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The general properties of the Molien generating function and invariant and covariant tensors for 
the corepresentations of nonunitary point groups are presented. The generating functions and 
(Ii) I ,Ii) m) (invariant) and (Ii) "Ii) m) (covariant) tensors are obtained for the 32 grey point groups 
and the 58 black-white point groups. 
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I. INTRODUCTION 

There are various problems in physics such as the re­
normalization and Landau theories of phase transitions and 
the calculation of selection rules for high order optical pro­
cesses which require the knowledge of polynomial invariants 
for the relevant representations of the symmetry group of the 
problem. The first step in determining these invariants is the 
calculation of the Molien function 1.2 for the particular repre­
sentation of interest. Molien functions and polynomial in­
variants and covariants have been calculated for the 32 point 
groups3-5 and a systematic procedure and some applications 
have been given for calculating Molien functions for space 
groups.6 It is the purpose of this work to use corepresenta­
tion theory 7 in order to investigate properties of Molien 
functions, invariants and covariants of magnetic point 
groups. Recently, Saint-Aubin8 has presented Molien func­
tions and integrity bases for unitary representations of the 
finite subgroups of the Lorentz group 0(3,1). These groups 
are isomorphic to the magnetic point groups. In addition, 
some discussion of integrity bases for unitary representa­
tions of magnetic point groups has also been given by 
Kopsky.9 However, neither Saint-Aubin nor Kopsky con­
sider the corepresentations of the non unitary groups. 

Section II will summarize the pertinent results of Refs. 
4 and 5 for Molien functions and integrity bases for unitary 
point groups. Sections III and IV will consider Molien func­
tions and invariants and covariants for non unitary point 
groups. Finally, Sec. V will present the Molien functions, 
invariants and covariants for the 32 grey groups and the 58 
black-white groups. 

II. MOLIEN FUNCTIONS AND INVARIANTS OF UNITARY 
GROUPS 

Let G be a finite unitary group having I G I elements g 
and irreducible representations rj(g) of dimension lj and 
characters Xj(g). If one forms the nth symmetrized product 
representation of the mth irreducible representation, [r m lin), 

having characters X min), then [r m 1 In) will contain the rth re­

presentation r"c ;;',(n) times where 

C' _ 1 ~ (g) * (n)(g) m,(n) -IGT ~X, Xm . (2.1) 

-) Supported in part by a grant from the National Science Foundation 
DMR-78-12399 and Faculty Research Award, PSC-BHE RF No. 13404. 

In particular, C ~.In) indicates the number oftimes r l , 

the identity representation, appears in [r m 1 (n) and is equal to 
the number of independent invariants of degree n transform­
ing as r m' That is, if r m has bases (if!:' ... I/Jl... ), then there are 
C ~.(n) independent homogeneous polynomials 9(n) of de­
gree n in the {¢1'} such that 

Pg9(n) = r l9
ln ) 

= 9 (n) for all geG, (2.2) 

where 

PgI/J;: = Irm(g)v/LI/J':. (2.3) 
v 

These invariant polynomials will be called (rl,r m) tensors. 
We can also construct (F, ,r m) covariant tensors of de­

gree n such that the tensor components (/~ , ... J;, ) are each 
homogeneous polynomials of degree n in the bases {I/J;"} and 
the {/;} transform by rr when the {I/J;"} transform by r m' 
The number of independent (F"r m) tensors of degree n is 

given by C ;;'.In) . 

Following the procedure of Molien I as elaborated by 
Burnside, 2 C ;;',(n) can be found most easily from 

~C' ..1 n _ 1 ~ __ X_,(g_)* __ 
7' m,(n) -IGT ~detIE-..1rm(g)1 

===.B (F"r m;..1 ), (2.4) 

where E is the identity matrix. 
As is pointed out in Refs. 4 and 5, the Molien function 

B (r"r m;A. ) can be written as 

B (F"r m;A. ) = Ikp..1 p III( 1 -..1 q), (2.5) 
p q 

where the kp are positive integers. For each factor (1 -..1 q) in 
the denominator of B (rl,r m;A. ), there corresponds an alge­
braically independent polynomial of degree q, written 
Iq(Fl,r m)· For each term kp..1 p in the numerator of 
B (r"r m;A. ) there are kp linearly independent tensors 
EP(F"r m) ofdegreep. All r(Fl,r m) are linearly indepen­
dent of each other and algebraically independent of any low­
er degree (rl>r m) invariant, but powers of the E n(Fl,r m) 
may be expressable as polynomials in lower degree 
invariants. 

III. MOll EN FUNCTIONS OF NONUNITARY POINT 
GROUPS 

A non unitary group M can be written as 

M=G+AoG, (3.1) 
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TABLE I. Corepresentations of non unitary groups :M = G + AoG. 

Type of representation r of G Corepresentation !ZJ(u) of M Corepresentation !ZJ(Aou) of M 

Type a: 
F(u) = /3r(Ao -luAo)*/3-1 

/3/3* =r(Ao2) 
Typeb: 

F(u) = /3F(Ao - luAO)*/3 -I 

/3/3 * = - r(Ao2) 
Typec: 

r(u) is not equivalent to 

F(u) = r (A 0- IUAO)* 

!ZJ(u) = F(u) 

!ZJ(u) = (r(u
o
) 0) 

r(u) 

!ZJ(u) = (F(U) _ 0) ° r(u) 

where G is a unitary group, Ao = (Juo is an anti unitary ele­
ment, () is the time reversal element, and Uo is a unitary ele­
ment which mayor may not belong to G. If Uo belongs to G 
we have one of the 32 grey groups. If Uo does not belong to G 
we have one of the 58 black-white groups. The corepresenta­
tions fiJ of M may be of three types 7 depending on the rela­
tionshipbetweenr(u)andF(u) = r*(A 0-

1 u Ao), wherer 
is an irreducible representation of G. These types of corepre­
sentations are presented in Table I. 

d :-".Inl' the number of times the corepresentation fiJ r 
appears in the symmetrized nth product corepresentation 
[fiJ m ]!nl, is given bylO 

d :-".Inl = -l-IXr(u)* X\;:I(u)/-1-IXr(u)Xr(U)*.(3.2) 
1 G 1 UEG 1 G 1 UEG 

These sums are only over unitary elements. Xr is the charac­
ter of corepresentation fiJ r and X \;:) is the character of 
[fiJ m lin). 

The d :-".In) can be determined more readily from a Mo­
lien function B (fiJ r,fiJ m;A ), where 

and 

B (fiJ r,fiJ m;A ) = Id :-".In) A n 

n 

{

I, fiJ r type a 

N = 4, fiJ rtype b. 

2, fiJ r type c 

(3.4) 

The calculation of B (fiJ r,fiJ m;A ) can be simplified by 
separately considering whether rr and r mare of type a, b, or 
c as described in Table I. 

A. r m is type a 

If r m is type a then from Eq. (3.3) and the structure of 
the corepresentations as given in Table I it is obvious that 

B (fiJ nfiJ m;A ) 

t(Tr,rm;A ) 

= !B(Tr,rm;A) 

I\B (Tr,r m;A) + B (Fnr m;A) I 

rrtype a 

rrtype b (3.5) 
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Since the B (Tr,r m;A ) are given in Refs. 4 and 5, the 
B (fiJ r,fiJ m;A ) are readily obtained when r m is a type a re­
presentation. Note that the case of rr type b does not occur 
for point groups. 

B. rm is type b 

All type b representations of point groups are real and 
one dimensional so that 

But 

~ _1_", X (u)* (u)J _ {8r
•
1 

N IG 1 ~ r Xm - ~8r.m 
(j even), 

(j odd). 

