can be seen as
follows.

Consider the standard integral given in (24). Forv =20
this reads

L1 P lac)} = (/s F (a1 1/5). (AS)
The Euler representation for the Gaussian hypergeometric
functions ,F,(a,B;y;r} is

PN B /4
BN = R B —p)

1
XJ LR 1 — ) P 1 —er) - dt. (A6)
0
Using (A6) in (AS), we get

LiDla,cz)) =5"""c— l)f](l —t)f T s — 1) dt
i (A7)
The transformation
w=(s—1t)/(1—1t) (A8)
reduces (A7) to the form
FLl{Placz) =(c— )" s — 1)~}
X f T de (A9)

olo — 157 ¢
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Thus
c— 1)..2’—’[.«'— s — 1)“"“f -————wa(w‘iwl)c_a]

= & (a,c;2). (A10)
Similarly

L s 1) = Taljc—)q_b(a,c;z). (A11)

To deal with the third term in (A4), we restrict ourselves
to the half-plane Res > Re p and Res > 1. Thus

J‘oo da) _ i p’l f ® dw
s ol —1)° "o —p) S0 S ot TlNo—1F7°
p (A12)
As we shall see presently, the above justifies the validity of
expansions in (27) or {36).
Allowing a—a + n + 1 and c—c + n + 1, we get from

(A9)
(e + n)s®* (s — 1)"—°-1f dw/w® " o — 1)~

=Z{®Pla+n+ lic+n+ 1;2)}

= (1/s),F\(l,a +n+ l;¢c + n + 1;1/s). (A13)
Using the expansion
%2F1(1,0+n+1;c+n+1;%>
_Lle+n+1l) & a+n+m+1)
I'a+n+1) o Llc+n+m+1)
x Limt1) ome (A14)
m!
we write (A13) as
= do
C+fl a—ls__lc~a—lJ-
{ )S ( ) R wa+n+l(w_1)c~a
_ Nic+n+1) & Tla+n+m+1)
Fa+n+1)Zolc+n+m+1)
x Lim 1) onemez (A15)

m!

Therefore,

f—'ls“~‘(s~ 1)6‘0—1r de ]

s 0T o —1F 71

1 1 Ife+n+1) & I'(+n+m+1)
c+nnl Fa+n+1) S0 Fc+n+m+1)
XB(n—+—1,m+1)z,,+,,,+,

, (A16)
m
where B( p,q) is a beta function, written as
I (pI(q)
B(pgl= ——7-. (A17)
I'(p+4q)

In views of (20), (A10), (A11), (A12), (A14), and (A16),the
inverse transform of (A4) can easily be taken to write (40).
Note that for regular boundary condition 4 =0 and

80)=1
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APPENDIX B
In this appendix we describe the method for evaluating
I:f se @ik (1 4 in, 2; — 2iks)ds. (B1)
0

This is facilitated by expressing ¥ in terms of the irregular
Whittaker function W as

V(1 +in,2; — 2iks) = (— 2iks) " 'e W _ .\ 5[ — 2iks).

(B2)
Using (B2) in (B1), we get
I= — ﬁ dse™ W _, ., ,(— 2iks). (B3)
0

To transform this integral to a form suitable for our calcula-
tions, we use the integral representation for the Whittaker
function

— 2ikse™ (" i

r(1+m) Jo
Xt +1)""dt (B4)
with 0 < 8 < 7. Here 8 is the measure of rotation of the path
of integration for extending the domain of validity of the
Laplace integral.

Substituting (B4) in (B3) and interchanging orders of
integration, we have after carrying out the integration

w_ m,l/z( ~— 2iks) =

1 we? t o\ dt
== ——— .
1"(1+i77)J; (1+z> @ —ik (1 +21)]?
(B5)

Making the substitution of variable
z=t/(14+1), (B6)

{BS) can be written in the form

1
I= 1 fz"’dz
I'(l+in)a—ik) Jo
d z

X , . : (B7)
dzl (@ —ik)—(a+ik)z
After partial integration, {B7) yields
_ 1 1
— 2k (a—ik)(1+in)
! idz
X [ 1-2 kf Z ] . B8
Tk @ik — @t ik (B)
Further change of variable
z=[(a —ik)/\a + ik )]u (B9)
reduces (B8) to
_ 1 1
—2ik (a—ik){1+in)
27y Zo i‘r]du
x| 1= 29k £ f“ ] B10
K a+ikJo 1 —u ( )
where
2z,=¢"” with y=tan~'k/a. (B11)

For the integral on the right-hand side of equation
(B10), we separate the pole term in the integrand at » = 1
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from the more complicated part of the integrand by writing

Z, in Zy Vo
f Y du= du + f “ 1du
o 1—u o 1 —u o 1 —u

1 i __
—f “ ——1du.
W 1 —u

Of the three integrals

(B12)

f ‘du/(l —u)= —In(l —zy), |arg(l —zy)| <.
(0]

(B13)
Combining (B11) and (B13), we get

f" du/(l —u) = in/2 — iy — In(2k /y) + } In[1 + (k /yP].
0
(B14)

The second integral in (B12) can be obtained from the limit

1 mo_ 1 in
Ju 1du=lim [f—u-———du
o 1 —u €0 + o (l—u)lkf

it

Using the integral representation for the beta function,

(B15)

. F(r)r(s) __ : r—1 _ s— 1
B(r,s) = _——F(r—i-s) ._J;x (1 —x)~"dx, (B16)
we get (B15) in the form
J ¥ 1 g
o 1—u
— lim [[””“”F(HE) —1]/6‘]. (B17)
€0 + I'(l+in+e¢)

Straightforward application of the I’'Hospital’s rule converts
(B17) in the form

f 4 = 1) — W1+ i),

B18
— (BIg)

where i stands for the logarithmic derivative of the gamma
function,

Yz)=1"(z)/T (z). (B19)

For the last integral in (B12) we note that both limits of inte-
gration are in the unit circle. Thus we change the variable by

u=e* (B20)
and get
oy Y i1 o, 2mE
f il W (1 el i 973 (B21)
W 1l —u o sing&

The integral on the right-hand side of the above equation has
the advantage that real and imaginary parts can be separated
in a straightforward manner and the imaginary part evaluat-
ed in closed form. Thus

1 iy :
J Wl — gy —14e )
. 2y
N
- f (1 — e~ %) coté dE. (B22)
8]
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Finally we consider the integral
1

Jw (1 —e ") coté dE :yJ- (1 — e~ ™) cot( ys) ds.
(B23)

with &£ = ys. Expanding both the exponential and cotangent
in power series,”” we get

o

cotz= 3 (—1)2*[B,,/(2n)l]z"" ", (B24)
n=0
where B,, are the Bernoulli numbers; and
l—ew— — 3 (22097 (B25)
p=1 P!

Using the results given in (B24) and (B25), we obtain from
(B23)

fu — e Mcotg df = — 3 L2

0 p=1 P!
o 22nB 2n
% Z (— 1y ____Z"_y__
o (2n)'(2n + p)
(B26)

Combining the results in (B11), (B12), (B14}, (B18), (B22), and
{B26), we have the value of the integral [ as

1 1

I= {a + 2nke*™

2k T(1+ ip)a? + k2N

i I . 2k
Xy — 5 + ‘57'7— +¢(1+lﬂ)—¢(l)+ln(7)

1 o (—2m)°
— —In [l + (kY] + e
2 ( y} pZ1 p'
0 22nB 2n
il A ]) (B27)

X3 (=1

(2n)(2n + p)

Equation (B27) is our desired result and has been used in the
text. A more convenient form than the double series in (B27)
can be derived by exploiting the relation between the incom-
plete beta function and the Gaussian hypergeometric func-
tion is

B,(a,b) = Jx Y1 — ) dr

0

=a 'x*,Fa,1 - ba + l;x). (B28)

Note that relation (B28) is valid for Rea > 0, which is true for
ourcase. In (B28)weusea =1 + i, b =0,x = zg,andt =u
and get

Zo un] z(l) +in .
f du — __F(1 + in, 12 + inz,). (B29)
I—u (1+im)

0

Combining (B10} and (B29), we have

1 1
T 2k (@ —ik)C{1 + in)
27y Zl + in
X [1 ok 0
a+ik (1+1in)
X F Ul + in, 152 + in;z,) | - (B30}
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A proof is given of the following theorem: An arbitrary sourceless electromagnetic field
determined in a region of a gyrotropic medium can be represented therein in terms of two scalar
functions, called the scalar Hertz potentials, that fulfill a system of two second order partial
differential equations. Some restrictions are imposed on the region, and their implications are

discussed.

PACS numbers: 41.10.Hv, 42.10.Qj

I. INTRODUCTION

This paper is a modified version of a report.! The scalar
Hertz potentials for gyrotropic media have been introduced
in Ref. 2. The authors have presented there the following
theorem.

Theorem 1: An electromagnetic field E, H generated in
an arbitrary region D of a gyrotropic medium from two sca-
lar functions u, v via formulas

E =¢ “VXeVXuz, + iope eV vz, (1a)
H= —iveu "V Xuzy+ p~ "VXpVX vz, (Ib)
satisfies in D the homogeneous set of Maxwell’s equations

VXH = —iwekE, (2a)

VXE = iop-H, (2b)

if the functions « and v fulfill in D the system of equations
€ & €, A

viy 2 k§>u=—wr—“—, 3a

(+6822+ HTs e 3z (a)
Ba &P ) Ha Ou

Vg L 4kl =wer, — —. 3b

('+,u822+m fu oz (3b)

The time dependence is assumed to be given by the fac-
tor exp( — iwt ) which is suppressed throughout. A system of
Cartesian coordinates x,y,z is introduced in which the per-
mittivity and permeability tensors have the following forms:

€ —ie, O
e=|ie, € 01, (4a)
0 0 €,
poo =g 0
p=\p, H 0] (4b)
0 0 M
The other symbols are defined as follows:
K mwte, TR ks ot S
u €
Tg=f‘:—+ﬁ:t—g, V,=V—z0—§z—,

where z, is a unit vector directed along the z axis, and the
tilde denotes the transpose of a matrix.

The proof of this theorem follows just from a substitu-
tion of (1) into (2).

We recall that a medium is said to be gyrotropic if in an
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appropriate system of Cartesian coordinates the tensors €
and p have the forms given by (4), where not both €, and 1,
are zero. The z axis is called the distinguished axis of the
medium. Ife, =y, = Obutnotbothe¢, = eandu, =y, the
medium is uniaxial.

The scalar Hertz potentials defined by Theorem 1 have
been employed to good purpose in solving a half-plane dif-
fraction problem for a gyrotropic medium.? It is believed
that they will prove useful in many more electromagnetic
problems for gyrotropic media. However, similarly as for
isotropic media, there immediately arises the question of
how general is the class of electromagnetic fields generated
via (1)in a region D by the set of all functions u, v satisfying in
D the system (3); or, more specifically, does this class coin-
cide with the class of all sourceless fields determined in D ?
Though this question was already posed in Ref. 2, it was left
open, and it is the aim of the present paper to provide an
answer to it.

Il. FORMULATION OF THE PROBLEM

The problem of the generality of representation (1) may
be formulated as follows:

Can an arbitrary electromagnetic field satisfying the set
(2) in a region D of a gyrotropic medium be represented via
{1) in terms of two scalar functions u, v that fulfill the system
(31

For isotropic media this question was formulated and
answered by Bochenek* (for a class of regions).

In this paper we present a generalization of Bochenek’s
result to the case of the scalar Hertz potentials for gyrotropic
media. We also extend his answer to a somewhat broader
class of regions.

The following representation theorem summarizes the
results of the present paper.

Theorem 2 (representation theorem): An arbitrary elec-
tromagnetic field E, H determined in a sufficiently simple
region D of a gyrotropic medium and satisfying therein the
set (2) can be represented in D in terms of two scalar func-
tions u, v in form (1) with u, v satisfying the system (3).

The restriction on the region D to be of sufficiently sim-
ple shape means that any straight line parallel to z, must not
have more than one interval in common with D. Alternative-
ly, we shall formulate this property by saying that D has to be
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convex with respect to the z axis as shown in Fig. 1.

We denote by D, the projection of D on a plane
z = const.

In order to simplify the proof, we shall assume that
there exists in D a surface S, given by the equation z = z,(x,y),
whose projection on the plane z = const coincides with D,
and z,(x,y) has continuous second derivatives (see Fig. 1).

The role of the convexity restriction will be discussed
after the proof has been presented.

Theorems 1 and 2 can be considered as mutually inverse
provided Theorem ! is confined to regions for which Theo-
rem 2 holds.

Let us rewrite the system (3) in the form

Hw=(T + Lw=0, (5)
where
(V?, 0)
.9-= s
0 Vv
€, & €, 0
- 53 k?; w:uTg__
P € Jdz € 0z
— wer, Ko 3 Ko az+kfn
u oz JTA /4

()

The letter 7 is used in (5) to stress that the system (3) is
a generalization of the Helmholtz equation satisfied by the
Hertz potentials in isotropic media. The operators 7 and .¥°
are the transverse and longitudinal parts of 77, respectively.
From (1) we have

F= —KJ7w, (6)

where
, F= .
0 pu/u, :

In view of (5) we also have
F=K.?w

or (7
K 'F=%w.

The basic idea in the proof of Theorem 2 is to find for a given

:

‘

FIG. 1. Region D, its projection D, on xp plane, and surface S. Projection of
§ coincides with D,
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F such a solution to {7) that it simultaneously satisfies the set
[5}. It may seem surprising that a solution can fulfill two
systems but this is possible because, as shown in Ref. 2, F
fulfills the set

HFK'F=0. (8)

An alternative proof could be given by looking for a solution
to {6) that wounld fulfill {5).

lIl. THE PROOF
A. Formal scheme

To highlight the structure of the proof, we first present
its basic scheme in a formal way. The feasibility of the rel-
evant steps will be demonstrated further on.

We consider an arbitrary field E, H given in D and satis-
fying therein the system (2). For this field we find w, from
relation (7) thus

ZLw, =K 'F. (9)
Only as an exception could it happen that w, would fulfiii (5};

this would essentially end the proof. However, with no loss
of generality, we may write

FHw, =p, (10)

where p is some function. In the next subsection we show
that

ZLp=0. {11)
We now construct w, so that

Tw,= —p, (12a)
Lw,=0. {12b)

Finding a function w, that satisfies simultaneously the two
systems of equations constitutes the crucial step in the proof.
For w;, = w, + w, we have

F=KZw,, (13)
and
Hw,,=0. (14)

Let us denote by E', H' the field corresponding to w,,
via (1). Then the field E — E',H — H'is of TEM type with
respect to z, (in particular it could be zero). It can be shown
that any TEM field in D can be represented in terms of scalar
Hertz potentials (see subsection 3E). Let us denote by w, the
potentials for the considered TEM field. Then the sum

W=W +W,+w, (15)

constitutes the potentials for the considered field E, H,
which ends the proof.

B. Equation (11)
Ly=LxHw =L\T + LYW, =T +.L)Lw,
= Lw, =XK 'KLw, =K 'F=0. (16
The final equality in {16) follows from (8).

C. The function w,

An explicit form for w, is not necessary for the validity
of our proof. What we need to know is that such a function
exists and fulfills Eq. (10). However, for the considered case
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of a homogeneous medium we can easily construct an explic-
it solution (see the Appendix). It has the form

W, = J“g(x,y,z’)siny (z—2)dz
237y, e, '
1 f * .
glx,y,2')siny,(z — 2’} dz’, (17}
t % o2 :
where
g=4F,
32
k 2
e az2 T OHT e
= 2 , k 2 — 0)26#,
wer, _(7_ g + Sk
.9z’ dz? ¢

and y,, ¥, are determined by

Vo =%t ) p,),
the upper sign is for » = 1 and the lower for n = 2.