Thus 

for fiJ r = fiJ I' 

c. rm is type c 

If r m is a type c representation, then 

(3.7) 

(3.8) 

(3.9) 
B may be calculated directly from Eq. (3.9) orone can use the 
following4

: 

B(Tr,rm Ell Fm;AI.A2) = 

2: B (Tr, ,r m ;AllB (Tr, ,Fm ;A2)C ~"" (3.10) 
rlr::. 

where C ~'" is the multiplicity of r, in rr, ® rr,. Then 

B (fiJ r,fiJ m;A ) 

{

B (Tnr m Ell Fm ;A ) 

~B (Tnr m Ell Fm;A ) 

= HB(Tr!m EllF:!) 

+ B(Tr,r", Ellrm;A)J 

for r,type a, 

for r, type b, 

for r, type c. 
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However, for crystallographic point groups, with the 
exception of representations r6 and r7 of T [for which Eq. 
(3.10) is the simplest method of calculation], all type c repre­
sentations are one dimensional. In addition, except for type c 
representations of five black-white groups (see Table V), the 
remaining type c representations are such that F(u) = r *(u) 
for all u. For these one dimensional complex representations 
the calculations of the Molien function can be simplified as 
follows: 

B(r r ffJr*;A)=_I_" Xr(u)* 
r' m m IGI ~(I-,-iXm(u))(I-,-iXm(u)*) 

= _1_IXr(u)*! (,-ii(xm(U)i))(! ,-ii'(xm(U)*)i'). 
I G I UEG i ~ 0 f ~ 0 

Let z be the smallest nonzero integer such that 

Xm(u)' = (xm(u)*)' = 1 for all u 

and define sand t such that 

Xm(U)' = (xm(u)*)'=Xr(u) forallu 

where 

o <S';;;Z, O.;;;t <z, and s + t = z. 

Then, since 

~ ~ Xr(u)*Xm(u)i(xm(u))"i' 

= 1 for [xm(u)i(xm(u)ff] = Xr(u), 
= 0 otherwise, 

the only nonzero contributions to (3.12) are for 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

)' = t +} + nz, for each} and for} = s +)' + n'z for each)' 
(n,n' = 0,1,2, ... ). Thus 

=! !,-ii,-il+i+nz+! !,-ii',-is+i'+n'z 
i ~ 0 n ~ 0 i' ~ 0 n' ~ 0 

(1 -,-i 2)( 1 -,-i Z) (3.16) 

IV. INVARIANTS AND COVARIANTS OF NONUNITARY 
POINT GROUPS 

If {¢ ,;, ... ¢;n} are the bases for corepresentation fiJ m' 
then an invariant polynomial 9 (n) of degree n in these bases 
[i.e., a (fiJ pfiJ m) invariant] must satisfy 

P u 9(n) = 9(n) all UEG (4.1) 

and 

PA .9*) = .9*1 all AEAoG, 

where 

and 

and 

PA ICi ¢7= ICi *PA ¢7· 
i i 

1553 J. Math. Phys., Vol. 23, No.9, September 1982 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Similarly, (fiJ "fiJ m) covariant tensors of degree n are 
such that the tensor components I It' , ... ,it, rl are each homo­
geneous polynomials of degree n in the bases {¢ '('} and the 
{r} transform by fiJ ,( g) when the {¢ '('} transform by 
fiJ m ( g) for all gEM = G + AoG. 

Two corepresentations fiJ and fiJ' are equivalent if 
there exists a unitary matrix V such that 

fiJ 'lui 

fiJ'(Aou) 

= V-1fiJ(u)V } 
= V-'9"(A

o
u)V* for a1l uEG. (4.6) 

The matrix V transforms the bases I ¢; I of fiJ to the bases 
{~ ; } of 9'. That is, 

¢ ~ = IV/1a¢/1' (4.7) 
{3 

If V = UJE where UJ is an arbitrary phase and E is the 
identity matrix, then 9J'(u) = 9J(u) and 9'(Aou) 
= UJ*2!:tJ (Aou). Thus a common arbitrary phase factor exists 

for the corepresentation matrices for the anti unitary ele­
ments, Those corepresentations having identical matrices 
9(u) but matrices §(Aou) that differ by a phase factor are 
equivalent. Similarly, a change of phase for the matrix/3 for 
type a or b representations (see Table I) produces an equiv­
!llent corepresentation. 

In particular, the "identity" corepresentation fiJ I has 
all + 1 's for unitary elements and some common phase UJ I 

for all antiunitary elements. In identifying invariants, how­
ever, Eqs. (4.1) and (4.2) will be used. That is, a (fiJ 1,fiJ m) 
invariant transforms as that corepresentation fiJ 1 for which 
UJ 1 = 1. 

As always in presenting tables of bases, invariants, or 
covariants, the entries correspond to a particular choice of 
representation or core presentation and a transformation to 
an equivalent representation or corepresentation will result 
in a transformation of bases [Eq. (4.7)] and a change in the 
form of invariants or covariants. In particular, for two core­
presentations fiJ m and fiJ;.. related by Eq. (4.6) where 
V = UJmE, consider an invariant polynomial 9(n) and the 
transformed polynomial 9 In),. 9(n) and gj(n)' can be written 
in terms of bases {¢ '('} and {¢ '(''}, respectively. If 

CjJ1n)_"c ((A.m)k, (A.m)klm) . - L Ik,1 '1'1 ••• 'l'lm ' (4.8) 
I k,j 

where C1 k,j is a complex constant (possibly zero) and there is 

one C1 k,j for each set of integers I k; I ,~~': 1 k; = n, then 

9(n)' = (UJ! )"IC)k,j ((¢ ';" )k, .•. (¢;:' /'m ), (4.9) 
k 

where the Clk,) are the same as in Eq. (4.8). Thus, ifinvar­
iants are given for fiJ m' the invariants for fiJ:.. are obtained 
from (4.9). Similar phase relationships will exist for covar­
iants (fiJ "fiJ m). For convenience, therefore, all invariants 
and covariants have been calculated for the particular choice 
of corepresentations fiJ, and fiJ m in which UJ, = 1 and 
UJm = 1. 

Now consider the form of the (fiJ "fiJ m) invariants and 
covariants for different types of corepresentations. 
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A. r m and r, are both type a 

Two situations arise. 
1. If 13m andp, can be chosen such that 13m = rm(u) for 

some element ueG and 13, = r,(ii) for some element ueG, 
then the (iP "iP m) tensors are identical to the (r"r m) ten­
sors given in Refs. 4 and 5. 

2. If 13m =l=r m (u) for all ueG, and/or 13, =l=r,(u) for all 
ueG, then the (iP "iP m) must be checked for invariance un­
der antiunitary operations. For example, consider the 
(iP I ,iP 4) invariants of corepresentation iP 4 of the grey 
group 3m l' (M = C 3v + OC 3v ) which is based on the type a 
representation r4 of C3v ' From Ref. 5 the generators, Molien 
function, and (r l ,r4 ) invariants are 

(
erri/ 3 

Generators: ° 
Molien function: B (r l,r4 ;A) = 1 + A 8 • 

(I-A 4)(I_A 6) 

(r l ,r4 ) invariants: [4 = 1/li1/lL [6 = 1/l~ - 1/l~ 

E8 = 1/l11/l2(1/l~ + 1/ln. 
However, for this example 

r 4(u) = pr4(u)*p -I, where 

13 = (_ ~ ~) 
and 13 =l=r4(u). 

The (iP l'iP 4) invariants are then 

[4=<pi <p~; J6=i(<p~ -<pn; 

TABLE II. Grey groups: M = G + ()G. 

Type a 
M G representations 

II' C, F, 
II' Ci F,± 

21' C2 F,.F2 
ml' C, F,.F2 
2221' D2 All 
2mml' e2t! All 
31' C, F, 
321' D, F,.F2.F3.F: 
3ml' C3" F,.F2.F3.F. a 
41' C. F,.F2 
41' S. F,.F2 
4221' D. All 
4ml' C4 {! All 
42ml' D2d All 

61' Co F,.F. 

61' C3h F,.F. 

6221' Db All 
6mml' COil All 
62ml' D3h All 
231' T F,.F •• F, 
4321' 0 All. F.a 
43ml' Td All. F.a 

aFar these representationst/ #F(u). 
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B. r m is type a, rr is type c 

In this case the E P(iP "iP m) tensors are given by 

EP(iP "iP m) = ~::~: ~::) (4.10) 

and E p(F"r m) are available from Refs. 4 and 5. Again if 
13m =l=r m (u) for all ueG, then the EP(rr ,r m) must be checked 
for invariance under anti unitary operations. 

c. r m is type b 

Since r m (u) is one dimensional, the corepresentation 
iP m has bases I <P1,<P2j· The unitary operations do not "mix" 
<PI and <P2 so that the invariants under G are monomials 
<P 7'<p ;, and <P 7'<p ;'. However, under the operations of an an­
tiunitary operator, say PAu ' we have (for 13 = 1) 

PAuC<p 7'<p;' = (- l)k,C*<p 7'<p ;'. (4.11) 

Thus the (iP piP m) invariants are polynomials 9 1n) of the 
form 

.'Ji'lk, + k,) = C<p 7'<p;' + ( - l)k,C *<p N 7'. (4.12) 

As an example consider the grey group 11' = C I + eCI 

and, in particular, the corepresentation formed from the 
type b double-valued representation r2 of C I • The matrices 
for this corepresentation are given as follows: 

9 2(E) = (~ 0) - (-1 
l' iP 2(E) = ° 

_ (0 
!iJ 2(OE) = 1 - 1) !iJ 2(OE) = ( ° 

0' -1 
(4.13) 

Typeb Typec 
representations representations 

F2 
Ft 

F3.F. 
F 3.F. 

F. F2.F3;r •• F~ 
F,.F. 
F,.F. 
F,.F.;F,.F.;F,.F. 
F,.F.;F~.F.;F,.F. 

F 2.F,;F,.F.;F,.F. 
F •• F IO;F".F'2 
F 2.F3;F,.F.;F,.F. 
F •• F IO;Fll .F12 

F 2.F,;F .. F, 
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TABLE III. Molien functions and invariants and covariants for type c grey group representations. 

M G r m ,,, r, Molien function Invariants and covariants 

21' C, r , .• r , 1 + A 4 ]' = irpi; ]4 = rp4 + i4; E4 = i(rp4 _ i4) 
(I - A ')( 1 - A 4) 

ml' C, 

r, 2..1.' E! =rp'+i';E~ =i(rp'-i') 
(I - A ')( I - A 4) 

r,.4 ..1.+..1.' 
E I = (~ }E' = i(!:) (1-..1.')(1-..1. 4) 

31' C, r,.J r , I + A 3 ]' = rpi;l' = rp' + i';EJ = i(rp' - iJ) 
(I - A ')( I - A 3) 

rv ..1.+..1.' EI=(~}E'=(!:) (1_..1.')(1_..1. 3) 

r •. , r , I + A" ]' = irpir = rp" + i";E" = i(rp6 - i 6) 
(I -A ')(1 -A") 

r,.3 
..1.'+..1.4 E' = (~'}E4 = (i4) 

(I - A ')( I - A ") rp' ' <2.-

r •. , ..1.+..1.' E I = (~ }E' = {: ') (I - A ')( I - A ") 

r" 
A' (rp ') E'= -(1_..1.')(1_..1. 6 ) rpJ 

321' D, r,." r , I + A 4 ]' = irpi;]4 = rp4 + i 4;E4 = i(rp4 _ i4) 
(I-A ')(1-..1. 4) 

3ml' C
"
. 

r, 2..1.' E! = rp' + i';E~ = i(rp' - i') 
(1-..1.')(1-..1. 4) 

r,.6 
..1.+..1.3 E I = (~}E3 = {i3) 

(I - ..1.')(1 - A 4) rp"rp3 
41' C. r,.4 r , I + A 4 . ]' = rpi;l4 = rp' + i 4;E4 = i(rp 4 - i4) 

(1-..1.')(1-..1. 4) 

41' S4 

r, 2..1.' E! =rp'+i';E~ =i(rp'-P) 
(1-..1.')(1-..1. 4) 

r'.4 
..1.+..1.3 

E I = (~ );E 3 = (! 3) (I-A ')(1_..1. 4) 

r,.6 r , I + A" ]' = irpi;] " = rp" + i";E" = i(rp" - is) 
(I-A ')(1_..1. 8) 

r, U' E: = rp4 + i4;E~ = i(rp4 _ i4) 
(I - A ')( I - A 8) 

r,.. ..1.'+..1." E' = (~'}E6 = (i
6
) 

(1-..1.')(1-..1.") rp' ' t2." 
r'.6 

..1.+..1.7 
E' = (~}E7 = ,e:) (I-A ')(1-..1. 8) 

r'.8 
..1.'+..1.' E3 = {i}E' = (!') 

(1-..1.')(1-..1. 8) rp3 ' rp' 
r,.8 r , Same as r m.n = r'.6,r, = r" 

r, Same as r m.n = r'.6,r, = r,. 
r 3.4 Same as r m.n = r'.6,r" = r 3.4. 
r'.6 Same as r m •n = r'.6,r" = r,.8 
r7.8 Same as r m.n = r'.6,r" = r,.6' 

61' C" r,.3 r , I + A 3 
]' = rpi;I3 = rp 3 + i 3;E3 = i(rp 3 _ i 3) 

(I -A ')(1 -A 3) 
61' C,. 

r'.3 
..1.+..1.' 

E' = (~}E' = (!:) (I - ..1.')(1 - A 3) 
r,.6 r , I + A 6 

]' = rpir = rp 6 + i 6;E6 = i(rp 6 _ i 6) (1_..1.')(1_..1. 6 ) 

r'.3 
..1.'+..1.4 ,_ (i'} 4 _ (rp4) 

(1-..1.')(1_..1. 6
) E - rp' ,E - i 4 

r 4 2..1. 3 
E! =rp3+i3;E! =i(rp3_i3) 

(I - A ')( I - A 6) 
r,.6 ..1.+..1.' 

E' = (~}E' = (!:) (I - A ')( I - A 6) 
r,.8 r , 1+..1.12 

]' = irpi;] 12 = rp 12 + il2;E 12 = i(rp 12 _ il2) 
(I - A ')( I - A 12) 

r,.3 
..1.4+..1.8 

E4 = (!:);E 8 = (~:) (I- AiiI6-
A12) 

r4 
(1 - A ')(1 - A. 12) 

E: = rp6 + i6;E: = i(rp6 _ i 6) 
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TABLE III. (Continued) 

M 

231' 

G rm ,,, r, Molien function 

r, .• 
A 2 +A)() 

(I_A2)(I_A'2) 

r,.8 
A+A" 

(I-A2)(I-A 12) 

r •. 10 
A' +A' 

(I-A2)(I-A 12) 

r ll . 12 
A' +A 9 

(I-A2)(I_A 12) 

r •. ,o r , Sameasr",." =r,.8,r, =r,. 
r 2., Same as r "'." = r,.8 ,r'J = r 2., 

r 4 Same as r "'." = r,.8 ,r, = r 4 
r, .• Same as r "'." = r'.8,r" = r, .• 
r". Same as r",," = r"8,r,, = r.,10 
r."O Same as r "'," = r,,8 ,F" = r". 
r ll ,I2 Sameasr",," =r',8,r,,=rILI2 

r lLI2 r , 
I +A 4 

(I-A2)(I-A 4) 

r 4 
U 2 

(I_A2)(I_A4) 

r ll ,I2 
A +A' 

(I_A2)(I_A4) 

T r 2" r , 
I +A J 

(I - A 2)( I _ A J) 

r 2,J 
A +A 2 

(I - A 2)(1 _ A 3) 

r." r , 
I + U 4 + U • + U 8 + A 12 
(I-A 2)(1 -A 4)2(I_A 6) 

3A 4 +U 6 +3A 8 
r 2,J 

(I - A 2)( I _ A 4)2(1 _ A 6) 

r 4 
3A 2 + 5A 4 + SA 6 + 5A 8 + 3A 10 

(I - A 2)( I _ A 4)2( I _ A 6) 

r, U J+6A'+6A'+U· 
(I - A 2)( I _ A 4)2(1 _ A 6) 

r 6 " 

A + 3A J + 4A ' + 4A ' + 3A 9 + A II 
(I - A 2)(1 _ A 4)2(1 _ A 6) 

The Molien function as given in Eq. (3.8) is 

B (iiJ 1"~2;A) = (1 + 4 2)/(1 - 4 2)2. 