D. Construction of w,
The general solution to (11) has in D the following form:

n=4 i .
p= Epn(x,y)(; )e‘” (18)

n=1

where

V= =Y Ya= — 7Y

_ _ Mty
= -om—ip(Se)

£ = _§4_l_(ﬂ #g) ,

B\€E—§
and p, are arbitrary functions.
We now solve {12a} assuming p to be given by {18). W

get
w,="Sq, (x,y)(; )e"“’, (19)
where T '
0,60 = o= [ | pate ,n)ln L dgan,
p=Ix- 5‘)2 y — )] "2. (20)

Obviously w, also satisfies Eq. (12b).

E. TEM field

For TEM fields the system of Maxwell’s equations (2)
reduces to the following system [cf. (8) and (9) in Ref. 2]:

JE , JH .

—_— = — 'H, — = 1lw Xe'E’

9z DZoXH oz %o 2h
V-E=0, V'H =0.

It can be shown that the general solution to (21) has in D
the form

= 2:: — 1z Xe, x,) 1",

(22)
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H= }:[h

> )] Ynz,

where e, *z, = 0 and the fields e, fulfill the conditions

Ve, =0, Vez,Xe,)=0, (23)
h, are given by h, = (@/¥,)z,X€e,.

The planar fields e, can now be represented in D, in the
following way:

e, = (~ 1)'oug, Vo, + iopV Xy, 2o (24)
This representation follows as a particular case from the
Helmbholtz theorem (see, for example, Ref. 5).

From (23) we get

Vip, =0, (25a)

Vi, = 0. (25b)

We can now define the scalar potentials «,, v, for the
fields (22) in the form

E:, Pulxy) + — z rlf(x,y)]( ) . (26)

It can be easily checked that
Hw, =0 {27)

and that the fields (22) are determined from (26) via formulas
(1).

A more detailed discussion of TEM fields will be pre-
sented in Ref. 6.

— 1'izgXh,(x,

F. The convexity condition for the region D

We shall demonstrate by way of an example that the
convexity condition imposed on D is necessary for the valid-
ity of Theorem 2 in the case of an isotropic or uniaxial medi-
um. Since the proof for a gyrotropic medium is exactly pat-
terned after the isotropic case, this example suggests that the
restriction on D is essential in general.

Consider the electromagnetic field of an electric dipole
of moment p perpendicular to z,. We denote by x,, y,, z,
the coordinates of the dipole. For an isotropic or uniaxial
medium (z axis being distinguished) the scalar Hertz poten-
tials for the considered field are given in each of the half-
spaces z < z, and z > z,; by the functions /1, M determined in
Ref. 7. These functions, however, are not the potentials for
the whole space since their z derivatives are discontinuous
across the plane z = z,. Denote these discontinuities by

[21_7]_.917 o

Jz z;+0 C?Z

Jz

and similarly for [0M /dz]. Let us note moreover that these
discontinuities are singular at the point x = x,, y = y,.

If we now consider a convex region not containing the
dipole but crossed by the plane z = z,,, then by virtue of
Theorem 2 there must exist a way to compensate the discon-
tinuities of 371 /dz and M /9z. Itisindeed so, since the Hertz
potentials for an electromagnetic field are not determined
uniquely. In other words, there exist Hertz potentials differ-
ent from zero that generate the zero field. To demonstrate
this, we observe first that these potentials must have the form
of the potentials for a TEM field, given by (26), since obvious-

z,— 0
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ly for the zero field we have E, = H, = 0. Secondly, one can
easily find transverse fields e, in formulas (22) that lead to
the zero TEM field. The Hertz potentials w, corresponding
to these fields e, yield the field equal to zero, such potentials
will be called null potentials (ghost potentials in Ref. 3).

Let us now state explicitly that by virtue of formulas
(26) the discontinuities [9/7 /3z], [OM /3z} determine the cor-
rective potentials uniquely in that part of the considered con-
vex region (z <z, or z>z,) that is not pierced by the line
x = x4,y =y,. Consequently, we compensate these discon-
tinuities by adding these potentials to /T and M in that part of
the convex region.

However, this corrective technique, which is the only
possible one, must fail for a concave region D’ shown in Fig.
2 when the line x = x,, y = y, pierces the region D ' on both
sides of the point z = z,. In this case we are not able to con-
struct the corrective null potentials with no singularity along
the line x = x4, y = y,. The singularity present in 811 /Jz,
JdM /3z would be carried along this line spoiling the correc-
tive null potentials.

IV. CONCLUDING REMARKS

Theorem 2 clarifies some of the basic facts connected
with the representation of electromagnetic fields in terms of
the scalar Hertz potentials. Its main significance stems from
the information it provides about the generality of this repre-
sentation. For example, in solving an electromagnetic prob-
lem with the aid of the potentials we now can avoid the un-
pleasant situation in which we would not know whether the
electromagnetic field to be determined can be represented
via potentials.

Somewhat philosophically, one might also remark that
Theorem 2 explains why it is not possible to forget about
Maxwell’s equations altogether and employ only the system
of equations for the potentials (restrictions on D ).

It has been shown in Ref. 2 that the idea of auxiliary
functions for electromagnetic fields can be extended further
by introducing the so-called superpotentials which generate
the scalar potentials. Analogously to Theorem 2, it can be
shown that an arbitrary pair of scalar potentials given in the
considered simple region D and satisfying therein system (3)

FIG. 2. Location of the dipole with respect to the concave region D!
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can be represented in terms of one superpotential satisfying
its fourth-order equation. Thus, indirectly, Theorem 2 leads
to aremarkable result that an arbitrary electromagnetic field
in a gyrotropic medium can be derived from only one scalar
function while in an isotropic medium two functions are nec-
essary. This result becomes less surprising if we note thatin a
gyrotropic medium the components E, and H, are coupled
by system (8) while in an isotropic medium E, and H, can be
two arbitrary, independent solutions of the Helmholtz
equation.

Finally we have two more remarks on possible applica-
tions of Theorem 2 to two cases of some practical signifi-
cance. The first one concerns cylindrical regions whose axes
are perpendicular to the z axis. The second one involves me-
dia stratified along z.

(1) For cylindrical regions and fields harmonic in one of
the transverse coordinates [e.g., given by exp(iax) or
exp(iBy)] the convexity condition on the region D becomes
unnecessary and the theorem can be proved for any region D
that can be divided by planes z = z, (v = 1,2,..) into subre-
gions convex with respect to z in such a way that each of the
planes z = z,, has only one strip in common with D.

(2) The theorem can be extended to gyrotropic media
stratified along the distinguished axis, i.e., for € and p vary-
ing with z. The formal scheme of the proof and relation (16)
remain valid in this case though the operators # and .#" and
the matrix K take other forms than used here [cf. formulas
{28), (29), and (30) in Ref. 2]. As was already observed, the
closed form for w, is redundant and we can content ourselves
only with the existence and regularity of w,. What we really
need in subsection 3D is the existence of four linearly inde-
pendent solutions for Egs. (11) and (12b}. This follows from
the relevant theorems on the systems of ordinary differential
equations® (nonsingular and continuous). More essential
modifications are necessary concerning the representation of
TEM fields. In this case the definition of the potentials via
(26) has to be changed and the proof of the relation (27) be-
comes much more complicated. These considerations will be
carried out elsewhere. Jump discontinuities in €, can be
dealt with by an appropriate division of D.

APPENDIX

Let us change in the system (9) the variable z to
5 =z — z4{x,p) and consider this system for s> 0. The La-

place transform of (9) takes the form
W =K'F! (A1)

where Zisthe Laplace transform of .¢” and W,(x,y,p) and
F(x,y,p) are the Laplace transforms of w,(x,y,s + z,) and
F(x,y,s + z,), respectively, i.e.,

W, = J. W, (x.p,8 + zp)e ~ P ds,
0

similarly for F.
From (A1)} we get

w, = (detKZ )8, (A2)

with § = fV]A:‘ , where 71/' = (K:? )~ det K.Z is the Laplace
transform of 4", and g(x,y,p) is the Laplace transform of
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g(x,y,s + z,) (see subsection 3C).
The inverse of the determinant in (A2) can be rewritten
as follows:

1

(detK.2) ' =
@+ e’ +73)

1 ( —1 1 )
+ — . {A3)
W, \pPin | P+
In order to find the inverse Laplace transform of w,, we
make use of (A3) and apply to {(A2) the convolution theorem.
We obtain

—1 * . ,
W= — f g(x,y,s + Z,)siny (s — s') ds’
2k v, Jo

1 i .
+ o [ s+ zgsinys —5)ds - (ad)
2k ’1, v,

0
or returning to the variable z =5 + z,
—1 f * .
W= —— xp,2')siny,(z — 2') dZ’
Y ] g(x.p,2'Jsiny( )

V1 Jz,

1 'z
— , o I d /, A5
Y . yzfg(xy,z Jsiny,(z — z') dz (AS)

Zo
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which coincides with (17).
One may easily check that (A5) constitutes a solution
also for z < z,.
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The pattern space factor and quality factor of cylindrical source antennas

John M. Jarem
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For the first time the quality factor of cylindrical source antennas is derived by a plane wave
expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave
expansion is shown to be different from Collin and Rothschild’s [IEEE Trans. Antennas

Propagation AP-12, 23 (1964)] quality factor.
PACS numbers: 41.10.Hv, 84.40. — x, 02.30.Mv

I. INTRODUCTION

The problem of defining a suitable quality factor (ratio
of 2 times frequency times the greater of the electric and
magnetic energies in the evanescent fields to the power radi-
ated in the antenna system’) for planar, cylindrical, and
spherical antenna sources has received considerable atten-
tion in recent years.'® In this problem of defining a suitable
quality factor, basically two methods have been used to de-
fine the energies in the evanescent fields. The first method is
to express the EM fields in the system as an infinite sum of
propagating (visible region of k-space) and nonpropagating
(invisible region of k-space) plane waves, find the electric and
magnetic energies associated with each plane wave, and then
sum these energies only over the evanescent or nonpropagat-
ing values of the wavenumbers. This method has been used
by Rhodes? and Collin and Rothschild® for planar aperture
antennas.

The second method introduced by Collin and Roth-
schild' for finding the energy in the evanescent field is based
on the recognition that there exists an energy density in the
evanescent field which is given by the difference between the
total electric or magnetic energy densities e, E-E* and
1 uH-H* in space and the energy density associated with
radiated power flow namely P,y /Venergy fow = ( Ho€o)' *Praa-
In this method the total energy in the evanescent field is
given as an integral over all space of this evanescent energy
density. This method has been used by Collin and Roth-
schild,' Kalafus,* and Fante® to find the quality factor of
cylindrical and spherical antenna sources.

At the present time the first method (which is to define
the evanescent energies as a sum of nonpropagating plane
waves) has only been applied to finding the Q for planar
aperture antennas and not for cylindrical or spherical anten-
nas. This investigation will be concerned with showing that
the quantities defined by Collin and Rothschild® as the eva-
nescent energies of a cylindrical antenna system are not the
same as the evanescent energies as defined by a plane wave
sum over the nonpropagating waves as is done in the case of a
planar aperture. This will be shown by calculating the plane
wave evanescent energy in the region y >0 which results from
a source located in the region y < 0, r < a. This energy will be
shown to be infinite for arbitrary source distributions. This
then shows the difference between the two evanescent ener-
gies since Collin and Rothschild’ evanescent energy was
finite.
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1. ANALYSIS

The subsequent analysis will be concerned with finding
the quality factor for cylindrical antenna sources where (for
simplicity) the radiating source is taken to be an axial mag-
netic current source which excites only TE modes given by
(this is the same source as used by Ref. 1).

M= M,(x,y}ej( “PErs for

2)1/2

r=x*+y)"?<a,y<0,

1
M=0 for r>a or y»0
B. <(/‘O€0)1/2w =k,

and where the quality factor of the antenna system is given
by’

Q0 =20[Wgs,W,]1/P,

where [W,W,,] represents the greater of the evanescent
electric and magnetic energies, w is the operating frequency,
and P is the total power radiated in the radial direction. As
mentioned in the Introduction, the electric and magnetic
evanescent energies will be defined in terms of a wave-
number summation over the invisible region of the antenna
system.

The first step in the analysis will be to obtain expres-
sions for the evanescent electric and magnetic fields in the
system. This may be accomplished by expanding the fields in
a plane wave expansion over the visible and invisible wave-
number and then keeping only that portion of the fields
which have resulted from summation over the invisible
wavenumber region. To this end, we note, as shown in Ap-
pendix A, that a plane wave expansion of the E and H fields
in the region y > 0, due to the source M of Eq. (1), is given by
(E, =0)

“ F_ (u)

H, =H0H=H0f_ . _+u2)1/2

Xe—j(uRcos¢+(l—u’)“’Rsin‘tjdu’ (2)
O<d<m,

— B H
H = __JB_’_"QIi (3)
K JR
H, = —SBHo o1 @)
¢ kR ¢’
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E = —jwou'()Hogg_

' xR 38’ ©)
_ JopoH, dH
E, = 0 R’ (6)
where
(1 —w3)'?= —ju*—1)"/? when |u|> I,
k= (0¥ - B3 Hy,=14/m,
R=«xr, X=kx=Rcos¢, Y=«y=Rsing.

In this expression F (u) is the pattern space factor of
the system and is given in Appendix A in terms of M, .

Following our previous statements that the evanescent
fields are defined by keeping only that portion of the wave-
number summation which is over the invisible region (in this
case |u] > 1), we find that the evanescent fields of the system
H¢, E° may be found by calculating

F (u)
Hezf _Fw
i1 — jlu? — 1)'7?

and substituting this function H° in place of H in Eqgs. (2)-(6).
In the source free region Y < 0, R > ka, the H, field may
found from the plane wave expansion

H HOH f F (u))l/z ?jtuR cos ¢ + {1

T<d<2m, R>K(l,

— jluR cos ) — (u* — l)”ZRsind:du ‘7)

—u?)'?R sina&}du
3

where F_ (u) is the pattern space factor of this region. In this
expression (1 — 4%)"/? = — ju? — 1)"/? when |u| > 1.

Now that the evanescent fields have been defined, we
may now calculate the evanescent energies of the system. As
mentioned in the Introduction, it is only necessary to calcu-
late the evanescent energy in the region y>0 to show the
difference between the evanescent energy as defined by Col-
lin and Rothschild' and as defined by a plane wave expan-
sion. Calling the evanescent energies in the region y>0 W ™
and W,,*, we find that the expressions for these quantities
are given by

W,* = lim “°H° [k f d¢fR"RdR

pardi
x( 1 gH° gH<*  QH*® dH* )] @
R? 3¢ 3¢ OR AR /1’
2 T — € Ry
W+ = i MU df RdR
M R:ﬁri 4’ 0+ € ¢ o
€—0
X{ﬁzz( 1 9H® 9H*
x> \R? 8¢ 3¢
dH¢ 3H* ) . ” ,
HeH"|}. 9
+ JdR IR + (

To proceed further, we differentiate H € in (7) with re-
spect to ¢ and R as indicated in (8) and (9) and substitute into
(8) and (9). At this point, following a procedure exactly anal-
ogous to that of Ref. 2 (pp. 64,65), we interchange spatial and
wavenumber integrals to obtain the expression:

W, = HoH o ( Jl.umdu fm)ldu F,(WF* ()

43
lur' + (W — 1) 3u? —

(uz _ 1)1/2(11'2 _ 1)1/2

L)' Kuu' )) ,

(10)
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W, * = “"H" ) 1aruf| du' FL (% ()
ulz u'l»
X l(ﬂzz/Kl)[uu + (@ — 1) —1)?] + 1}
(uZ__ 1)1/2(u;2_ 1)1/2
XK (u,u'), (11)
where
Ry ”— €
K(u,u')= lm Rde e‘f“°°5¢*ﬁsi"‘“"d¢,
Ry~ o0 JO 0
e—0

wherea = u' —uandf = (u'? — 1)"/? + (u* — 1)"/% The in-
tegration interchange is justified since the interchange has
been made before letting R,— 0, € 0.