The monomials eP i ,eP ~, and eP leP2 are invariant under the 
unitary operations. The second order invariants under all 
operations (unitary and anitunitary) of 11' are then 

(eP ~ + eP n, i(eP ~ - eP n, and iePleP2' 
Also 

B (iiJ 2,iiJ 2;A) = 4 /(1 - 4 2f (4.14) 

and 

/4.15) 

C. rm is type c 

With the exception of representations r6 and r7 of T, 
all other type c representations are one dimensional. 

Consider the invariants for these one dimensional cases. 
The basis functions for the corepresentations are ! eP,i l ' 
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Invariants and covariants 

E2 = (~}E 10 = (i
lO

) ¢>2' p.)() 

E I = (~ }E II = e ") ¢>_' I¢>II 

E' = {¢>'}E' = (() ¢>' , t/J 7 

EJ=(~}E9- {¢9) ¢>J, -1¢>9 

12 = i¢>¢;l4 = ¢> 4 + i 4;E 4 = i(¢>4 _ ¢4) 

E~ =¢>2+i2;E~ =i(¢>2_¢2) 

E' = (~)E3 = i(!:) 

12 = ¢>i;lJ = ¢> J + i';E3 = it¢> J _ ¢J) 

EI=(~} E
2
=(!:) 

12 = ¢>,i, + ¢>2¢2 

1: =¢>~ -2i31/2¢>i¢>~ +¢>; +¢~ +2i31/2¢ii~ +¢; 
11 =¢>~ -2i31/2¢>i¢>~ +¢>; -i(¢~ +2i31/2ii¢~ +¢i) 
r=¢>1¢>2(¢>~ -¢>i) +¢,i2(¢~ -¢i) 

(4,16) 

and 

(4.17) 

Since the unitary operations do not "mix" eP and i, the invar­
iants of G are monomials eP ki k, where 

PueP kif = r(u(r(u)f (eP kif). (4.18) 

Under antiunitary operations 

PA"ceP kif = c*r (A 6 )fikeP f. (4.19) 

In particular, for one-dimensional complex representa­
tions from Sec. IIIC the generating function is 

B (Fr,r m E9 r:;A ) = (4 I + 4 S)/(l - 4 2)(1 - 4 Z) 

and for r = 1 (4.20) 

B (F"rm E9r:;A) = (1 + 4 Z)/(l - 4 2)(1 - 4 Z). 
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TABLE IV, Black-white groups: M = G + ()UoG,UoEG, 

Type a 
M M'IG) representations 

I' C,IC,)a 

2' C,IC,) All 
m C,IC,) All 
21m' C"IC,)a 
2'Im C"IC, )" 
2'lm C"IC,) All 
22'2' D,IC,) All 
2m'm' C"IC,) All 
2'm'm C"IC,) All 
m'm'm' D"ID,)a 
mmm D"IC" )a 
m'm'm D"IC" ) All 
4' C.IC,) b r, 
4' S.IC,) b r, 
42'2' D.IC.) All 
4'22' D.ID,) r"r.,r, ' 
41m' C"IC,)a 
4'lm' C" IS.) a 
4'lm C"IC,,) b r' , 
4m'm' C"IC,) All 
4'mm' C",IC,,) r"r.,r, , 
42'm D",IS,) All 
4'2m' D'dID,1 r"r"r,' 
4'2'm D,.IC".) r"r"r,' 
4Im'm'm D"ID,)a 
4lm'mm D"IC".)a 
4'lmmm D"ID" ) r l

t ,r 4+ ,r~',: 

4'lm'm'm D"ID",)a 
4Imm'm' D"IC,,) All 
32' D,IC,) All 
3m' C".le) All 
6' C"IC,) b r"r. 

6m'2' D"IC,,) All 
6'm2' D"le,) All 
6'm'2' D"ID,I All 
6' C"lel b r"r. 

3' C"IC"a 
3m' D'dIC ,,) All 
3'm D'dIC".I" 
3'm' D,,,ID,l a 

62'2' D.IC.I All 
6'22' D.ID,) All 
6/m C.,ICo)a 
6'Im' C."le,)b r l

t ,rnt 

6'lm ConiC", )a 
6m'm C.,.IC,,) All 
6'mm' Co,.le,.) All 
6'lmm'm DonID", )a 
6'lm'm'm Do/,ID,,,) All 
6/m'm'm' DOhID"I" 
6/m'mm DohIC.,l a 

6/mm'm D.hIC,,1 All 
m'3 T"ITl a 

4'3m' T"ITI All, 
r

4
• ~ r~. ~·r(,! L r7 ~. 

4'32' 01T) All, 
r., 'r" 'r,,, 'r,' 

m'3m' O"IOl a 

m'3m O"ITd)a 
m3m' OhIT,,1 All, 

r.,'r"'F,,,'r, ' 

Typeb 
representations 

r, 
r, 

r,' 

"For these groups u" = lithe inversion element) and the corepresentations are the same as for the grey group ofG, 
b For these groups u" commutes with all u and the Mohen functions are the same as for the grey group of G, 
<For these representations P # rlul, 
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Typec 
representations 

r"r. 
r"r. 

r"r, 

r;,r; 

r"r, 

r"r, 
r"r, 

r"r, 
r"r, 

r"r, 
r"r, 

r,',r,' 
r 4

i .r~1 
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All type c corepresentations !P m based on one dimen­
sional complex rep'resentations r,,; and r! have the follow­
ing invariants: 

2 r,;-, r,;-, 2 -
I (=I'=m)= (c+c*r(A o »¢¢' 

JZ(!P I'!P m) = ¢ Z + ¢z, (4.21) 

and 

EZ(!P I'!P m) = i(¢ Z _ ¢Z). 

Similarly, for E P(!P r'!P m) covariant tensors, the fol­
lowing generalizations can be made. 

If !P r is one dimensional (and, therefore, real) then 

s = t =z/2 

and 

and 

E ~ (!P ,,!P m) = i(¢ S _ ¢ S). (4.22) 

If 9 r is a two-dimensional type c corepresentation the 
covariants are 

(4.23) 

For example, consider the black-white group 4' for 
whichM = G + ec 4~ G and G = C2 • Thecorepresentations 
formed from the type c double-valued representations r3 
and r4 of C2 are given as follows: 

9(E) = (~ ~} 9(c2z ) = (~ _~} 

!P(E)=(-~ _~} 

(4.24) 

Note that r (A ~ ) = - i. The Molien function is given by 

B (9 1,9 3.~;A ) = (1 + A 4)/( 1 - A 4)( 1 - A 2). (4.25) 

The monomials ¢¢,¢ 4, and ¢ 4 are invarian t under the uni tary 
operations of C2 • The invariants under M are then (1 - i)¢¢, 
(¢ 4 + ¢4), and i(¢ 4 _ ¢4). 

Also, 

B (!P 3.4'!P 3,4;A) = (A + A 3)/(1 - A 2)(1 - A 4) (4.26) 

and 

E 1(9 3,4 ,!P 3,4) = (~} E 3(9 3.4 ,9 3,4) = (!:). 
(4.27) 

v. SUMMARY OF RESULTS FOR MAGNETIC POINT 
GROUPS 

The corepresentations of the magnetic point groups 
have been given by Cracknell I I for the single-valued repre­
sentations and Cracknell and Wong l2 for the double-valued 
representations and are also given in Bradley and Crack­
nell. 13 Molien functions, invariants and covariants for these 
corepresentations have been determined using the proce­
dures of the previous sections. The results are summarized in 
Tables II-V and Sees. VA and VB below. 

A. Grey groups 

Tables II and III give the results for grey groups 
(M = G + eG ). These tables do not include those groups ob­
tainable by direct multiplication of the groups given and the 
inversion group. The Molien functions and invariants for 
such groups can be obtained from those given as described in 
Ref. 4. Table II lists the types of representations of the grey 
groups. The labeling of the representations rj is that of Ref. 
14. The Molien functions for type a representations are 
found in Refs. 4 and 5 and those for type b representations 

TABLE V. Molien functions and invariants and covariants for some type c black-white group representations. 

M G rm,r\' r, Molien function Invariants and covariants 

4'22' D2 r2" r, 
(1_.P)2 

I~ =tf;2+J)2;n =i(¢;2_J)2) 

4'mm' e21) 

4'2m' D2 

4'2'm r2,3 
A E'=(~). C2" (I_A2)2 

r. 
A2 

E 2=tf;J) 
(I _ A 2)2 

r2",' r,o I I~ =tf;2+J)2;I~ =i(tf;2_J)2) 4'!mmm D2• (l - A 2f 
r2·,,· 

.i 
E' =(~) (1 -A 2)2 

r., A2 
E2 =tf;J) 

(I-A 2f 
r2 ,3 r,o I I! = tf; 2 + J)2;I ~ = i(¢; 2 - J)2) 

(I-.Pf 

r2 ,3 
A E'=(~) (I_A2)2 

r., .i 2 
E2 = tf;J) 

(I _ A 2)2 

1558 J. Math. Phys., Vol. 23, No, 9, September 1982 Rhoda Berenson 1558 



                                                                                                                                    

are given in Eq. (3.8) of this paper. Invariants and covariants 
for type a representations are also given in Refs. 4 and 5 
except for those representations for w hichP =1= r (u) when Eq. 
(4.2) must be satisfied. Such representations are indicated by 
footnote a in Table II. All type b invariants are as in the 
example of Sec. IV. 

Table III lists the Molien functions and invariants of 
type c representations of grey groups. Column 1 gives the 
non unitary group M while column 2 gives G, the subgroup of 
unitary operations. Columns 3 and 4 give fi) m and fi)" re­
spectively, wherefor fi) m = (F m ffiI'm ) = (F m ffirn ), the en­
try reads r m.n • Column 5 gives the Molien function 
B (fi) "fi) m;A ) and column 6 gives the appropriate invariant 
tensors. EP(fi) "fi) m) and Iq(fi) .,fi) m) are written for sim­
plicity as E P and I q and the bases of fi) m = r m ffi I'm are 
always written as I lfJi I· Note that for each fi) m the table 
includes only those fi), for which B (fi) "fi) m;A. ) is nonzero. 
In addition for r6 ffi r7 of231' (T + BT), only the denomina­
tor invariants, Iq(fi) .,fi) m), have been given for the generat­
ing matrices given in Ref. S. 

B. Black-white groups 

The black-white groups are listed in Table IV. The 
groups have been labeled by both International and Schoen­
flies notation. In particular, for M = G + uoBG, the Schoen­
flies notation is M '(G), where M' = G + uoG. In order to 
simplify the table, note that for Uo = I (the inversion opera­
tor), the corepresentations of M and, therefore, the Molien 
functions and invariants, are the same as for the grey group 
of G. Twenty-one of the S8 black-white groups have this 
property·5 and are so indicated by footnote a in column 2 of 
Table IV. In addition, 26 other black-white groups have 
only type a representations so that their Molien functions 
and invariants are obtainable from Refs. 4 and S [with the 
application of Eq. (4.2) when appropriate]. 
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For the remaining groups, if Uo commutes with all u, the 
Molien function again is the same as for the grey group of G. 
However, the coefficients of the invariant polynomials [such 
as the "c's" in Eq. (4.21)] may be different in order to have 
invariance under antiunitary operations. These groups are 
indicated by footnote b in column 2 of Table IV. 

Finally, there are five black-white groups wherein Uo 
does not commute with all u. The Molien functions and in­
variants and covariants for these groups are given in Table V. 
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The generating functions for polynomial tensors based on each SU(2) tensor of rank from 7 to 13 
(angular momentum 7/2 to 13/2) are given in a "positive" form suitable for interpretation in 
terms of an integrity basis. An iterative procedure for extending the results to higher rank tensors 
is indicated. 

PACS numbers: 02.30. + g 

1. INTRODUCTION 

A problem which arises in many contexts in mathemat­
ical physics is that of determining all irreducible SU(2) ten­
sors whose components are homogeneous polynomials in 
the components of a fixed irreducible tensor of rank L (and 
dimension L + 1; the corresponding angular momentum is 
~ L ). We call such polynomial tensors generalized spherical 
harmonics or, more specifically, L-harmonics. For L = 1 
they are Wigner monomials, and for L = 2, if one discards 
those containing the quadratic scalar as a factor, they are the 
familiar spherical harmonics. 

Over a century ago Cayley, Sylvester, and Franklin l
-4 

gave a sequence of generating functions F L ( U,A ), 
L = 0,1, ... ,12 which enumerate L-h~rmonics. The power 
series expansion of the rational function 

(Ll) 
u,a 

provides the number of linearly independent L-harmonics of 
degree u and rank a as the expansion coefficient m~a' 5 

To find the explicit algebraic form of the L-harmonics, 
an essential step is the determination of their integrity basis, 
a finite number of L-harmonics, called elementary tensors, 
in terms of which all can be expressed as stretched products. 
A serious drawback of the old Cayley-Sylvester-Franklin 
generating functions is that the value of a particular m L is 
the result of a cancellation involving terms of both sig;;. 
This makes the computation of m~a cumbersome, but, more 
importantly, it obscures the form of the integrity basis. In 
this paper we rederive the generating functions FL (U,A ) for 
L = 0, I, ... ,13 in a "positive" form. All contributions to 
each m~a are positive, a circumstance which makes it possi­
ble to read the degrees and ranks of the integrity basis ele­
ments, as well as the the existence of syzygies (polynomial 
identities) relating them. 

In Sec. 2 we present the new forms of the generating 
functions. In Sec. 3 is found an example of their interpreta­
tion and the explicit construction of an integrity basis. Sec­
tion 4 contains an explanation of their derivation. Some con­
cluding remarks are made in Sec. S. 

Symmetries discovered by Murnaghan6 imply that m L 

is also the multiplicity of u-harmonics of degree Land ra;k 
a, and, moreover, is the multiplicity of rank-a tensors which 
are completely antisymmetric in the components of L or u 
copies of a tensor of rank L + u - 1. 

The L-harmonics provide polynomial bases for sym­
metric representations (u,O,O, ... ,0) ofSU(L + 1), or, for L 
odd, ofSp(L + 1), reduced according to the principal SU(2) 
subgroup. For L even they playa similar role for OIL + 1), 
or, with L = 6, for G2; in these cases they must be rendered 
traceless by projecting out terms containing the quadratic 
scalar as a factor.7 For L = 4 and L = 6 such states serve to 
describe quadrupole and octupole nuclear vibrations. 8

-
11 

Rohozinski and Greiner l2 consider the extension of the 
problem to higher even L. 