If we change from polar to rectangular coordinates with
X =R cos ¢ and Y = R sin ¢, K (u,u’) becomes after letting

Ry— o0,

Kuu')= J:o dYe 5 fjw dX e’** = 2u/B)5(u — u').
(12)

This expression has been obtained by realizing that the inte-
gral over x is 27 times the delta function and the integral
over yis 1/ when the integration over the &’ variable in Eqs.
(10)and (11) is carried out. The final expression for W, * and
W, " is found.
Instead of presenting W * and W, * directly we will

form the expressions Qp * = oWy */P and Q\, *

=wW,, * /P in order that a comparison can be made with
the quality factor as obtained by a plane wave expansion and
as obtained by Ref. 1. In these expressions Pis the real radiat-
ed power and, as shown in Appendix B, may be expressed in
terms of the pattern space factors F integrated over the
visible region — 1<u< 1. The final expression for @ © and
Owum * is given by

o2/ S o [FL (@)L 202 — 1)/(6? — 1P7*)du

G S F P+ IF = Pdu/(1 — u?)? ‘

(13)

_ Wasr [F @) P [18. /6 (2u* — 1) + 1)/ — 1P 4,
S F+ P+ IF = Pdu/(1 — u?)?

(14)

Of course it is necessary to recognize that to form a full
expression for the Q (Q = max[Qg ,0\ ]) as defined by a
plane wave expansion, terms which represent the evanescent
electric and magnetic energy in the region R > «ka, Y < O must
be added to the numerators of Egs. (13) and (14) to form the
full expressions for Qp and Q,,. These expressions have not
been derived since Eqs. (13) and (14) are sufficient to show
the difference between Ref. 1 and the Q as defined by a plane
wave expansion.

Clearly from Egs. (13) and (14) for the those source dis-
tributions M, for which F_ (u) does not vanishatu = + 1,
the numerators of Egs. (13) and (14) diverge. On the other
hand, the evanescent energies as defined by Collin and Roth-
schild' converge for all source distributions confined to the
region R < xa which produce single modes (or a finite num-
ber of single modes).

As a specific example, let us calculate the evanescent
energy as defined by Ref. 1 of a delta magnetic current
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source M, = M 5(X)6(Y + xa/2). It is easy to see that in a
coordinatesystem X "Y' (X' = X,Y' = Y + xa/2),located at
the center of the delta source, the only mode that will be
excited is the H Z(kr') mode [see Eq. (A2) of Appendix A],
where 7 = x(x'? 4 y'?)!/2. The evanescent energy for this
mode as given by Ref. 1 (pp. 25,26) will be finite when calcu-
lated over the region R ‘>R, where R | is a nonzero dis-
tance satisfying 0 <R |, <«a/2.

At this point let us calculate the evanescent energy of
the above delta source using a plane wave expansion. We,
first of all, find for the above delta function that the pattern
space factor F, (1) does not vanish ¥ = + 1[itis proportion-
altoe —® — V™2 for |y| > 1; see Eq. (AS5)], and, since it
does not vanish at 4 = + 1, we conclude, according to our
earlier statements, that the evanescent energies Wy * and
Wy * calculated in the region Y30, must approach infinity
[see Egs. (13) and (14)].

Thus we see, in this example, that the evanescent ener-
gy, as calculated by a plane wave expansion, is infinite in the
region Y >0 whereas the evanescent energy as calculated by
Ref. 1in a region which includes the region ¥>0 turned out
to be finite. If we recall that the evanescent energy density is
greater than or equal to zero at each point in space, either as
calculated by Ref. 1 or as calculated by a plane wave expan-
sion, we then clearly see, at least for this example, that the
evanescent energy as calculated by Ref. 1 is not the same
because it is finite, as the evanescent energy as calculated by
a plane wave expansion because it is infinite. We have thus
completed a major objective of the investigation which is to
show that the evanescent energies as defined by Ref. 1 are not
the same as the evanescent energy as defined by a plane wave
expansion.

Several additional interesting statements can be made
about the above expressions. We first of all note that the
form of the Eqs. (13) and (14) is in direct analogy to the
quality factors derived by Rhodes? and Collin and Roth-
schild® for planar aperture antennas. The evanescent energy
is expressed as an integral of the pattern space factor squared
over the invisible region, and the power is expressed as a
pattern space factor squared over the visible region. Further-
more, the pattern space factor is in direct analogy with the
pattern space factor as derived by Refs. 2 and 3 in that it is
expressed as an integral transform of the source field [using
Eq. (A5)] whereas the integral transform of Refs. 2 and 3 for
the planar aperture was just the finite Fourier transform of
the aperture field. Another interesting feature of comparison
is the fact that both of the numerators of Q. *,0\, * have
terms which are proportional to 2/(u? — 1)and 1/(u* — 1)*/2
[note that (21 — 1)/ (1> — 1)*2 =2/(u* — 1)

+ 1/(u? — 1)*/?], which are precisely the same terms which
multiply the squared pattern space factor of the H-plane
strip source antenna and the E-plane strip source antenna of
the planar aperture case. See Refs. 2 and 3.

lIl. CONCLUSION

In conclusion, the main contribution this author has
tried to make in this paper is the fact that the expression for
the evanescent energy of a cylindrical radiator as defined by
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a plane wave expansion is not necessarily the same as the
evanescent energy as defined by Collin and Rothschild’ (the
difference between the total energy and an energy of power
flow). This contribution was found by showing that the eva-
nescent energy in the region Y30 due to a source in the re-
gion R < «a,Y <0 was in some cases infinite (when the pat-
tern space factor of the source did not vanish at u = + 1),
whereas the evanescent energy found by Ref. 1 was always
finite for sources which produce single modes. An example
of the evanescent energy of a delta source was given, and the
evanescent energy was found to be infinite for a plane wave
expansion but finite when calculated by Ref. 1.

APPENDIX A

The purpose of this appendix is to derive the pattern
space factor F («) from the magnetic current source M, . We
first note that the H, component of the fields satisfies the
following wave equation (all coordinates are unnormalized):

(VE + )H, (x.p) = (joer™/k )M, (x,). (A1)

If we set the rhs of (A1) to a delta function & (x)5(y), then the
solution of (A1) will be given by (Ref. 10, p. 823),

p=—= (xz +y2)1/2’

gixy) = L H ler

_J’m (l—)e_,»[kxmekg,-n,] dk
—w \ A7 (K* — k)17 B

If the rhs of (A1) is set equal to (jwex?/k )M, (X4¥0)
8 (x — x0)6(y — yy), then by simple translation the solution
for the function at x,,y, will be
Yoy |xo.po) = (jwex?/k 2\M, (xo,p,) 8(X — X0 — Po)
_ f‘” ( — we’ M, (Xo,0) J[k xo+ 2 — ki, ] )
w 4k ?
e—j[kxx-f-(x —kx)"’y]

(A2)

T

If the above ¢ are added everywhere that the M, (x,,y,)
is not zero, then the superposition of these ¢ will be H,

I R
[ e + 102 — k23, ]] "

(A3)

X—e

. — [ ex - t — kﬁ)”‘y]
RV
The expression in curly brackets is the unnormalized
pattern space factor of the system. If we made the change of
variables X, = xx,, Y, = «y,, and u = k, /« in both the vol-
ume and wavenumber integrals, and also divided H, by
H, =1 A/m, the following expression results:

H— f [ — we,
4k 2H,

e —jluX + (1 — u?''?Y]

X (1 _ u2)1/2 du’

(Ad)

dXo dYy M, (X, Yp)e/!#Xe+ (1 = u"2¥o) ]

Y, <0, ¥>0. (AS)
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The expression in curly brackets is the pattern space
factor F, (u) of Eq. (A3).

APPENDIX B

The power may be obtained from the Poynting vector
JRe(E X H*) evaluated on a surface r— o surrounding the
source. The term JE X H* becomes entirely real as ¥— o and
we have

2T 27

P=lim}{ | ExH*rdg¢t= lim % E,H*dg.
r—oo 0 r->oo 0
(B1)

The expressions for H, and E; as r— o« are found an
asymptotic expansion of Eq. (7) which turns out to be
(R =«r)

H, = HoF , (cos ¢ 2m/R )"/%e =% =74 (B2)

and a similar expression for E; as given in (3e). Substitution
of (A2) into (A1) yields, after letting # = cos ¢,
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On the phase transition of the one-dimensional Percus-Yevick equation for

an arbitrary potential of finite range
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A qualitative investigation of the one-dimensional Percus—Yevick integral equation by
perturbation method is discussed for an arbitrary potential of finite range /. When the particle
density p is restricted to the interval (0,1) it is proved that every order of perturbation has a unique
continuous and bounded solution, which can be expressed as a convergent generalized Fourier
series. The perturbation series is absolutely and uniformly convergent if the supremum norm of
the nth order solution is less than or equal to n!. Under the assumptions (i), 0 <p < 1 and {(ii), the
absolute and uniform convergence of the perturbation series, it can be proved that the Percus—

Yevick equation cannot exhibit a phase transition.

PACS numbers: 64.60.Cn, 34.20. — b

I. INTRODUCTION

The problem of phase transition for the one-dimension-
al system of classical fluids has been of great interest in the
past. For the nearest neighbor interaction, Giirsey' had
shown that there was no phase transition for the one-dimen-
sional system. This conclusion was further generalized by
Van Hove? to an arbitrary attractive potential v(x) of finite
range /. On the other hand, Kac et al.? has investigated the
parametric limit of the potential and shown that there indeed
does exist a phase transition as /— « in the van der Waals
limit. The delicate nature of phase transition depends mar-
kedly upon the model potentially employed.*

In 1958 Percus and Yevick proposed an approximate
theory for the pair distribution function® in classical fluids.
Since then much work has been developed in its various ap-
plications. Itis generally agreed that the Percus—Yevick (PY)
approximation has been quite successful, particularly, in the
one-dimensional case where it becomes an exact theory for
the hard rod potential. Recently Wertheim® had studied the
PY equation for the nearest neighbor interaction. He con-
cluded that the one-dimensional PY equation could not ex-
hibit a phase transition. The purpose of this paper is to fur-
ther generalize Wertheim’s conclusion for an arbitrary
attractive potential of finite range by a perturbative method.”

In this paper we assume that the intermolecular poten-
tial consists of a hard rod potential u(x) of diameter 1 and an
arbitrary attractive potential v(x) of finite length /. By consid-
ering v(x) as a perturbation on uy{x) we can obtain a set of
coupled integral-differential equations from the PY equa-
tion which can then be transformed into a set of differential-
difference equations of advanced and retarded types. When
the particle density p is restricted to the interval (0, 1), every
order of perturbation for the pair distribution function has a
unique continuous and bounded solution which can be ex-
pressed as a generalized fourier series expansion. The pertur-
bation series can be shown to be absolutely and uniformly
convergent if the supremum norm of the nth order solution
is less than or equal to n!. Finally we prove that the PY
equation cannot exhibit a phase transition under the as-
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sumptions 0 <p < 1 and the absolute and uniform conver-
gence of the perturbation series.

Il. PERTURBATION SERIES
Consider the intermolecular potential
u(x) = uolx) — Agv(x),
where
oo X<,
uolx) = {O, |x|>1,
) = [0, Ix|<1or |x| >/,
vix) = a positive smooth function for |x|e[1, /,].
£ denotes the maximum of the physical tail potential so that
Max|v(x)| = 1 and 0<|A | < 1. For convenience, we set / to be
a positive integer. Let 8 = 1/KT, where K is the Boltzmann
constant, and T is the temperature. We define

f(x) = eABu(x] - 1&
yix) = #¥g(x),
hix)=glx) -1,

where f(x) is the Mayer’s function, g(x) is the pair distribution
function and 4 (x) is the total correlation function. Following
Ornstein and Zernike,® the total correlation function can be
written as a sum of the direct correlation function ¢(x) and an
indirect correlation function by a convolution as follows:

h(x) = c(x) +pf h(x —x")e(x') dx’. (1)
The convolution relation (1) is usually called the Ornstein—
Zernike (OZ) relation, which can be considered as the defini-
tion of c{x). Suppose ¢(x) = O for |x|>/. It has been proved®

that the one-dimensional OZ relation (1) can be transformed
into the following equivalent Baxter’s relations:'°

!

x) = Q) —pr(x’)Q(x’ _xjdx, O<x<l, ()
!

h(x)=Q ) +p j hix—x)Q)dx, x50,  (3)
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where Q (x} is a real bounded function for 0<x</, and
@ (x) = 0 for x <0, or x>/. The Percus—Yevick approxima-
tion assumes c(x) = f(x)y(x), so that ¢(x) = O for |x|>/. The
one-dimensional PY integral equation can be written as a
coupled integral-differential equation by supplementing the
Baxter’s relations (2) and (3) with the PY approximation. For
hard sphere potential the PY equation can easily be solved
with exact solution. However, the problem becomes very
difficult for any realistic potential.

If the attractive potential — £v(x) is considered as a per-
turbation on the hard rod potential u,(x), we can obtain a
series expansion in A5¢ for f(x),

f(x) = e ~ PuaxlABEux) _

= Jolx) + i i‘"

n=1

where
Jolx) = e ot — 1,
Solx) = e~ P BEv(x)]".

Similarly we can have the following perturbation series
expansions:

QW) =g+ 5 — (wg)"Q (x), @)
M) = yolx) + z —! (ABE 'y, (x), (5)
o(x)+"; .(Aﬁs‘)"h (), (6)
X+ 3 '(/lﬁs‘)"c (x), )

n=1

where the subscript “0” in Qy(x), yo(x), Ao(x) and c,{x) denotes
the unperturbed system with hard rod potential u(x), and

h(x)—e*”“"""Z() vx)1y, _x), n>1,

i=0

eutrl = 1 S (Vo1 fx) =yl >,

Q)= Q= — /(1 —p).

From the PY integral equation and Eqs. (4)—(7), it then fol-
lows that

o) = Qo) —p [ QI —x)dx',  Osxcl,
holx) = Q) +p [ A —xQix)ax, x>0,
colX) = folxlyolx), x>0,

and

enlx) = Q, (x) — f [Qolx')Q, (¥ — %) + Q, (x')Qolx’ — x)] dx’

n—1

_pz

i=1Jx

n !
mi) =0, +p 3 (7) | hu-tx = x10x1 e, x>0
(10)

(' —x)dx', 0< x<l, 9

Q(X)Q

1718 J. Math. Phys., Vol. 23, No. 9, September 1982

Note that Eq. (8) is the PY equation for the hard rod
potential, whose solution is well known.'' Due to the nature
of the intermolecular potential, Egs. (3) and (10) can be fur-
ther simplified. After some lengthy derivations, we finally
obtain the following results:

— 0.
¢ !
A5 +p|  hox —xQ, 0 dx,  O<x<l, (11)
x+ 1
=1Bn(x)—pr“Qn(x'>dx lexcl—1, (12)
{
LBn(x)—prQn(x')dx', I i<x<l, (13)
rEn(x)+prx+lQn(x')dx', O<x<1, (14)
yntx)=4F,,(x>+pryn(x')dx', lex<2, (15)
X
LG,,(x)-{~pQJ~ Y. lx') dx', 2<x< w0, (16)

where 4,,,B, are functions of Q,, and y,, for m < n, whereas
E, F, , and G, arefunctionsof Q,,, y,, and Q,, so thatinthe
nth order perturbation they can be considered as known
functions. Because of their complexity, the detailed expres-
sions of 4,,B,,---G, are omitted since we will not need them
in the subsequent discussions.

It is interesting to note that, if the attractive potential is
considered as a perturbation on the hard sphere potential, we
can then express Q (x), C (x), and y(x) in a series expansion of
BE, which is similar to the ordinary density expansion.
Moreover, the PY equation can be reduced to a set of cou-
pled linear differential-integral equations (11)—(16).

IIl. SOLUTIONS OF PERTURBATION SERIES

Equations (11)~(16) are related. However, Eq. (13) is
self-contained and can therefore be solved first. With the
solutionof @, in [/ — 1,/] we can successively solve Egs. {12),
(11), {14), (15), and finally Eq. (16).

(a) Solution of Q, (x) for / — 1<x</

0,(x)= — B,lx) + pQJ 0. (') dx'.

For the hard rod potential it is known that y,(x) is a real
entire function on (m, m + 1), but of class C™~*on
[m, m + 1] where m is a positive integer greater than or
equal to 2. By induction we can then deduce that B, (x)is at
least of class C '~ >on [/ — 1,/]depending on the smoothness
of v(x). Since Q, (/) = 0, Eq. (13) can be transformed into a
differential equation.

Q. (x) +pQQ,(x) =

with solution

{
Q.x) = —-f e- PR =1 gt} dt

x

(13)

— B (x) =s(x)
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(b) Solution of @, (x) for 1<x</ — 1.
x + 1

Q.x)= —B,(x) +pQ|  Q.lt)dr. (12)

Equation (12) can be transformed into a differential-differ-
ence equation of the advanced type

Q.(x) +p0Q,(x) — pQQ,(x + 1) = — B (x)=b,lx), (17)

with the initial condition given by the solution of Eq. (13) for
I — 1<x<l. By the standard continuation method the fol-
lowing theorem can easily be proved.

Theorem 1: There exists a unique continuous function
Q, (x) which satisfies Eq. (17) for xe[1, / — 1] and the initial
condition given by the solution of Eq. (13) for xe[/ — 1, I
Furthermore, Q, is a real entire function in each subinterval
(i, i+ 1),and is at least of class C'on [5, i 4+ 1], i=1,2, ...,
1 — 2, except possibly at x = 2.

In order to further study the properties of @, (x) we next
consider the Laplace transform of Eq. (17).
Let

Qi.(r)=£v 0. (x) e~ dx,
!

B(t)= Q,,(x)e""dx—fQ,,(x)e"”‘dx,

!
[ —1
s(e) =J b,(x) e ™ dx,
1

Fit)=e " '5(t) +boB(t)—Q,(—1e "

+ Q,(l)e ™%,
H{t)y=te "+ bye " — b,
by =pQ.

The Laplace transform of Eq. (17) yields
Q.(t)=H'(t)F(t). (18)
In taking the Laplace transform it must be assumed that Q,
is known on [1, 2] from the continuation method. The infor-
mation of @, on [1, 2] and [/ — 1, /] appears in B (¢).
Before we employ the inverse Laplace transform, we
first consider the distribution of zeros of H (¢).
Lemma I: All roots of H (t) = 0 are simple.

Proof:

From H {t) wecan obtain H'(t)=e ~*(1 — b, — t) and
h"(t)= —e '(2—by—t).LetH'(t) = 0.Thent = 1 — b,
But & "(1 — b,)#0, whereas H{1 — b)) =¢ '~ % _ p,
Consider u(x) = e~ ' =% — x. It is evident that u(x)>0 and

u(x) = 0 at x = 1. Hence H has a double root if and only if
by = 1, which implies b, = pQ = —p/(1 —p) =1, i.e,
pP= % .

LetG(t)=eH(t)= — bye' +by+ 1. G(t)and H(¢)
have the same roots. Since G (¢t} = { — boe’ + £ )[1 + €(t )],
where €(f )—0 as |t |-, for large |2 | the roots of G () are
asymptotic to the comparison function

G.(t)= — boe' + .

We now consider the distribution of roots of the exponential
polynomial G. (), which can be recast in the form
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G.(t) = pot ™ + pit ™,

withp,=1,my=1,8,=0,p,= —byym =0,8,=1.

The distribution diagram of the exponential polynomial

G.(t) consists of a line L passing through two points

(8o, mo) and (B,, m,) with slope — 1 in the 8-m plane.
Define the curvilinear strip ¥, by

V,:|Re(t — In(z))| ey,

where ¢, is a constant to be specified later. The strip ¥, is
bounded by a curve Re(¢ — In{t)) = const with the following
characteristics'*:

(i) If £ = x + iy lies on the curve, then |y/x|—c and
larg(t)|—m/2 as |t |— o0, e, || =p(1 + O(1)) as |t |-—>co.

(ii) The curve is asymptotic to the curve x — In (|y|)
= const.

(iii) The curve lies entirely in a right half-plane and
Reft}—>o0 as t—> 0.
By Theorems 12.9 and 12.10 of Bellman—Cooke,'? all zeros
of large modulus of G (¢ ) lie within V', and the zeros in V| are
asymptotically the same as those of G, (¢t ) comprised of the
terms associated with points on the line L of the distribution

diagram.
In order to consider the distribution of zeros in V; we let
G.(t)=1G\[r),

where

Gt)=1—byt ' =1—bye ™,
By the transformation T +—z defined by
z=1t—In(t),
G (t) is transformed into f(z) given by
fl2)=1-by

with roots
z=1n{|{1/by|) + 2nmi
=In({1 —p)/p|)+ 2nmi, n=0,+1, +2,  (19)

Since T is a one-to-one transformation,'® there exists a one-
to-one correspondence between the zeros of large modulus
of G,(t }and the zeros of large modulus of f(z). By the inverse
transformation of 7 the zeros of G.(¢) lie along a curve
Re(t — In(t)) = ¢, = In(|1 — p)/p]). In fact, if we let
t =Xx + iy, then

x — In({z]) = Re(z) = In(|1 — p)/ppl),

y — arg(t) = Im(z) = 2nmr.
But larg(z)|]—7/2and |t | = |y|(1 + O(1)); consequently, we
have

y=arg(t)+ Im(z) = (2n + Y7,

x =In{|¢)| +In{|(1 — p)/p])

= In(|1 — p}/p}) + In(|(2n + Yr) + O (1). (20

n: large integer,

Summarizing our result, we have

Theorem 2: The zeros of G (¢ ) form a root chain of ad-
vanced type lying asymptotically along a curve |z ~' ¢/|
= In(|(1 — p)/p|). For large modulus of ¢ the roots have the
form given by Eq. (20).

We can now employ the inverse Laplace transform of
Eq. (18) and obtain
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—_ L -1 24
Q.lx)= 2m,J;H (£)F(t)e™dt

_ & F,)
— 1 t x] X
Res[H ~'(¢)F(t) ] ,,;1 i) e
where ¢, is aroot of H (¢ ) and the summation is taken over all
characteristic roots of H (¢).

By Theorem 6.10 of Bellman—-Cooke,'® the generalized
Fourier series expansion given above is uniformly conver-
gent for 2<x</ — 1. As emphasized in Sec. 6.10 of Bellman-
Cooke, this finite transform method is valid only for finite /.
As I-> w0, the Laplace integral 7 'Q, (xJe ~* dx diverges
and the method breaks down subsequently.

(c) Solution of Q,, (x) for 0 < x < 1.

!

O.(x)= —A,x)—p|  holt —x)Q,(r) dr. (11)

x+ 1
Once we know the solution of Eq. (12}, the solution of Eq.
(11) will follow immediately by a simple integration.
(d) Solution of y,, (x) for 0 < x < 1.

yn(x)=E,,<x)+pro Q,(x +1)dt. (14)

Again the solution of Eq. (14) can be obtained easily by sim-
ple integration.
(e} Solution of y,{x) for 1<x<2.

yube) = Fofr) +0Q [ 1t} dr (15)
1
We can transform Eq. {15) into a differential equation

Yulx) — pQy,(x) = F (x),
which has the solution

palx) =e+PQ"[ =72y, (1) +Jxe"PQ'F;(r)dr] ,
21)

where we have made use of y,, (1) as the boundary condition
so that y, is continuous at x = 1.
{f) Solution of y, (x) for 2<x < oc.

5ab) =G, +p0[ ytt)d. i

Equation (16) can be transformed into a first order retarded
differential-difference equation

Vi —pQyux) +pQr,(x — )= GLx) =alx)  (22)

with the initial condition given by Eq. (21).

Since y, is continuous on [1, 2] and « is at least of class
C'on (2, ), by the continuation method we can obtain the
following result:

Theorem 3: There exists a unique continuous function
y,, which satisfies Eq. {22) for x>2 and the initial condition
given by Eq. (21) for 1<x<2. Moreover, y,, is at least of class
C'on (2, «)and at least of class C? on (3, ).

Due to the fact that both Q, and v(x) vanish for x>/, by
generalizing Theorem 3.5 of Bellman—Cooke 'S we can ob-
tain an exponential bound for y,,(x), [V.(x)| <K, e**— ¥,
x>»2, K,, K,,: positive constants. We can now take the

Laplace transform of Eq. (22). Let
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Falt) = fwy,, (xle —* dx,

ait)= Lwa(x)e ~ ™ dx,

5(’)=07(1)+yn(2>e’2’—er”jyn(x)e““dx.

Then

P.t)=R"'(t)B(t), (23)
where
Rit)=t—pQ+pQe " (24)

Similar to Lemma 1 we have:

Lemma 2: All roots of R (¢ ) are simple. Moreover, R ()
has a real root only at t = 0 if p < 1, and has two real roots
only, one at ¢ = 0, the other on the positive real axis if p > 1.

Since R {t)and I{t) = e'R(t) = te' — pQe’ + pQ have
the same roots, we now consider the distribution of zeros of
I(t)=0instead. For large modulus of ¢ we find

I(t)~te'[1+€t)} +pQ,
where lim,,_,_€(t) =0. Let I.(t) = te' + pQ. For large |¢ |,
the roots of I {¢t) = 0 are asymptotic to the roots of the com-
parison function I,(z ) = 0. The distribution diagram of the
roots of I, (¢ ) contains the points (0, 0) and (1,1), showing that

there is a single chain of roots of retarded type. Hence for
large modulus of t the roots of R (f ) have the asymptotic form

x =In{|pQ |} — In(2k7) + O (1),

y=2km + arg( —pQ ) F 7/2 + O(1),
where K is any integer of large magnitude. The upper sign
applies to roots for which y— + oo, the lower sign to roots
for which p— — oo.

We next prove that all roots of R (¢) lie in the left half-
plane (lhp) except for therootat r =0. Let 1 =x + iy bea
root of R (¢). Then

Vi + x+p/(1 —p)1* = [p/(1 —p)]Pe ™

and x<0if 0 <p < 1. Alternatively, we can consider the per-

turbation of roots of (¢ ) by a small positive parameter €. Let
Lit)= —(p+e)Qe +pQ+ te

- —P—€ P

l—p . P

By Hay’s theorem'” all roots of I,(¢ ) lie in the left half-plane if

and only if p < 1. When |z [ <], I,{z} has a root at

t = — €/(1 — p) in the lhp, which moves toward = 0 as

€—0. Since both I,{t ) and [ (¢) are entire functions,

I{t)=1lim_ ,I,(t),and therootsof I,(t ) depend continuously

on €; the roots of I () will coincide with the corresponding

roots of I,(t )} as e—0.
Lemma 3: Except for the root at ¢ = 0, all roots of R {¢)

lie in the left half-plane if and only if p < 1.
The inverse Laplace transform of Eq. (23) yields

l —1 tx
Yalx) = ELR (t)B(t)e™dt

_ & B(tr:] 1,x 25
—H;R'(t,,)e . x>2, (25)

—te'| =0.
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where ¢, is a root of R (¢) and the roots {¢, ] are arranged in
decreasing order of real parts with complex conjugate roots
arranged in any prescribed order. In principle the residue at
t = 0 determines the asymptotic behavior of y, (x) as x— 0.
Since all roots of R (t) are simple and have nonpositive real
parts, it then follows that y,, (x) must be bounded as x— o0 .'
But lim,_, G, (x) = 0. By Eq. (16) we then have

lim, ,_y,.(x)=0,i.e.,y, is an asymptotically stable solu-
tion. Again, by Theorem (6.10) of Bellman—Cooke, the gen-
eralized Fourier series given by Eq. (25) can be shown to be
convergent for x>2 and uniformly convergent over any fin-
ite interval for x>2. By virtue of Lemmas 2 and 3 we can
summarize our result as follows:

Theorem 4: Suppose 0 <p < 1. The solution of Eq. (22)
can be expressed as a convergent generalized Fourier series
expansion given by Eq. (25), which becomes uniformly con-
vergent over any finite interval for x>2. Moreover, y, is as-
ymptotically stable, i.e, lim,  _y,(x)=0

Thus we have completed our discussions of the pertur-
bation solutions.

V. THE PROBLEM OF PHASE TRANSITION

According to Lemmas 2 and 3, the solution of y,, given
by Eq. (25)is no longer asymptotically stableifp > 1. Howev-
er, when p = 1, the hard rods are in the closest contact and
thus p = 1 is the maximum attainable density for the one-
dimensional system.'? By Theorem 4 and the solutions of
Eqgs. (14)—(16), y, is continuous and bounded on (0, ]. On
the other hand, by the solutions of Eqs. (11)-(13), @, is con-
tinuous on (0, 7}, except possibly a finite discontinuity at
x =0and x = 1. @, is also bounded. But Q, and y, depend
implicitly on n through 4,,, B,,...,G, in Egs. {11)—(16) and
may increase as n increases. Unfortunately, it is impossible
to determine the #n dependence. In case of the square-well
potential, it is possible to obtain analytical solutions of Q,
and y,, from which we can examine the convergence of the
perturbation series for Q and y. In view of the fact that

5 Bl w< 5 Bl wpp,,

and

2 (ﬁ§)

—Z—y, %)< suply, |,

2 (/J’§
we can at least obtain the upper bound of sup|Q, | and
sup|y, | for the absolute and uniform convergence of the per-
turbation series, that is, sup|Q, | <n!and sup|y, | <n!for large
n.

In order to discuss the physical significance of our re-
sult, we next consider the compressibility equation

B"(g—’;)r=1+pfh(x)dx.

It is well known that the critical point is characterized by the

divergence of the isothermal compressibility

K, =p~'"(dp/3P),. The divergence of the integral

§& h (x) dx thus implies the occurrence of a phase transition.
Suppose the perturbation series for y is absolutely and

uniformly convergent.?® Then y is a continuous function of
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BE. On the other hand, y, depends continuously on the den-
sity p (through the expression pQ ) except for the singularity
atp = 1. Asp—1,therootsof H (¢ )and R (t )move toward the
imaginary axis given by ¢ = 1. Since

hw =six) = 1=y =1+ 5 BLy ool
n=1
the convergence or divergence of the mtegral SShix)dx is
equivalent to the integral & [y(x) — 1] dx. By virtue of
Lemma 3 and Theorem 4, the asymptotic behavior of y, in
Eqg. (25) is determined by the term corresponding to the clo-
sest root ¢, to the origin in the lhp. Thus
Bti) ||

el ~1 2= ) [[e™], x>1.
This shows that y,—0 exponentially. Hence
§& [ylx) — 1] dxis convergent and the isothermal compress-
ibility is a bounded continuous function of 8§ and p for
0 < B¢ < 1 and 0 <p < 1. This in turn implies that there is no
horizontal segment in the p-¥ diagram and consequently
there is no phase transition.

Theorem 5: Suppose 0 <p < 1 and 0 <BE < 1. Then the
pair distribution function g{x) [or equivalently y(x)] obtained
from the PY equation by the perturbation method is absolu-
tely and uniformly convergent if and only if sup|y, | <n! for
large n. Furthermore, y(x) — 1—0 exponentially so that the
isothermal compressibility is finite, which implies that the
PY equation cannot exhibit a phase transition.