Another application of generalized spherical harmon­
ics is the construction of missing label operators for any se­
misimple group G reduced to its SU(2) subgroup. Such a 
missing label operator is an SU(2) scalar polynomial in the 
generators of G, independent of the G and SU(2) Casimir 
invariants. The G generators, reduced according to SU(2), 
consist of an L = 2 tensor [the SU(2) generators] and a sec­
ond SU(2) tensor Twhich may or may not be reducible. Then 
the missing label operators, and G Casimir invariants, corre­
spond precisely to the SU(2) polynomial tensors form from T 
[a 2a-tensor from Tmust be contracted with the 2a-tensor of 
degree a in the SU(2) generators]. If T is a single irreducible 
L-tensor, the missing label operators are enumerated by 
FL (U,A ); this is the case for SU(3) with L = 4, for O(S) with 
L = 6, and for G2 with L = 10. If T is reducible the generat­
ing functions for theL 's which comprise it must be combined 
by a procedure described in Sec. S. 

Generating functionsFL ( U,A ) based on the representa­
tions L = 4,8,12, ... are needed in the study of bifurcations 
in the Benard problem. 13-16 

2. THE GENERATING FUNCTIONS 

The generating function for SU(2) tensors contained in 
the symmetric product of an arbitrary number of identical 
SU(2) tensors is defined in Eq. (Ll). With the methods out-
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TABLE I. Invariant exponents nf. 

i 1 2 3 4 5 6 8 9 10 11 

L 
7 4 12 8 20 12 
8 2 3 4 5 6 7 
9 4 12 8 10 12 14 16 

10 2 6 4 10 6 14 8 9 
11 4 12 8 10 12 14 16 18 20 
12 2 3 4 5 6 7 8 9 10 11 
13 4 12 8 10 12 14 16 18 20 22 24 

lined in Sec. 4 we obtain, for L > 2, 

(2.1) 

where I and A = L - I are the greatest integers in (L - 1 )/2 
and (L + 2)/2, respectively. For k < I the numerators have 
the form 

/-k+ I 

Nf;= II (1+UAL-2m)LB~kUiAj (kd), 
m= 1 

(2.2) 

while for k = I, 

+ (1 + UA L-2) L B~l U i A j. (2.3) 
NO 

The exponents nf and the l: B ~k U i A j with k = 1 are 
tabulated in Tables I and II. The remaining B f,k are tabulat­
ed in Tables III-VII. 17 The tabulation for k ;: / can be sim­
plified by two symmetry relations. First, 

BLI BLI (. 1 i+2,2L-4-j= ij J= ,2, ... ,L-3) (2.4) 

allows us to terminate the tabulation at j = L - 2 without 
loss of information. Second, the B ~l can be shown to have 
reflection symmetry about some i = ;0,18 that is, 

(2.5) 
A further simplification occurs for odd L. There, the expo­
nents of U and A must have the same parity so that; + j is 
always even. We have therefore reduced the odd L tables by 
tabulating B ~k for even j and B f~ IJ for odd j. This means 
that 1 must be subtracted from the indicated i when j is odd. 

TABLE II. Summations appearing in first term numerators. 

L 

8 

9 

10 

11 

12 

13 

1561 

U6 (l+U 6 )A 6 

U4 A8 

u 8 (l+u 6 ) A 8 

U5 (1+U 3 ) (1+U S )A
10 

u 10 (l+u 6 ) A 10 

U6A12 

U12 (1+U 6 )A12 
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TABLE III. B tk for L = 7. Subtract 1 from i for odd j. 

k=2 k=3 

~ 
6 7 8 0 1 2 3 4 5 

0 0 0 0 1 0 0 0 0 0 

2 1 0 0 0 0 1 0 0 0 

4 1 0 1 0 0 0 1 3 1 

6 1 2 2 0 1 3 2 2 3 

8 3 2 3 2 3 3 3 7 6 

10 5 4 4 0 3 7 8 11 10 

12 6 6 6 4 5 9 11 16 16 

14 7 6 7 4 9 13 14 22 23 

16 8 8 8 5 9 18 21 28 30 

18 9 8 9 9 12 19 24 13 'li 
20 9 9 8 6 15 23 28 37 42 

22 8 9 9 9 14 23 32 42 47 

24 8 8 8 8 17 26 32 38 49 

26 7 7 7 9 17 23 32 42 49 

28 6 7 6 6 14 23 12 37 47 

30 4 5 4 9 15 19 28 33 42 

32 3 3 3 5 12 18 24 28 37 

34 2 2 2 4 9 13 21 22 30 

36 0 1 1 4 9 9 14 16 23 
1~ n 1 n n <; 7 11 11 16 

40 2 3 3 8 7 10 
42 0 3 3 3 2 6 
44 0 1 0 2 3 3 
46 0 0 1 1 0 1 
48 1 0 0 0 0 0 

It is clear from (2.1) that there are exactly L denominator 
factors, L - 2 in the scalar (A = 0) part. 

3. AN EXAMPLE 

As a simple example of the use of the generating func­
tion F L (U.A ), for L = 3, we interpret it in terms of an integri­
ty basis and find the algebraic form of the elementary ten­
sors. For tensor L = 4,6, the states describe quadrupole and 
octupole nuclear vibrations and the integrity bases have been 
discussed in that context.9

-
11 

For L = 3 we have the generating function 

FdU.A ) 
= (1 + U 3A 3)[(1 - U 4 ) (1 - UA 3) (1 _ U 2A 211 - I 

(3.1) 

for which the power series expansion is 

TABLE IV. Btk for L = 8. 

k=2 

i 

1 
1 
1 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
0 
1 
2 

j 8 

0 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

10 

0 
0 
0 
0 
1 
1 
1 
2 
2 
1 
1 
1 
0 
13 
14 
15 
16 
17 
18 

k=3 

0 2 4 6 

1 0 0 0 
0 0 0 0 
0 0 1 0 
0 0 1 1 
0 0 2 1 
0 1 2 2 
0 1 2 3 
0 2 2 4 
1 2 2 4 
1 3 1 5 
1 2 2 4 
0 2 2 4 
0 1 2 3 
0 1 2 2 
0 0 2 1 
0 0 1 1 
0 0 1 0 
0 0 0 0 
1 0 0 0 
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TABLE V. B tk for L = 9. Subtract 1 from i for odd j. 

j !J 9 10 tl 9 10 11 12 0 

0 0 0 0 Ll 0 \l 0 0 1 
L 0 0 0 0 0 1 0 0 (J 
~ 1 1 0 2 (J 1 1 1 1 
b i: I L 4 3 II 2 4 0 
B 4 3 3 11 (, 11 8 11 5 

10 b 4 6 25 18 23 15 22 II 
12 I 11 !J 9 '15 33 43 32 44 17 
14 1 J 11 14 74 59 74 57 72 L() 
1& 17 14 16 115 94 112 91 110 47 
10 lU 17 18 159 136 158 1 J 1 156 61 
20 19 19 19 207 181 206 182 202 '37 
22- 18 19 18 .2 51 230 249 226 245 120 
2'1 14 17 15 283 265 281 266 281 165 
2G 12 14 11 300 291 300 293 297 189 
28 7 10 9 1.1 () 1()~ ')97 100 ')Q7 ~23 

30 5 7 5 278 289 L77 291 281 241 
32 2 3 J 242 263 245 264 245 2 S4 
J4 1 2 1 199 223 199 223 202 254 
36 --'1 Q 1 149 17& 152 176 156 241 

1H 1rl~ 1?Q 109 11? 110 <23 
40 68 ee 70 88 72 189 
42 39 52 41 56 44 1 b 5 
44 20 30 23 31 22 120 
4& 10 14 9 16 11 
4U 1 (, 4 fi 4 

50 1 ~ 1 3 1 
:'2 n 0 0 0 

54 
5U 
rlR 
b() 
61-
64 
6b 

1 + UA 3 + U 2(A 2 +A 6) + U 3(A 3 +A 5 +A 9) 

+ U 4(1 + A 4 + A 6 + A 8 + A 12) + .... 