Before we conclude our discussions, we briefly com-
ment on the case as /— « . It should be noted that Theorems
1 and 2 are strictly valid only for finite /, because the solution
of @, in [1, / — 1] depends on the solution in [/ — 1, /]. But
Q. (/) = 0. Thus the solution of @, (x) on [/ — 1, /] becomes
the asymptotic condition Q, (x)—0 as /-« . The continu-
ation method therefore cannot be applied. Also, the Laplace
transform for the differential-difference equation of the ad-
vanced type diverges. This is essentially due to the fact that
notall zeros of H (¢ ) liein the Ihp. Consequently, the result for
I— oo cannot emerge from our solutions.
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Shallow water waves are governed by a pair of nonlinear partial differential equations. We
transfer the associated homogeneous and nonhomogeneous systems {corresponding to constant
and sloping depth, respectively) to the hodograph plane, where we find all the nonsimple wave
solutions and construct infinitely many polynomial conversation laws. We also establish
correspondence between conservation laws and hodograph solutions as well as Backlund
transformations by using the linear nature of the problems on the hodograph plane.

PACS numbers: 92.10.Hm, 92.10.Sx, 02.30.Jr

i. INTRODUCTION

The linearity of a partial differential equation implies
that any linear combination of solutions of the equation will
also be a solution. This fundamental fact is also the main
reason behind the method of separation of variables. In the
event that a partial differential equation is nonlinear, this
property is lost, and it becomes impossible to employ separa-
tion of variable techniques, or any other argument that de-
pends on superpossibility. Another striking difference
between linear and nonlinear partial differential equations is
that, unlike linear p.d.e.’s, nonlinear equations often do not
admit solutions which can be continuously extended wher-
ever the differential equations themselves remain regular.

During the last decade, finding exact solutions to non-
linear differential equations has once more become impor-
tant for both theoretical and practical purposes (soliton the-
ory). It has been observed on some occasions (Korteweg—de
Vries, sine—Gordon) that there are close connections
between exact solutions, the existence of conservation laws,
the inverse scattering method, and Bicklund transforma-
tions. Such cases are called completely integrable systems.
They come in association with some linear differential equa-
tions. In this article we shall obtain similar relations and
properties in the case of the shallow water wave theory.

We were introduced to the area of water waves by
Nutku’s recent paper.' Shallow water waves are governed by
a system of two nonlinear partial differential equations,
which can also be written in the form of two conservation
laws. First, we try to find further conservation laws by using
the method of Wahlquist and Estabrook.” For the homogen-
eous case (corresponding to constant depth) we are able to
construct an infinite family of conservation equations. This
leads us to search for the exact solutions. It was at this point
that we learned that these results were already known to
Whitham.? We pass to the hodograph plane where we catch
the linear system of equations associated with our nonlinear
problem. On this plane we show that conservation laws are
easily derivable. On the hodograph plane we obtain all the
solutions, except simple waves, by potentials which also sa-
tisfy linear equations. These potentials are, in fact, the Le-
gendre transforms of the ones introduced by Nutku. Via
these potentials we are also able to construct a correspon-
dence between conservation laws and nonsimple wave solu-

*On leave from the Middle East Technical University, Ankara, Turkey.

1723 J. Math. Phys. 23(9), September 1982

0022-2488/82/091723-05$02.50

tions of the homogeneous problem.

Finally, we take up the nonhomogenous case corre-
sponding to a sloping beach. By using the polynomial con-
servation laws of the related homogeneous problem, we con-
struct an infinite family of polynomial conservation laws for
the nonhomogeneous case. By using the solutions of the cy-
lindrical wave equation, we also indicate how one can con-
struct auto-Bécklund and Bicklund transformations for
these homogeneous and nonhomogeneous problems.

1. METHOD OF ESTABROOK AND WAHLQUIST

We consider the following system of two homogeneous
first-order quasilinear equations:

u, + uu, + 2cc, =0, (1a)
¢, + uc, + icu, 0, (1b)

representing shallow water waves, the bottom of the ocean
being horizontal.* u(x, ¢) and c(x, ¢) are the velocities of the
fluid and of the disturbance with respect to the fluid, respec-
tively. Subscripts denote partial derivatives.

First we shall apply the techniques of Wahlquist and
Estabrook? (Sec. III) to the system (1) above to find all the
conservation laws, which are used to obtain potentials in
their paper.

In the four-dimensional space of all the independent
and dependent variables, {x, ¢, u, c}, the set of first-order
differential equations (1) above can be expressed by the fol-
lowing pair of differential 2-forms’:

a,=dulNdx — udu Adt — 2cdc N dt, (2a)
a, = 2cde Ndx — 2cudc Ndt — c*du \dt. (2b)

Any regular (differentiable) solution (u, ¢) of (1) will annul
this set of forms. Since da; =0,/ = 1, 2, the ideal generated
by a; and «, is closed, and one can, therefore, apply Cartan’s
theory.

Conservation laws correspond to the existence of exact
2-forms contained in the ring of @,. Let us try to find all the 2-
forms

B=/fa, + ga, (3)
satisfying dff = 0, the condition for exactness. This is the
(local) integrability condition for the existence of a 1-form,
say @, such that

B =do. 4)
The following treatment is restricted in that we do not allow
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Jfand g to be explicit functions of the independent variables x
and ¢. This seems plausible since the system (1) itself has no
explicit (x, ¢} dependence:

dp =(/,du+f.dc)Na, + (8,du + g de) N e,

= (2cg, —f.)duNdc Ndx
+ (%, — 2cug, + uf. — 2cf,)duNdc N\dt.

Hence, dff = 0 implies

Jo =28, (5a)

2f, = cg., (5b)

B=do =fa, +ga,

= fdu Ndx + 2cgdc Ndx — (uf + ¢’g)
XduAdt — 2¢( f+ ugldc Ndt,

which, with the help of (5), integrates to

o = dx-{f Ju — dt-f(uf + c’g) Ju. (6)

Since dw lies in a closed ideal of differential forms, the “Fro-
benius theorem” applies: Any local solution which annuls
the ideal must also annul w. This, in turn, gives us the follow-
ing conservation equation:

F,+G, =0, (7)
J

£ g

1 0

0 i

c? u

uc? W+ e

u’e® + ¢t 1 + 2uc?

3c? + 2uct lu* + 2u%c? + ¢

It is interesting to note that F and G are homogeneous in
and c¢. This observation immediately makes us think of our
Russian colleagues who have extracted the algebro-geomet-
ric structures of some of the “completely integrable” evolu-
tion equations.>® For the boundary conditions = 0 and
¢ =0atx =0and «, we obtain infinitely many conserved
quantities by integrating F’s with respect to x from 0 to .
Differentiating (5a) partially with respect to » and (5b)
with respect to ¢ and subtracting, we find

48uu = 8ec 876, 9)
or

4g,, = (1/¢c)(cg.).- (10)
Thus, we have the cylindrical wave equation for g(u,c). This

is a linear equation for g which can be solved by standard
methods. Similarly, for f(u, ¢) we have

4fuu Z.fcc _f‘c/c’ (11)

or

4 = clSe/C)-
On the other hand, upon eliminating fand g from the set
of equations (8), we arrive at the following relations:
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where

F=ffou with F.=2cg, (8a)
and

G=f(uf +c%g)du with G, =2c(f+ ug) (8b)

When the condition (7) is satisfied, we shall say that the pair
(F, G )forms a conservation law. If G = 0 atx = Oand «, we
obtain the corresponding conserved quantity {5 F dx.

Since the system of equations (1) is quasilinear (i.e., lin-
ear in the derivatives) with polynomial coefficients in # and c,
the most interesting conservation equations are polynomial
in # and ¢. They may be obtained consistently from (5) and (8)
by taking

f= ZP;(U)CZi» 8= 2 qj(u)czj’

i=0 j=o0

from which it follows that

po = 0, ¢,=0,

mp, =q, i, Pn=mq,, m=12..n
(It can easily be checked that the odd powers of ¢ do not
survive.) We list the first few of these polynomials:

F G

u 1’ + ¢

c? uc’

uc’? u’c® + it

w’e® + ¢t 1’e® + uct

1’c? + uct Llu*c? + 13u’c* + ¢

e + wPe + 4c® 1P + 4uc* + uc®

I

G, = uF, + icF., (12a)
G, = 2¢F, + uF,. (12b)

As before, differentiating the first equation in (12) partially
with respect to ¢, the second equation with respect to #, and
subtracting, we obtain

4F,,=F, . —F, /c (13)

Unfortunately (maybe fortunately), we don’t have a nice
equation for G.

We make the following observation: Even though x and
t are the independent variables, all our expressions are (lin-
ear) partial differential equations in the variables « and c.
This is because we have no (x, ¢ ) dependence in the system of
equations (1) with which we started. This suggests that we
should interchange the roles of the dependent and indepen-
dent variables. This is called the “hodograph ™ method,
which we will take up in the following section.

{1Il. METHOD OF HODOGRAPH TRANSFORMATION

We consider the system (1) which has no explicit (x, ¢)
dependence. For any region where the Jacobian

Yilmaz Akyildiz 1724



J=u.c, —u,c,

is nonzero, the system (1) can be transformed into an equiva-
lent linear system by interchanging the roles of dependent

andindependent variables. IfJ 3 0forasolution u(x, t ),c(x, )
of (1), we may consider x and ¢ as functions of » and ¢. From

(14a)
(14b)

u, =Jt, u = —Jx,

c, = —Jt,, ¢, =Jx,,

we see that the highly nonlinear factor J cancels out in (1) and
that x(u, c) and ¢ (4, c) satisfy the linear differential equations

(15a)
{15b)

x, = ut, —ict,,
x, = —2ct, + ut..

By eliminating x we obtain the linear equation
4tuu = tcc + (3/c)tc’ (16)

which can be solved by standard methods. This can be
further simplified by introducing the transformation

t=s./c. (17
We obtain the cylindrical wave equation
4s,, =S +5./¢, (18)

whose solutions involve Bessel functions. We remark that g
and s satisfy the same equation.

The described transformation of the (x, ¢ ) plane into the
(u, ¢) plane is called a hodograph transformation. Since the
possibility of this reduction depends essentially on the as-
sumptionJ #0, solutions for whichJ = 0 cannot be obtained
by the hodograph method. These solutions are called simple
waves and they are important tools for the solutions of flow
problems (Courant and Friedrichs,” Sec. 29). Wave breaking
occurs when J = 0 corresponding to the multivaluedness,
i.e., shock waves. We notice that the solution

u=3x/t, c=/,

given by Nutku’ represents a simple wave. So, we could not
possibly obtain this solution by the hodograph method.

We would like to mention that in the set of all solutions
the simple waves form a set of measure zero. But thisis not to
say simple waves are unimportant.

Just to show how natural it is to work in the hodograph
plane, we shall rederive the conservation equation (12). In
the (u,c) plane Eq. (7) becomes

F,+G, =Fu +F,c,+Gu, +G.c,
= —JIx.F, +Jx, F,. +Jt.G, —Jt,G. =0.
Above, we have employed Eq. (14). Again, the nonlinear fac-
tor J cancels out, and we arrive at
xF, —x F,=t,G. —1t.G,, (19)
or
dx \NdF =dt \dG. (20)

Upon using (15), (19) becomes
t.(G, —uF, —icF,)=1,(G, — 2cF, — uF,). (21)
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Since this is to be an identity, the coefficients of the deriva-
tives must vanish separately:

G, =uF, +IcF,, G.,=2F, +uF,.

These are the same as {12). We note that the computation
above is somewhat shorter than the Wahlquist—Estabrook
method used in the previous section to establish these equa-
tions. Whitham? has an even simpler way of deriving them.
Even so, we have included the method of Wahlquist and
Estabrook because it has provided us with two nice func-
tions—f and g—which we make use of in this paper.

V. POTENTIALS

We look for potentials in the hodograph plane. The sys-
tem of equations (15) can be rewritten in the following equi-
valent form:

(2ex — 2cut), = —(c*t),,
(x —ut), = —(2t),.

(22a)
(22b)
These, in return, suggest the existence of potentials ¥ (u, ¢)
and & (u, ¢), satisfying

v, = —c’ VW, =2x—2ut, (23a)
and

o, =x—ut, &, = -2t {23b)
¥, & are, in fact, the Legendre transforms of the potentials
introduced by Nutku.' Solving them for x and ¢, we obtain

x=V¥./2%— /A, t=—V¥,/c (24a)
and

x=@, — (W2, t= — P /2. (24b)
Hence, if we know ¥ (u,c) or @ (u,c), by using these formulas
we can compute x and ¢. Combining (24a} with (22b), we
obtain

A =W, — V. /c (25)
Equation (24b) together with (22a) gives

4¢ =D, + D, /c. (26)
Unlike their Legendre transforms, ¥ and @ satisfy linear
equations.

Comparing (9), (11), (13), (18), {25), and (26}, our readers
realize that we keep encountering the following set of
equations:

A i = Xee T X/C- (27)

In the next section too we shall encounter these equations
when we are dealing with a related nonhomogeneous prob-
lem. Not only can we derive the conservation laws from the
solutions of (27), but we can also construct all the hodograph
solutions of the original system of equations with which we
started. In this way, we are able to construct a solution of the
system of equations (1) from a given conservation law by
letting ¥ = F and by using (24a). We can reverse this process
for non-simple wave solutions. Now we have an infinite fam-
ily of solutions associated with the list of polynomial conser-
vation laws listed in Sec. I1. Here we list the first few of these
special solutions:

Yilmaz Akyildiz 1725



E x ! u ¢’
u u/c? 1/¢ x/t 1/t
? 1 0 — —
uc? 0 1 — —
ju*c® + et —ju? + & ~u —t X+ 42
3.2 4 2 3 _ 2 2 2 : g :
dw'e” + uc 2u” — uc u'+c implicit solution
W + et + 4 Jut -t 31 + 2uc? implicit solution
I
V. CASE OF SLOPING BEACH

We consider the following nonhomogeneous system of

~ 883 ——{ght)~'P, =0,

equations: i — 1)
u, +uu, + 2cc, =gh, (28a) Imposing the following further conditions,
leu, =0, 28b
c, + uc, + yeu, (28b) Q. = uP,y + 1cP,, (33a)
representing shallow water waves on a sloping beach. The =2cP, + uP,, (33b)

constant term gf3 involves the gravitational constant g and
the slope of the bottom 8.

In his Tata Institute Notes,® Whitham absorbs the non-
homogeneous term gf3 in a conservation form as

(u—gBt), + (W +c%), =0, (29)

and adds the following statement: “But this comment does
not appear to lead any further.” However, by the means of
(29) we were fortunate in finding ourselves able to construct
conservation laws in the form

[Fe - $ Lgpriwa)

i=11

+ [G(u,c) 3 Lamrrow c)] (30)

i=11

for the nonhomogeneous system (28) above. We will denote
the contents of the two square brackets in (30) as F and G,
respectively. As one can guess, we shall require (F, G ) to form
a conservation law for the related homogeneous system (1},
Hence, as in (12) of Sec. I1, they satisfy the following linear
system of equations:

G, =uF, + icF,, (31a)

G, =2F, + ufF,, (31b)
whose integrability condition is (13):

4F, =F, —F_./c. (32)
With the help of (31), (30) simplifies to
gB-F, — 2——(8’15" V[8B-Pu + Qi — —§cPy)

=i
+ ¢ (Qic — 2P, —uP;)]
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forces us to take

P2= _P1u= _Fuu’
P3= _P2u= +Fuuu’

"+ F

m times

P =_Pm-—1,u=(—

and
P

mu

=0.
For convenience, we shall use the notation

F"=F,...

m times

The last condition requires us to take F\ * !) = 0, which can
automatically be satisfied for a suitable F, if we start with
polynomial conservation laws for the related homogeneous
problem. What really makes this construction work is the
fact that all the P, turn out to be + F'? and the pairs (P;,Q,)
and (F,G ) satisfy the same system of equations. Since the
compatibility equation (32) is also satisfied by the u deriva-
tives ', the integrability condition of the system (33) is au-
tomatically guaranteed. We have, therefore, a consistent
method, and by using the list in Sec. II, we can construct an
infinite family of conservation laws for the nonhomogeneous
system (28).

The computations for Q; become easier once one real-
izes that the ith u derivative of F on the jth line in the list is
proportional to F on the (j — i)th line in the same list in Sec.
IT (excluding the first line).

Here we list the first few of these conservation laws
(F, G):
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F

u—gpt

c? uc?
uc* — gptc?

juPc® + §c* — gBruc® + §(gBt )*c?
§’c* + uc* — 2gBr (JuPc? + i)
+ (8Bt 'uc® — YgBt )’c*
Lt + uPc* + §c® — 28Bt (Ju’c? + uc?)
+ 2(gBr Plhu’c” + jc*) — ¥(gBt uc® + YghBt )'c?

We note that F and G are homogeneous in u, ¢, and ¢.
We would like to thank Dr. Mirie for drawing our attention
to the fact that the terms containing ¢ can be put into the
form (u — gBt ). But, as is clear even from the first line of the
above list, we cannot completely eliminate all the #’s in G'’s,
although we can write F’s in terms of v = u — gBtandconly.
Nevertheless, v’s do not show up separately in G ’s; they all
come multiplied with «’s or ¢’s. Hence, for the boundary
conditionsu = 0,c = Oatx = Oand oo, we still obtain infini-
tely many conserved quantities by integrating F’s with re-
spect to x from 0 to o (cf. the homogeneous case).

Having constructed an infinite number of conservation
laws, one might, therefore, expect to be able to find the solu-
tion of the nonhomogeneous system (28) analytically. In-
deed, as we have learned from Whitham,® Carrier and
Greenspan introduced new variables suggested by the char-
acteristic forms of these equations and applied a hodograph
transformation to them and obtained

__ % ¢ 2
gbx = 5 +202+ T (34a)
o=t (34b)
4 o

whereo = 4¢,A = — 4{u — gft), and ¢ satisfies the cylindri-
cal wave equation

4¢J.A = ¢a¢r + ¢0,/0'. (35)

We observe that ¢ in (35) and @ in (26) satisfy the same
kind of equation. Hence, after the necessary relabelling of
the variables, a solution of (35) can be used to generate a
solution of either of the problems: homogeneous [via (24b)
and nonhomogeneous [via (34)]. In this way, we find a corre-
spondence between the nonsimple wave solutions of the two
systems which we have considered in this paper. In a way,
this corespondence can be thought of as a Backlund transfor-
mation between the homogeneous and nonhomogeneous
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AR

2+c2

u’c® + Jc* — gBtuc’
llc? + uc® — gBt (W + §c*) + 4(gBt Vuc?
'c? + J3uPc* + §¢® — 2gBr (Juc + uc?)

+ (8Bt (uPc* + ic*) — 4(gBr V'uc?

e + J4u’c’ 4 uc® — 2gBr (Yu'c® + 3uc + 4cf)

+ 2(gBt P(Juc® + uc*) — 3(gBr ) (wPc® + ic*) + YgBt Vuc?

[

problems (1) and (28). By using the linearity of the space of
solutions of (35) we can also construct auto-Backlund trans-
formations for each of these problems.

We leave it to our interested readers to construct the
solutions of the nonhomogeneous problem which corre-
sponds to the solutions listed in Sec. IV of the homogeneous
system.

To us, the story of this paper looks similar to the hydro-
gen atom problem, (the invariance group being the space of
solutions of the cylindrical wave equation). We expect to
shed more light on this subject by using the orbit theory
picture of Krillov, Kostant, and Souriau. This is our forth-
coming project.
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Method of moment and the Newton approximants to the Chandrasekhar H-function are shown to
converge to the physical solution uniformly. The latter also converge monotonically faster than

the iterative approximations obtained previously.

PACS numbers: 95.30.Jx, 02.60. + y

1. INTRODUCTION

Convergence properties of various methods to approxi-
mate the “physical” solution of the nonlinear integral,
Chandrasekhar H-equation

Hiz)=1 +2H(z)f0 -za—,i%H(x). (1)

have been studied recently by several authors.'™ The ap-
proximations H,, K,, obtained by solving

H,, (@)=1+:H, (z)fo j%r"‘x—’ﬂn(x) @)
and

Kn+1(z)=1+an+1(z)fo f%mx), o)

n>0, Hy=K,=0,

have been shown to converge uniformly with respect to z,
and monotonically from below to the physical solution H.'*
Also {K,, } converges faster than does {H, }.> These results
were proved assuming that do{x)/dx>0 and that

Colo) = L do(x) < -il~ .

However the assumption of differentiability is unnecessary
and it is sufficient to assume that o(x) is nondecreasing. In
Ref, (4) the method of moment approximants, denoted here
by H,, were introduced as the solutions of
1
Fya=1+a,0[ 20 0, @)
o Z4 X

where o, (x) is the approximation to o(x) obtained by solving
the truncated moment problem of order (2n — 1). Assuming
further that o{x) is continuous at a dense set of points in [0, 1]

including the end points, it was shown that H,(z) — H (z)

uniformly for z in [0, » ), provided that Cy(o) <#.

In the present note we improve the result of Ref. (4) to
include each Cy(0) < . Also, we show that the sequence ob-
tained by the Newton method converges to H monotonically
and uniformly with respect to z, faster than does {K,, } and
hence { H, |, under the same assumptions. Since the cases
Cylo)»1 are reducible to the case Cy(o) <} by some simple
transformations,' these results are quite satisfactory from
the physical view point.

2. PRELIMINARIES

Let L () be the real Banach space of absolutely p-inte-
grable functions on [0,1] where g is a nonnegative measure
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with {0} = 0. In the sequel z will be induced by some non-
decreasing function x(x) and the integration will be assumed
tobein the Lebesgue—Stieltjes sense. The norm of the vectors
in L '(¢) and the operatorsfrom L !(u)to L * (1) will be denoted
by || -||. Consider the nonlinear operator 4, defined by

Au=1+ uB,u,
where u is the operation of multiplication by u(x) and
z

(Be) = [ dut) 2

Itis clear that (B, u)(z) is well defined for zin [0, 0 ). We have
Lemma 1: The Fréchet differential A |, (u) of 4,, at
ueL '(u) exists with || 4, (u)|[*< ||ul[*.
Proof: It is straightforward to check that

u(x).

e = [ dute) ——aex), heL )
where a(z,x) = [h (z)u(x) + & (x)u(z)] = a(x,z). It follows that
(14 . ()i |1

V4

< f duulz) f o) —— e

= —;- [lep(z)foldp(x)la(z,xﬂ

— Jo duz) L d(x) ;‘;z laizx)|

z
= %fo d,u(z)J; du(x)|alzx)|

<[lul i )1,
implying the result. The interchange of the order of integra-
tion is justified by Fubini’s theorem.

The results of Lemma 2 follow by straightforward sub-
stitutions. Therefore we state them without proofs.

Lemma 2: Letu, h e L Yu).

(i) For u >0, B,u>0, 4, u>1 for each z5>0;

(ii) for u, h 20,4 ,(u)h = hBﬂu + uB, h>0;

(idd) {14, ]| < Colpe) + H([Jull“Y;

(iv) |(B, u)(z)| < ||u||* for z € [0, ).

It may be remarked that some of the conditions in
Lemma 2 may be weakened to be valid a.e.

It is clear from Lemma 1 that if Cy() < | and
] <[1 — /1 — 2Co{u)] = d (), then |4, (u)]| <d () < 1.
Also, from Lemma 2(iii) it follows that if ||« ||*<d (¢} then
|4, u|*<d (). This means that 4, is a contraction of the
closed ball of radius & (1) in L '(z) implying the existence of a
unique solution H,, of H, = A, H, in the ball i.e.,
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|\H,, ||“<d (u). This implies that 1<H,, (z)<(1 — 2C )2
for all z>0. Furthermore {H , } definedby H,*'=4,H,
n>»0, with H 2 being an arbitrary vector in the ball, con-
verges to H,,. Monotonicity and the bound property of the
sequence result from a more careful choice of 2. These
results have been obtained previously by a slightly different
but equivalent approach.! Also the fact that
lH,||” = ||H,|| <1 was found to be sufficient to establish
that H, = H, i.e., the physical solution.! The continuity of
H, is obvious. We state these results for later reference.

Corollary 1: Let H, be as above and Cy(u) < 1. Then H,,
is continuous with ||H, ||"<d (&) and
1<H,(z)<(1 — 2Co(u))~"* forz € [0, ).

It is obvious that H (z) is positive for z>0. In Proposition
1 we characterize H (z) to be the minimal positive fixed point
of A, = A for z>0.

Proposition 1: N

{i) Let z € [0,1] and H (z) be as above; then H (2)<H (2)
where H (z)>0 is a fixed point of 4.

(i1) The statement of (i) is valid with z € [0, «0 ).

Proof:

(i) Let Hy=0and H,, , = AH,. Then O<H, 1H.!
Since H (z)>0, H,<H. Assume that H, <H. It follows that

H—H, , =AH - AH,
1
=fth'[H,, +t(H—H,)|H—H,),
(4]

where the integration is understood in the Riemann sense.’
By assumption, (H — H,)>0, implying that for 0<#<1,
[H, +t(H — H,)]>0. Hence, from Lemma 2 (i),
(H—H, . )>0. It follows that H =lim,_,  H,<H.

(ii) It is clear that

H—-H=H-H)BH + HB(H—H)
=[1—-BH) 'HB(H— H).
Since, from (i), H — H>0on [0,1], B(H — H)>0o0n
[0, ) (Lemma 2(i)). Also, 0KBH<||H || < 10n [0, o). Thus if
H>00n[0,00), H— H>O0 there.

3. CONVERGENCE OF THE MOMENT METHOD
APPROXIMANTS

Let o{x) be nondecreasing and continuous at a dense set
of points in [0,1] including zero and one; and let o, (x) be the
moment approximation of order (2n — 1) to o{x). The nonde-
creasing, discontinuous function o, (x} is determined within
a constant by

J-lx’"(da(x) —do,x))=0, m=0,1,.,2n—1.

Continuity of o{x) at zero implies that {0} is of measure zero
with respect to o, ¢, . In addition to the abbreviations
A,=A4,B, =B, -||°=]|- | weshall used, =4,,

B, =B, |- |”* = || - ||" for the sake of convenience of
writing. The approximant in question here is the minimal
positive fixed point H, of 4,,. It will be assumed that

Colo) = Cp < 4. Since Cy(a,,) = C,, it follows from Corollary
I by settmg,u =o0,0,,that |H||, ||H I"<[1—v/1-2C,],
1<H,, H<(1 — 2C,)~ "2 for each n and that H, H, are con-
tinuous.
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Lemma 3: Let |w|<M, z50; then

lim(Buw)(z) = lim(B, w)(z) = 0.

Proof: We consider the case of B; the case of B, follows
by the same argument. By definition

(Buliz) = f dotr) 2

Since the integrand is bounded by a o-integrable function M

and converges to zero for x >0, i.e., for a.e. x, the result

follows by the Lebesgue dominated convergence theorem.
Lemma 4: Let |u|, |u, |<M, u be continuous on [0,1]

and |lu —u,||"=. O.

Then

w(x).

U (2) = (B,u,)z) — (Bu)(z) = vlz).

uniformly with respect to z in any compact subset of [0, o0 ).

Proof: From Lemma 3, 9(0) = v,(0) = 0. Let z> 0. We
have that
! z
i) — v, (2 <| [ dots) — dor, ) 2 uto|
o z4+x

(u—u,)x)].

+ U:da,, = z —+z- x

Since z > 0 and u{x) is continuous, u(x)/(z + x) is continuous
on [0,1]. Consequently the first term converges to zero with
increasing n (see e.g., Theorems 64.1, 64.2, and Sec. 67 of
Ref. 6). The second term is majorized by ||# — u,, [|"—,_._ 0.
Thus v, (z}—,_, . v(z) pointwise. Now

n—oo

T,(@) = lolz) — v, (z)t<Mf0 (dote) + do )

d
! z ! z
f do, (x) <f dof(x)
o zZ4+x Jo z
Hence
1

T, (z)<2Mf dofx) —Z

0 Z4x

Thus for any € > 0 there is a § (¢) independent of n such that
z < 8le) implies that T, (z) < €. Now, let z, 2’ be in a compact
subset S, of [8 (€), o). We have that

forz€(0,e0).”

—0. (Lemma 3).
z—0

IT.2) — T,(z')| = | |vlz) — va(2)] — |v(2') — 0, (2)] |
< |(v(z - v(Z')) — (0, 2) — v, (2'))]
—z )xu(x)

+ x)z' + x)

(z — z")\xu,(x)
+ L 47, (x) (z + x)z + x)
K|z —2| 26M .

l€) =

Therefore T, (z) is a sequence of uniformly continuous func-
tions converging to zero for each z = S.. This implies that
the convergence is uniform for z in S, .® Thus given € > 0 one
can pick a § (€) such that T, (z) < € for z < 8(€) and then in-
crease n to ensure that 7, (z) < € on the complement of
[0.,5 (e)).

Theorem 1: Let C, <} and H, H be as above. Then
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fAI,, (2),;=., H {z) uniformly for z in any compact subset of
[0,0).
Proof: We have that

H{z)— H,(2)=Tke) + T%(2),
where

Tz) = (AH z) — (4,H )(2),
and

T2(2) = (4,H)(z) — (4,H,)e)

=fdr (AL (B, +1(H—B,))H— )@,

Now,
IT.(2)| = |H (2)[ (B~ B,)H ()]
<(1—2C))~"*|(B— B,)H (2)].

— 0,

n—oo

uniformly for z € [0, ) from Lemma 4 by setting
u=u,=~H.

Hence,
1
1741 = | do wIT4ix)] 0.
0 n—oo
Further,

IT3I7< Sup 4 5 (8, + 12— B0 |15 - B

and for each ¢ € [0,1],
4 (B, 408 =B, )
<|[tH+ (1 —1)H,||" (Lemma )
<tH "+ (1 — )| H, "
<H| 4+ (1= B "+ | | H "= |H | -

Also [¢||H || + (1 — 1)|H,||"] <(1 — v/1 — 2C,) from Cor-
ollary 1, and ¢| | ||" — | H |[| <|53(dotx) — do, (x)H (x)
—  Obecause of the continuity of H (x).® Consequently, if

n— o0

C, <1, one can ensure by increasing » that
IT21"<(1 = v'1 - 2C/2)|H — H,,||".
Therefore
|H — H,|"<|T,|I"+ (1 = v1-2C/2)|H — H,|"
<21 =2C) "2 T, |I" — 0.
It follows now from Lemma 4 and Corollary 1 that
(B, H,)z) — (BH ()

uniformly with respect to z. The proof is completed by ob-
serving that

H(z)=[1—(BH)2)]™', H,l2)=[1-(BH,)2)]™"
and |(BH )z)|, |(B,H,))|<||H ||, |H,||"<1 [Lemma2(iv),
Corollary 1].

4. NEWTON'S APPROXIMATIONS TO ~H

In this section we use the techniques of Ref. 9 to deduce
the convergence properties of the Newton method to ap-
proximate H. Therefore, we establish some parallel results.
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Since no reference to any measure other than ¢ will be made,
the results are stated for A rather than 4,,. From Lemma 2
we have that A is positive and increasing. In Lemma 5 we
establish the convexity of 4 and the analog of the weak posi-
tivity lemma.