One reads that, for example, there are five tensors of degree 
4, whose ranks are 0,4,6,8,12. The elementary tensors can be 
read from (3.1); they are (1,3), (2,2), (3,3), and (4,0) in an ob­
vious notation. Any polynomial tensor based on L = 3 is a 
stretched product of powers of these; its highest component 
is the product of highest components of elementary tensors. 
The fact that only the first power of(3,3) appears in the ex­
pansion of the generating function implies a syzygy (polyno­
mial relationship) expressing its square as a sum of products 
of powers of the other elementary tensors. In terms of ele­
mentary tensors, the tensors of degree 4 listed above are, 
respectively, (4,0), (2,2)2, (1,3) (3,3), (1,3)2 (2,2), (1,3)4. 

Since their degrees and ranks are known, it is straight­
forward to determine the analytic form of the elementary 
tensors. Their highest components are, respectively, 

(1,3)-a3, (2,2)-ai - y'j a 3 a_I> 

(3,3)-3 y'j a~ a_3 - 3 y'j a 3 a l a_I + 2a~, 

(4,0)-3 y'j a~ a 2
_ 3 + 4 a 3 a

3
_ 1 

-6y'ja3ala_la_3+4a~ a_ 3 - y'jai a 2
_ 1, 

where a 3, a I' a _ I' a _ 3 are the components of the basic rank-
3 tensor. The highest components are related by the syzygy 

(3,3)2 - 4(2,2)3)3 y'j (1,3f(4,0) = 0. 
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97 
bl 
47 
2C 
17 

4 
5 
0 
1 
0 
1 

k=4 

1 2 J 4 5 I> 7 

0 a 0 u 0 0 0 
0 1 0 0 () 1 0 
0 0 1 3 1 2 I I 

1 5 J 4 5 11 
1 ~ I 4 8 9 18 12 20 

1(J 2S 21 33 29 53 38 : 
21 39 42 75 62 97 82 
39 81 78 125 117 182 154 , 
67 123 133 216 199 288 264 I 

108 199 209 318 314 454 420 
157 272 309 469 466 639 621 
L 15 378 430 620 648 874 862 
284 473 563 797 848 1106 1132 
353 580 701 957 1053 1348 1407 
413 660 All 1109 1245 1549 1660 
464 729 934 1211 1401 1707 1869 
499 762 1002 1270 150 ;; 1784 2004 
510 762 1028 127() 1536 1784 2050 I 
499 729 1002 12 I I 1502 1707 2004 
464 660 934 1109 1401 lS49 1116<) 
4 I 3 580 831 957 1245 134b 1660 
353 473 701 797 1053'106 1407 
284 378 563 620 848 lJ74 1132 I 
215 272 430 469 640 63 <) [62 I 
1 S7 1 C)Y l()Q 1 1 fl 4 (,I, "~LJ ;;? 1 I 
108 123 209 21& 314 288 420 

67 81 133 125 199 182 264 
39 39 78 75 117 97 154 
21 25 42 33 62 53 82 
10 8 21 18 29 20 3fJ 

" 5 9 4 12 11 16 
1 0 J J 5 2 5 I 
0 1 1 0 1 I 
U 0 0 a a 0 ~ I 

For higher L the interpretation of FL (U,A ) is straightfor­
ward but more tedious. 

4. CONSTRUCTION OF FL (U,A) 

The construction of the generating function F L ( U,A ) 
begins with the generator for weights of symmetric products 
of an arbitrary number of copies of a single SU(2) tensor of 
rankL 

GL(U,1J) = I a~m UU1Jm = [,~\ (1 - U1JL-2i)] -I, 

(4.1) 

where a~m is the multiplicity of the weight m in a product of 
u rank L tensors (the weights are double the spin projec­
tions). Of the a~m weights m, some will arise from SU(2) 
tensors of rank m while some will come from higher rank 
tensors. Since these higher tensors each contain the weight 
m + 2, the difference a~m - a~m + 2 is just the number of 
tensors of rank m contained in the symmetric product of u 
rank L tensors. It is easy to see, then, that the desired gener­
ating function FL (U,1J) can be obtained by multiplying 
GL(U,1J) by (1 -1J-2

) and retaining only non-negative pow­
ers of 1J. Replacing 1J by A we have 

FL(U,A)=PA [(l-A -2)/ ,.l\ (1- UA
L

-
2i

)], 

(4.2) 
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TABLE VI. B tk for L = 10. 

k=2 k=3 k=4 

j 10 12 10 12 14 0 2 4 6 8 
i 

0 0 I 0 0 0 I 0 0 0 0 
1 I I 0 0 0 0 0 0 0 0 
2 I 1 0 I 0 0 0 1 0 1 
3 2 2 1 0 1 0 I 0 2 I 
4 4 2 I 1 I 0 0 3 1 4 
5 4 4 3 2 3 0 3 3 :; :; 
6 6 5 4 4 4 2 2 6 8 11 
7 7 6 8 8 7 0 7 10 14 16 
8 8 8 12 II II 4 8 16 20 28 
9 10 ~ 17 17 17 4 I~ '1 lJ An 

10 II II 24 25 24 7 20 35 45 5~ 
11 12 II 33 33 31 8 28 45 65 81 
12 13 12 44 43 42 15 38 61 87 111 
13 14 13 52 53 53 15 49 80 112 143 
14 13 13 66 65 65 LO 61 10~ 147 IS? 
:r5 IJ 14 77 77 75 27 75 123 176 223 
16 IJ 13 89 87 87 29 90 149 20S 268 
17 12 13 98 99 97 35 105 175 243 314 
18 II 12 loa 106 lOB 40 119 197 281 357 
19 10 10 115 116 113 44 132 224 309 407 
20 ~ 9 I LU II H IlY 47 147 242 340 437 
21 7 8 122 121 122 55 154 260 364 471 
22 " 7 121 122 122 52 164 273 383 491 
23 4 5 120 119 119 57 166 2B4 391 509 
24 3 4 114 113 113 56 172 2BO 400 512 
25 3 3 106 10~ 10H 57 166 284 391 509 
26 I 2 96 98 ~7 ", .. , 164 273 383 491 
27 I I 87 86 87 55 154 260 364 471 
28 I 0 74 76 75 47 147 242 340 437 

29 63 62 65 44 132 224 309 402 
30 51 ~3 ~J 40 119 197 281 3q .. , 
31 41 41 42 35 105 175 243 314 
32 31 32 31 29 90 149 208 26B 
33 23 23 24 27 75 123 176 223 
34 15 17 17 20 61 10' 14' IS;> 
35 10 12 II 15 49 80 112 14,3 
36 7 6 7 15 38 61 87 III 
37 3 5 4 8 28 45 65 81 
38 2 2 3 7 20 35 45 59 
3c) I I I 4 15 '1 34 40 
40. I 0 I 4 B 16 20 28 

41 0 7 10 14 16 
42 2 2 6 8 11 
43 0 3 3 5 5 
44 0 0 3 I 4 
45 0 I 0 2 1 
46 0 0 I 0 I 
47 0 0 0 0 0 
48 I 0 0 0 0 

where PA means non-negative powers part of. The quantity 
in square brackets is the same as that for the case L - 2 but 
with extra denominators (1 - UA ± L). This allows us to 
simplify the evaluation of (4.2) by use of a recursion proce­
dure described below which generates FL from FL _ 2' The 
derivation of this procedure is given elsewhere. 18 

As the first step in determining FL we construct the 
function 

RL(U,A) = PA FL _ 2(U,A )/(1 - UA -L) 
L-2 

= L 'i(U)Ai+RL(U,A), (4.3) 
;=0 

where the expansion of RL contains only terms with expo­
nent of A [denoted hereafter by EX(A )] > L - 2. We use the 
'i obtained above to construct 

qi(U) = (U 2ri - UrL _ 2 _;)I(1- U 2). (4.4) 

The generating function FL is then given by 
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FL(U,A) = [ RL(U,A) + :t: qi(U)A i ] / (1 - UA L). 