Lemma 5: (i) Let A’ (u), A be as in Lemma 2 (i) and let
v>u,then(4 ’'(v) — A4 "(u))h>0(ii) Letu, A>0and ||u|| < 1; then
[1—A4"w)] 'h>0

Proof: (i) The result follows by observing that
[A'v)—A'wlh=@v—uBh+hB{v—u)=A'lv— uhand
Lemma 2(ii).

(ii) Since ||4 '(u)]|<||u|| < 1 (Lemma 1), the series expan-
sionof [1 — A4 '(u)] ™' convergesin L '(u). If he L ' (i} is non-
negative, then each term in the series for [1 — A4 '(x)] ~ ‘A is
easily seen to be so, from Lemma 2(ii).

As a consequence of the convexity of 4, we have

Corollary 2: Let A '(u) be as in Lemma 5 (i) and v>u >0;
then

0 (u,v) = Av — Au — A4 '(u)lv — u)>0.
Proof: Since

B(u,v)zJ-ldt{A Tu+tlv—u)] —A'(u)lv—u)

and [# + ¢ (v — u)]>u for 0<r<1, the result follows from
Lemma 5 (i).

Lety (v) =[1 —4'(v)]” ' [4 (v) — 4 '(v)v]. Newton’s ap-
proximation @ to a fixed point of 4 is given by = y (v), with
v being an initial guess.

Lemma 6: Let 0<v<H on [0,1]. Then

(i) 14 @l < 1,

(ii) @ = y (v) <H on [0,1].

Proof: (i) Since O<v<H, ||| H [|<(1 — v'I —2Cy) < 1
{Corotlary 1). The result now follows from ||4 ‘(v)|| <]|v||
(Lemma 1).

(i1) We have that

[1—A'(WH - )= [4H — Av — 4 ")(H — v)]

=6 (v,H)
>0
for H>v>0 (Corollary 2). Since ||4 '(v)|| < 1, from (i), the re-
sult follows from Lemma 5(ii).
Let u, be arbitrary with |lu,||<[1 — vT —2C,} and
U, =xlu,), n>0;{n,} will be called Newton’s sequence
generated by u,,.
Lemma 7:Let {u, } be Newton’s sequence generated by
uy=0. Then u, <u, , , <H for each n on [0,1].
Proof: Tt is clear that u,<u; = 1<H. Now assume that
Hzu,>u, ,.We have that

Uy — U, = [Aun + A'u,)u, _un)]
— [Au, _, +A4u, )u, —u, )]
=0(u,_1,u,) + A )u, o —u,)
>A (uNu,  —u,)

from Corollary 2.

Since O<u, <H,||4 '(u,)|| <1 [Lemma 6(i)]. Therefore,
from Lemma 5(ii), and Lemma 6 (ii)) H>u,, , , >u,. Using the
induction principle we have that O<u, <u, , , <H on [0,1]
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for all n.

The results obtained so far are sufficient to conclude
convergence on [0,1]. However, as such it is not even clear if
the domain of definition of {u,(z)} extends beyond [0,1]. In
the following we define {u,(z)} on [0, ) and establish the
result of Lemma 7 there.

The equation u,, . , = y{u, ) reduces to

Uy 1(2) =1+ u,,,(2)Bu,))
+ u,(2)[Bu, 1 —u,)]) (5)

Since |(Bu,, )(z)| <||u. || <||H || < 1 from Lemma 2(iv) and
Lemma 7, (5) defines a continuous %, , , (z) on [0, w0 ) if u,, (z) is
defined and continuous there. Since u, = 0 for z>0, {«,{z)}
is defined by (5) on [0, « ). Furthermore, we have
Lemma 8: Let {u,(z)] be defined by (5) on [0, « ) with
uy = 0. Then O<u, <u, , , <H for each z>0, and all n.
Proof: First we show that O<u, <u,, , forall n on
[0, o). Since 0 = uy,<u, = 1, the result is true for n = 0. As-
sume that O<u, , <u,. It follows from (5) that

un+l—un=(un+l——un)Bun +(un—un~—1)
XB(un unvl)+unB(un+l_un)
Z[I—Bun]_l[(un un-‘l)B(un

_unf1)+unB(un+l —un)]'

Now, for z € [0,1], u,,, | >u, >0 from Lemma 7, therefore,
from Lemma 2(i), B (¥, , , — 4,)>0 for z € [0, o). Also,
0<u, <H on [0,1]; hence 0<Bu, <||u,|| <1 from Lemma
2(iv) and Lemma 7. These results and the assumption
0<u, _,<u, on [0,c) are easily seen to imply that
(u,,, —u,)»00n[0,c). The result now follows by induc-
tion.

The fact that {«, } is bounded by H on [0, ) follows by
a similar argument. It is clearly true for » = 0, and
(H —u, , ) satisfies

H—u,,, =[1—Bu,] '[\(H—u,)BH
+u,BH—u,, )]

The assumption O<u, <H on [0, ) implies that
H —u, >0 exactly as above.
After we have established that O<u,, <u, , , <H, a proof
of uniform convergence is a routine matter.
Theorem 2: Let {u, } be as in Lemma 8. Then
u,{z)1H (z) uniformly for z in any compact subset of [0, «c ).
Proof: Let the set under consideration be denoted by S.
Since {u,, } is nondecreasing sequence bounded by H and S'is
closed, bounded; v, tu<H on S.
Now from (5)

_un)

u=limu,,, =14 lim[u
Since {(z/(z + x))u,, . , — u,)(x)} is bounded by a o-integra-
ble function H and converges to zero pointwise, the Lebes-
gue dominated convergence theorem yields that

Bu,, ., —u,)—>,..0. This and the fact that O<u, <H im-
ply that u, B(u, ., — u,)—,_.. 0onS. By a similar argu-
ment it follows that

n+1Bun +unB(un+l _un)]‘
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limu

n—oo

Thus u satisfies
u(z) = [1 — (Bu)z)] ",

with |(Bu)(z)| < 1. Since u(z)<H (z) for z € [0,1], and H is the
minimal solution [Proposition 1 {i)] 4(z) = H on {0,1], imply-
ing that u(z) = [1 — (BH )(z)] ' on S. Therefore u(z) = H (2)
on S. Also, {u,(2)} is a nondecreasing sequence of contin-
uous functions, converging to a continuous function H. Con-
sequently, the convergence is uniform on S, by Dini’s
theorem.

We have three sequences: {H, },{K,}, and {«,}, given
by (2), {3) and Theorem 2, respectively, which converge mon-
otonically and uniformly to H. The convergence of
{H,},{K,} was considered on [0,1]'", but, as above, it is
sufficient to conclude the uniform convergence on S. The
sequence {H } falls out of this category. Although {H }
converges uniformly, it may not have any bound property. It
is known that H>K, >H, on [0, l] (which implies the same
on S) for each n if K, = H, = 0.% In the following we show
that u,, is even closer to H.

Proposition 2: Let {u, },{K,} be as in Theorem 2 and
Eq. (3), respectively; then, for each n, H>u, »K, on [0,x).

Proof: With uy = K, =0one has that 1 = u,>K, = 1.
Now assume that u, >K,. Forn>1, (v, , — K, )is given
by

u

Bu, = uBu.

n+1

_Kn+l
u, Bu, — K, BK, +u,Bu,,, —u,
=, — K, )BK, +u,, Blu,—K,)
+u,Bu, ., —u,)
=1 —BK,,]_l[u"+lB(un—Kn)
+u,Blu, ., —u,)]
>0

n+1

for u,, »K, by assumption, «,, , , >, »>0from Lemma 8, and
0<BK, <1 follows from 0<K, <u,<H. Thus

(#,,, — K, )>»00nS. The result now follows by induc-
tion.
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Dynamical importance of vorticity and shear in the universe
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We study the dynamical importance of vorticity, w?/p, assuming different upper limits on the
relative shear, o/6, for a general relativistic model with a content represented by a perfect fluid
distribution with a linear equation of state. Adopting a very conservative point of view with
respect to the values of the Hubble constant and the density parameters of matter and radiation,
we obtain that either 0/6 > 7% or there was a bounce at some point in the past during the matter
era if the present-day relative vorticity is (w/8), > 4%. Taking into account the latest results on
singularities, the possibility of a bounce must be regarded from a local point of view.

PACS numbers: 98.80. — k, 98.80.Dr

INTRODUCTION

Large-scale properties of our real universe are well de-
scribed by the standard Friedmann-Robertson-Walker
(FRW) models,'~* which are relativistic models whose geom-
etry possesses homogeneity and isotropy and a content re-
presented by a perfect fluid. Also, these type of models can
be characterized by a nonvanishing expansion (8 > 0) and
have no rotation, distortion, and acceleration
{@ = o = u = 0).* In spite of the theoretical simplicity and
observational evidence supporting this view, there has been a
lot of work concerning more general cosmological models.

We shall deal in this paper with models possessing vor-
ticity and, concretely, we shall assume that the present-day
relative vorticity (/8 ), > 4%. There are several reasons to
relax the rigid assumptions of the standard picture. From a
theoretical point of view, the FRW models are highly unsta-
ble: vorticity perturbations® are amplified when one goes
back in time. Also, the possible influence of vorticity on the
expansion of the universe has animated many theorists®® as a
possibility to escape from the inevitable singularity of FRW
models through a bouncing point. Another interesting as-
pect is that the rotation of galaxies could be explained by the
fact that they condensed out of a rotating universe.'® From
an observational point of view: direct observations'' give
very weak limits on the present-day vorticity, (w/8), S 1.
Strong constraints can be inferred from upper limits on ani-
sotropies of the cosmic background radiation if one assumes
perturbed FRW models."?

Our point of view is that observations do not rule out
the possibility of using more general cosmological models
that may not differ from the FRW ones from an observation-
al standpoint, but with a quite different metric. In any case,
our position makes it possible to understand which state-
ments are geometry-dependent and which are not.

We shall study in this paper the dynamical importance
of vorticity in the past of the universe using, essentially, the
equations derived from conservation of energy-momentum
for a perfect fluid and the law governing the evolution of
vorticity.*>° The possibility of a bounce in a dust-filled uni-
verse is carefully examined using Raychaudhuri’s equa-
tion,'* and conclusions are drawn concerning the relevant
physical quantities 0/6 and w/0.
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1. THE EVOLUTION OF VORTICITY
A. Basic equations

In general relativity (GR), the conservation of energy
and momentum for a perfect fluid is expressed by the well-
known equations***° (we choose units such that
c=87G=1;ab, ..=0,1,2,3)

p+(p+p=0, (1)
u'+(p +p)'h abP;b =0, h,p,=g. +uu,, (2)

where u “ is the average velocity of matter, p is the energy
density, p is the isotropic pressure, § =u “_, is the expansion
scalar, £ =t u “ for any tensor ¢, 4 ° is the acceleration, and
8., is the metric tensor.

By defining the vorticity vector and the shear as usual,

aab Eyza chbd(uc;d + ud;c) - iehab ’
3)
and applying the Ricci identity to the velocity u ¢, one arrives

at the propagation equation for w “ along the flow lines of the
fluid,***

h0" + 300" = 0 “Cw, + Ui, . (4)

—_aabcd,
20°=n"uyu_, ,

Let us assume a barotropic equation of state for the
fluid p = p( p). Thus, substituting # ¢ given by Eq. (2} into Eq.
{4), one easily obtains

R+ 30+ (p+p) (p+p)]0’=0%w,, (5)

where we have taken into account Eq. (1). From Egq. (5) one
arrives at the equation governing the evolution of the vorti-
city scalar,

{In[{p +pIR 0]}

1/2
_ a_abnanb , /

o=+ (0w,)'*, r"'=0"'o" (6)
whereR (x “)isdefinedbyRR ~' = 16. Thusangular momen-
tum, L « (p + p)R ®o, is conserved if o, n°n’ =0, i.e., the
component of ¢, along the axis of rotation vanishes.

By using comoving coordinates (¢ = §§) and the vari-
able x=R, R ~' (hereafter a subscript O will denote a pre-
sent-day value), the vorticity evolution equation (6) can be
integrated in the form
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w=wx*(p+polp+p) "

Xexp[ -3 f dx(x6 )“‘a,,,,n"n”] . (7)

On the other hand, considering the inequalities

2 b 2 aby1/2
— ——0<0,h'n°<——o, )
V3 b V3

that hold for any unit vector = “, one obtains for § > 0 and
t<t,

o=+ (o,0

%0+ plalp +2)" exp[ _2v3 j d%(%)]
<E<xlp+phlp+p)” exp{2v'3 [ &),

(8)
The particular case of a linear equation of state
p=np, ne[O,l]:p =p0x3(l+n) ,

implies the following bounds on @ and w?/p, which measures
the dynamical importance of vorticity,

x2—3ne‘a<i<x2—3nea’ aEZ\/3J d_x(i), 9)
w, 1 X 6
2 2\
xl~9ne~2a<(ﬂ_) (w_) l<x179ne2a‘ (10)
p/\pJo

B. The dynamical importance of vorticity

Let us assume that 0/6 <(v/3/2)|n — 3|,
n#3, Ve[t t,], t, <t, Then Eq. (9) implies
@ > w,

for ne[0,
Vte[tl,to)ﬁ[ [ 2

w<w, for ne(31]’ (1

i.e., the rotation was greater (or smaller) in the past.

On the other hand, if we assume /6 < (31/3/4)|n — §,
n#l, Ve[t t0), 1, <ty Eq. (10) leads to

2 2 2
w_>(w_) XS (w_)
p \plo p /o

(€>0)

2 2 2
w_<(w_) x;ef<(w_)
p \Nplo p /o

(€>0)

for ne[ 0.4)
Viee[t,t0)=

(12)

for ne( 1]

i.e., vorticity has been dynamically important in the past or
not, depending on the equation state chosen to represent the
content of the universe.

Regarding our real universe, a semirealistic representa-
tion can be made by means of the particular equations of
state p = O (matter era) and p = | (radiation era). In these
cases we have

1. Casen=0

On choosing /0 < 1/V/3, Vite(t,,t,], 1, <t <1ty
(hereafter a subscript eq will refer to the equilibrium point,
1.e., the point where the density of radiation and matter are
the same), Eq. (9) leads to
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Ve[t t) =1 <2 <x*, (13)
Wy
i.e., if the relative distortion 0/@ has been smaller than 57%
between the equilibrium point and the present time, we can
conclude that vorticity has been greater in the past.
The condition 0/6 < {1/4v/3)(1 — ¢€), e€(0,1), Ve[t ,,t,],
t, <t substituted in Eq. (10), gives

»? A
Viee[t,,t)=1 <x‘<(—) (—) <x?f<x?, (14)
p p /o
i.e., vorticity was dynamically important in the past if the
relative distortion has been smaller than 14%. As a conse-
quence of this analysis an interesting question arises: Can the
dynamical effect of vorticity have produced a bounce in the
past? We shall give an answer in the next section.

2 Casen=1/3

On choosing
a/0<(1/2V/3)(1 —¢), €€(0,1), Vee[t, 1., ], t; <ley» Eags.(9)
and (10) lead to the following bounds:

R,
1 <w <L<u?—c<w?, w= R"
we
Vie[t),ty )= 4 R o
w—4<w—212—e)<(0) )(a) ) <w—2€<1’
P P /e

(15)

i.e., if the relative distortion has been smaller than 28% be-
fore the equilibrium point then vorticity was greater in the
past of this point but was not dynamically important.

2. THE POSSIBLE BOUNCE OF A DUST-FILLED
UNIVERSE

A. Assumptions

Let us consider the following hypothesis in (¢,,£,],2, < #,:
(i) There is expansion, € > 0, (ii) the content can be represent-
ed by “dust,” p =0, (iii) 0 < 0/0<(v/'3/12)(1 — ), €€(0,1).
Obviously, for dust Eq. (2) gives # * = 0, i.e., the fluid
lines are geodesics (though & 70 in general). Assumption (iii)
leads to the bounds given by Eq. (14):
2 2\ —
x>1:>x‘<(—w—) (—‘-‘)—) e (16)
p p /o
On the other hand, the equation governing the evolu-
tion of the expansion scalar for a dust is
6+10%+ 20" —w)+4p=0, (17)

that is, a particular case of Raychaudhuri’s equation. '
By defining the function y=8 */p, and using Egs. (1)and
(17), one arrives at the law

2
e )

dx P 4
(18)
where comoving coordinates and the variable x=R, R '
have been introduced, where RR ~'=16. Equation (18) can

be formally integrated in the form
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X
1

y=x"e"[yo—-12f dx(—a-’—z-——l—)e_"], (19)

p 4
A -Elzf dxx—‘(i)z.
1 9

B. A sufficient condition for a bounce

We mean by a bounce the possibility that there was a
time ¢,€(¢,,t,) such that the “radius of the universe” R
reached a minimum value at this time, and the relative dis-
tortion was bounded, 0 < (0/8 ), < « (hereafter a subscript b
will refer to the bounce point). Obviously, a sufficient condi-
tion is

3t,€(t,t)/R, =0, R,>0; (20)
the second condition, 0 < 0/6 < oo, is trivially ensured under
assumption (iii). The condition for a bounce can be rewritten,
taking into account Egs. (17) and (19), as

Xt a)Z 1
Ax,el(lx )y, = 12J- dx<———)e*”,
1 P 4

()4

Obviously, as y,=(8 */p), must be positive, a sufficient condi-
tion for the existence of such a bounce is

Xp 2
axb>l/f dx(_w__i)
1 P 4

Xexp[— 12f dxx“(i)Z]}O, (ﬁ)i) >—1—.
1 6 p/v 4

(22)
C. Case (0?/p)o>}

If we assume a lower limit of 25% on the present-day
value of the vorticity—density ratio, Eq. (16) implies
o\ 1 . 1
x> 1=5( L )>x> (23)
P 4 4
thus the two inequalities given by Eq. (22) are trivially satis-
fied. Therefore, in a dust-filled universe, if a time ¢, exists
such that (w’/p)o>4 then 6 >0 and 0 < 0/6 <v/3/12 cannot
be satisfied indefinitely in the past, i.e., either 0/60 > 14% or
there is a bounce at some point in the past.
Next, we shall try to obtain upper limits on x, depend-
ing on the value of y, under the possibility of a real bounce.
On the one hand, assumption (iii) implies

o 1
O<—<——(1—¢), €€0,1 —Sge 1«1,
<9<4‘/3( ) (0,1)=x"<e <

s=i1—¢€). (24)

This, together with inequality (23), can be substituted into
Eq. (19):

x> 1:>y<x‘_‘[y0—— 12f dx[(ar) x‘—-l_]x""] .
1 p /o 4

After a lengthy but easy calculation, one arrives at the
inequality
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x>12p<3(1—s) " =31 —s+ ¢ x4+ x!
X[yo—3€e(l —s)~ {1 —s+¢7"']. (25)

From this last expression, if we assume
Yo<3€(l —5)7 Y1 —s + €)', we obtain the bound

x> 1=y <3l —s) =31 —s+ € 'x°
and as y==602/p must be positive,
x<l4¢l—s"". (26)

In the opposite case, y,> 3e(l —s)7 (1 —s + €)™}, Eq. (25)
leads to the inequality

x>15p<3(l—s+€ [ 1+ 41 —s5+ ey, — x|

and analogously y > 0 implies
X<l 4+ Yl —s+é€)y,. 27
Summing up: If a time ¢, exists such that (#*/p),>} for a

dust-filled universe, then the assumptions 8 > 0 and
0 <0/8 < x can be maintained in the past at most in

xe[L,{1+€l—s""e ")
for yo<3e(l —s) 1 —s+¢ ",

xe[L{1+41 —s+e€)yle ")
for yo>3€(l —s5)"'(1 —s 4+, (28)

These are very important upper limits on x that we will use
from a physical point of view in Sec. 3.

D. Case (w?/p)o < }

In this case, if the relative radius ¥=[L(w*/p); ']¢ "> 1
can be reached in the past, Eq. (16) leads to

()t

i.e., we can always choose as an initial condition a lower limit
of 25% on the vorticity—density ratio unless the assumptions
(i), (ii), or (iii) of Sec. 2A are dropped before. In principle there
is a possible behavior such that these conditions can be satis-
fied, but the relative radius X is never reached, in this case the
radius R reaches asymptotically a minimum value such that
x,, <X. However, in this case there necessarily exists a point
x, such that §,=0; but then Raychandhuri’s equation gives
(@?/p), >} that can be used as an initial condition.

3. APPLICATION TO OUR REAL UNIVERSE

The results obtained in the last section allow a maxi-
mum relative radius x,,,, , given by formulas (28}, up to
which the conditions (i) > 0, (ii) dust era, and (iii)
0<0/0 <(V'3/12)(1 — €), €€(0,1), can be maintained. Of
course, it is very interesting to know whether this upper limit
X.... lies in the dust era, characterized by the upper bound

max
X

eq "

A. Assumptions on observational parameters

We shall adopt a conservative point of view. Current
values of the Hubble constant H,, in kms~' Mpc™', are in
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the range H,€[40,100], to which corresponds the normalized
value

he[0.4,1], h=10"2H,. (30)

A standard value'® usually taken in the literature is # = 0.5.

Observations of visible mass'*'® give a firm lower limit
on the density of matter: p,,, >4 X 10734 *(g cm™?), which
corresponds to the following bound on the density
parameter:

2, >0.02. (31)

Also the cosmological origin of the cosmic background radi-
ation gives a lower-limit form on the density of radiation:
P.o >4.5X 107%*(g cm~3), which corresponds to the density
parameter

02,>225x10~% ~2, (32)

The equilibrium point is given by the theoretical
expression

X =12,,/102, ; (33)

then according to Egs. (30) and (32)
Xeq <45X10°02,, . (34)

On the other hand, y,=(0*/p), = 312 ; ', so inequality
(31) leads to

Yo< 150 (35)

B. Resuits

Taking into account the upper limits given by Egs. (31)
and (35), the last paragraph of Sec. 2B can be rewritten as
follows: If a time ¢, exists such that
(@/6)y>(12,,/12)'/* > 4% for a dust-filled universe, assump-
tions 8> 0 and 0 < 0/6 < (v/'3/12){1 — €) can be maintained
in the past at most in

xe[L{1+€(l —5)71))

for 2, > (1 —s)1—s+¢),

xe[1,{1+50(1 —s+ ¢} )
for 2, <e (1 —s)(1—s+¢). (36)
Let us choose as an indicative value
=0.5 (i.e.,, 0<0/0 <v'3/24 ~7%). Then the correspond-
ing intervals are

[xe[l,2.4) for 232.7,
x€[1,5311) for 2<2.7.

It is remarkable that the two upper limits, up to which the
conditions € > 0, 0 < 0/6 < 7% can be maintained, are below
the upper limit obtained for the equilibrium point in the most
unfavorable case because Eq. (34) leads to x,, <9 10° for
£2,, = 0.02. Thus, if the present-day relative rotation
(@/8 ), > 4%, either 0/6 > 7% or there was a bounce at some
point in the past during the matter-dominated era!

The last strong conclusion has been obtained under the
crucial hypothesis (/6 ), > 4%; however, if
(@/6 ) < (£2m /12)"/? we have seen in Sec. 2D that the sign of
this inequality can be reversed once the universe reached the
relative radius ¥={(12,,/12)(«/6 )5 *]J* . For the indicated
value €=0.5 if one wishes the X value to lie below the equilib-
rium point, the following inequality must be satisfied:

(37)
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(%)0 >28%, (38)

which is a lower limit to obtain the above conclusion with the
simple analysis we have made.

Of course, this kind of analysis does not allow us to
draw any physically interesting conclusion for low densities
if € is chosen to be close to zero (0 < /8 < V'3/12 ~ 14%)),
because then the upper limit given by Eq. (36) goes to
infinity.

4. CONCLUSIONS

We have carefully examined the law governing the evo-
lution of vorticity for general relativistic models with linear
equations of state, assuming different upper limits on the
relative shear, and we have emphasized the possible dynami-
cal importance of vorticity in the past of the universe. This
suggests, the possibility of a bounce at some point in the past
with a finite relative distortion.

Next, we have analyzed such a possibility for a dust-
filled universe and have found that, if the present-day rela-
tive vorticity (/6 ), > 4%, either 0/60 was greater thana 7%
at some point in the past or there was a bounce point. The
two possibilities lie in the matter-dominated era.

Regarding the well-known theorems on singularities,
the latest results'’~'* seem to indicate that, for the equations
of state we have assumed, there must be a true curvature
singularity. Thus the bounce must be local unless the space-
time be very pathological.

It might be, as suggested by some authors,'”?’ that the
singularity consisted of a small region of space-time with
most of the matter avoiding it. Nevertheless, our opinion is
that the occurrence after the equilibrium point of a local
bounce, but extended to a very large region of space-time,
does not seem plausible. If that is so, our present understand-
ing about primordial element formation, the evolution of
galaxies, cosmic background radiation, etc., could be highly
affected. For instance, the possibility of such an extended
bounce after decoupling (the point where the radiation be-
came transparent to the matter) could imply that stars, clus-
ters, and galaxies were in existence before that bounce point
and thus their age could be very much greater than the stan-
dard observational values. Regarding the existence of a
bounce in the radiation era, let us remark that we cannot
extend our analysis to this epoch because pressure gradients
must be incorporated into the Raychaudhuri equation. We
want to stress that, in general, all the observations explained
in the standard picture of the universe must be carefully re-
examined and also possible observational consequences
explored.

If one rejects the occurrence of a bounce after the equi-
librium point, one can conclude that ¢/8 has been greater
than 7% in the past if (w/8 ), > 4%. Of course, if one assumes
from the beginning that 0/6«1 during the matter era, this
necessarily implies (/60 ), < 4% from a theoretical stand-
point. Let us remark that direct observations'' give poor
upper limits on the relative rotation, (w/8 ), = 1, and indirect
bounds obtained through measurements of the cosmic back-
ground radiation (anisotropies of the observed temperature)
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are inferred with the use of approximations to Friedmann
models.'? However, our analysis leads one to wonder if the
standard picture of the universe, i.e., a perturbed Friedmann
model, is the only one allowed by observations. In principle,
the use of general cosmological solutions that may not differ
from the Friedmann ones from an observational standpoint,
the metric being quite different, is an open possibility from a
theoretical and observational point of view.
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Erratum: Interpolation theory and refinement of nested Hilbert spaces [J.

Math. Phys. 22, 2489 (1981)]
J. -P. Antoine

Institut de Physique Théorique, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

W. Karwowski®

Centre de Physique Théorigue, CNRS, Luminy, F-13288 Marseille, Cedex 2, France

(Received 7 May 1982; accepted for publication 14 May 1982)

PACS numbers: 02.30.8a, 02.30.Tb, 99.10. + g

The following references were omitted:

’A. Grossmann, “Elementary Properties of Nested Hilbert
Spaces,” Commun. Math. Phys. 2, 1-30 (1966).

8E. Nelson, “Construction of quantum fields from Markoff
fields,” J. Funct. Anal. 12, 97-112 (1973).

°E. Nelson, “The free Markoff field,” J. Funct. Anal. 12,
211-227 (1973).

10w, Karwowski, “On Borchers class of Markoff fields,”

Proc. Camb. Phil. Soc. 76, 457463 (1974).

"E. Nelson, “Analytic vectors,” Ann. Math. 70, 572-615
(1959); R. Goodman, “One parameter groups generated by
operators in an enveloping algebra,” J. Funct. Anal. 6,
218-236 (1970); B. Nagel, “Generalized eigenvectors in
group representations,” in Studies in Mathematical Phy-
sics, edited by A. O. Barut (Reidel, Dordrecht, 1973), pp.
135-154.

Erratum: Ground state energy bounds for potentials |x|*[J. Math. Phys. 23, 64

(1982)]
R. E. Crandall and Mary Hall Reno

Department of Physics, Reed College, Portland, Oregon 97202

(Received 16 March 1982; accepted for publication 16 April 1982)
PACS numbers: 03.65.Ge, 02.30.Hq, 02.60.Lj, 99.10. + g

In Sec. III, the ground state estimate for the quartic
potential should read 1.060 362 090 484 1820--.. The origi-
nal text is in error at the sixth decimal digit.
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Erratum: Linearization stability of Einstein equations coupled with self-
gravitating scalar fields [J. Math. Phys. 22, 343 (1981)]

R. V. Saraykar and N. E. Joshi

Department of Mathematics, Nagpur University, University Campus, Nagpur-440 010, India
(Received 18 May 1982; accepted for publication 28 May 1982)

PACS numbers: 04.40. 4 ¢, 99.10. + g

T, should be T,,, = 252 .6, — £,,(4,, 4"

+ m?$?)). The remarks in the introductory paragraph re-
garding 7 ° mesons and C fields are not valid, as the lineari-
zation stability theorem is true only for massless scalar
fields. Thus Brans—Dicke scalar fields are covered. o should
be + 48yu, and 7 should be 28(y* + 4 (# )z, (positivity
of energy).

In Eq. (4), in the first coordinate, the sign before
BN(2d — gA (¢ ), should be negative, whereas in the sec-
ond coordinate, the signs of both the terms should be re-
versed. The last coordinate should be + . Corresponding
changes should be made in Egs. (7) and (9). In the expression
for D, 57 - h before Eq. (10), the sign of 826 — gA ($)) - h
should be negative. A corresponding change should be made
in the expression before Eq. (10) and Eq. (10) itself; and simi-
larly in Eq. (11), and before it. Signs in the expression for
D, 7 - ¢ should be reversed. Sign changes as mentioned
above should be made in the equations before Egs. (13) and
(14).

These cause further changes in the calculations in the
proof of linearization stability: Equations (17) and {18)
should be written according to Eq. (4). With corresponding
changes in further calculations, Eq. (21) now reads

(AN ), + BN (217 — m’¢ Y, — (L 7) =O.

Corresponding changes are in order in later expressions.
Thus we can conclude “N is constant” only if m = 0. In

1738

other words, linearization stability is implied only for mass-
less scalar fields. This conclusion is consistent with the fact
that the energy—-momentum tensor for the scalar fields
satisfies the physically reasonable strong energy condition
only when m = 0. If m#0, as in Ref. 1 of this erra-
tum, T, WW°® —\W,W°T = (¢, W’ — i m’p> Thus,
é ., Weis exactly y when W = Z %, the forward pointing
unit timelike vector normal to the hypersurface 3
[Z% = (1/N, X/N ) in terms of lapse and shift]. This can be
shown easily by using the evolution equation for ¢. Thus the
right-hand side of the above equation is precisely.
y 2 — 1 m*¢$? which is involved in the elliptic equation (21).
However, for 7 mesons (m 3 0), although the energy—mo-
mentum tensor may not satisfy the strong energy condition
at every point, this does not affect the physically reasonable
convergence of timelike geodesics over distances greater
than 10~ "2 cm. (For detailed argument see Ref. 1.) Thus,
expecting linearization stability for coupled gravitational
and massive scalar fields would be physically unreasonable.
The other theorems in the paper are valid for m#0
since they are consequences of the evolution equations writ-
ten in the adjoint form.

1S Hawking and G. Ellis, Large Scale Structure of Space-Time (Cambridge
U. P., New York, 1973), pp. 95 and 96.
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