(4.5) 

The solutions to this procedure are best put in the stan­
dard form 

1 [A+k-I 
FdU,A) = k~O sf 112 (1 - U

2i
) 

l-k+1 ]-1 
X ;.[10 (1- UA L-2j

;, (4.6) 

where 

S L "..Lk UiA j 
k = LSij • 

ij 

For k < I the range of EX(A ) in Sf is 
L - 1 <j< U + 2k - 4 while for k = I we have 
0<j<2L - 4. In addition, since FL(U,A)- U - L -I as 
U_ 00, we find that i must lie in the range 

(4.7) 

0< i < (A + k - W - 2. The form (4.6) has the advantage 
that when the kth term of FL _ 2 /(1 - UA -L) is split into 
one term with no negative powers of A in its expansion and a 
remainder term, the first term can be arranged to have 
EX(A ) > L - 2 and will not contribute to the qj while the 
remainder will have the same form as the (k + 1 )st term of 
F L _ 2 /(1 - UA -L). 

The k th term of FL _ 2/( 1 - UA - L) plus the remainder 
from the reduction of the (k - l)st term contains a factor 
(1 - UA L + 2k - 21- 2) in the denominator which is not con­
tained in the (k + 1 )st term. The (k + 1 )st denominator con­
tainsthefactor(l- U 2(A+k-' I)=(I_ U 2(L+k-I-I)) 

which is not included in the k th denominator. To split the 
k th term as described above we multiply and divide by this 
latter factor and use for the numerator factor 
(1- U 2(L+k-I-' I)=(1_(UA -L)L+2k-21-2) 

+ (UA -L)L+2k-21-2 

X(I - (UA L+2k-21-2)L). (4.8) 

Some rearrangement is required to obtain EX(A ) > L - 2 in 
the expansion of the first of these terms. After we have ap­
plied this procedure to the I - I terms of 
FL _ 2/( 1 - UA - L) we will be left with a remainder having 
factors (1 - UA L - 2) (1 - UA - L) in the denominator. This 
remainder can be split by the method described above into 
one term whose expansion contains only non-negative pow­
ers of A and one with negative powers only. The latter is 
discarded while the former is the only term contributing to 
the qi' The result of this procedure is again of the form (4.6). 

The form (4.6) is not yet the proper one for a generating 
function. First, it may contain some negative coefficients in 
the numerators. Second, the denominator factors (I - UA n) 
for n < I do not correspond to elementary tensors. Finally, it 
may be possible to cancel some common factors between 
numerator and denominator. Adjustments are easily made 
which lead to the form of Sec. 2. 

5. DISCUSSION 

Sometimes one needs to enumerate and construct ten­
sors which are functions of the components of two or more 
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TABLE VII. B tk for L = 12. 

k=2 k=3 k=4 

j 12 14 12 14 16 12 14 16 He J 2 i"'" : 
0 0 0 0 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 0 0 0 0 1 0 0 0 
3 I 0 0 I 0 I 0 I 0 0 0 
4 I 0 1 I I 2 2 I I 1 0 
5 1 1 2 3 2 4 3 4 3 1 2 
6 1 2 5 4 5 8 7 7 8 3 4 
7 2 2 8 8 7 15 14 15 14 4 10 
8 3 3 14 12 13 2S 26 26 26 7 16 
9 4 4 20 20 18 44 43 44 44 9 30 

10 5 5 30 27 27 67 70 68 69 17 45 
11 5 6 38 37 35 102 104 103 103 71 73 
12 6 .\ 51 46 47 147 149 147 150 36 102 
13 6 ~ 60 60 05 202 206 204 204 45 148 
14 6 5 72 68 67 268 272 270 270 < 196 
15 ~ ~ 78 79 74 346 346 344 314 81 264 
16 4 4 86 83 84 425 428 423 425 110 332 
17 3 3 86 89 85 509 507 508 506 131 419 
18 2 2 88 86 88 590 S88 586 ~87 168 501 
19 I I 82 8S 83 663 660 658 6:,6 93 A01 
20 0 1 77 77 80 723 717 719 715 232 686 
21 0 I 66 70 70 766 758 760 759 2~6 783 

22 58 57 62 786 781 782 779 293 854 
23 45 48 49 785 780 783 779 307 931 
24 36 36 40 764 757 760 759 336 974 
25 25 28 28 718 717 717 715 339 1015 
26 19 18 21 658 657 659 656 351 j 0 17 
27 II 13 13 S85 585 585 587 339 1015 
28 7 7 9 503 506 506 506 336 974 
29 3 r 4 419 423 424 425 307 931 
30 2 2 2 340 343 342 344 293 854 
31 0 1 I 264 270 766 270 256 703 
32 0 0 I 199 20 I 202 204 232 686 

33 143 147 145 150 193 601 
34 99 102 102 103 168 501 
35 65 67 68 69 131 419 
36 42 41 42 44 110 33" 
37 24 0< 

cJ 25 26 8 I 264 
38 13 13 15 14 65 196 
li ] 7 7 B 4< 14R 
40 3 3 4 3 36 102 
41 1 1 2 I 21 73 
42 I 0 I 0 17 ~5 

43 ? 30 
44 7 16 
45 4 10 
46 3 4 
47 1 2 
48 1 0 
49 0 0 
50 0 0 
51 0 0 
52 1 0 

irreducible tensors. Sylvester and Franklin '9 gave generat­
ing functions based on two irreducible tensors of ranks L" L2 
with L, + L 2< 10. They may now be constructed straight­
forwardly, in a "positive" form, by combining the generating 
functions for Ll and L2 with the help of the SU(2) Clebsch­
Gordan generating function20

: 

FL , L, (U"U2,A ) = PA , A, FL , (U,,A d FL , (U2,A2) 

X [( 1 - A ,_. , A 2- ') 

X (1 - A ,- , A ) (A i- , A )] - 1. (5.1) 

U, and U2 carry as exponents the degrees in the L, and L2 
tensors, respectively, whiel A carries the rank of the polyno­
mial tensor. Further base tensors may be introduced conse­
cutively by iteration of the procedure. Such states are needed 
for interacting boson nuclear models, with bosons of differ-

1564 J. Math. Phys., Vol. 23, No.9, September 1982 

k=5 

4 6 " 10 

0 0 ° ° 0 0 0 0 
1 0 1 0 
1 I 2 1 
3 2 r 3 
5 6 8 9 

10 11 17 17 
17 23 29 35 
,1 38 53 61 
48 68 8< 104 
78 lOS 137 164 

115 163 205 /54 
170 236 :103 368 
~3~ 338 423 ~24 

326 4~S ~~:I 7 

424 608 766 946 
5S 1 773 992 1209 
683 971 1233 1 ~19 
838 117 ~ 1509 1839 
987 139R 17R4 ?190 

1153 1607 2074 2S29 
1295 1824 2338 2866 
1441 2005 2J92 31SP. 
1549 2Ll1 2792 3421 
164< ))A "9<;9 7 ;01 

1 6 91 2368 3048 ~~ 73 3 
1721 2383 3091 3765 
1691 2368 3048 :1733 
1645 228·\ 2959 3603 
1549 2171 2.'9,? 3' '11 
1441 2005 2592 3153 
1 ::95 1224 2330 :! 8 (,6 
1 153 1607 2074 2:,29 

987 1398 1784 ?190 
838 1174 1509 IS3? 
683 971 1233 1 ~19 
551 773 992 1209 
424 608 766 946 
326 455 583 711 
21< :n8 4"'3 ',24 
170 236 303 368 
115 163 ~ 05 i:J4 
/8 10~ 137 164 
4U 68 85 104 
31 3R <3 61 
17 23 ~9 J5 
10 11 1 ? 1/ 
S /, S 9 
3 2 j :1 
1 I ? 1 
1 0 I 0 
0 0 0 0 
0 0 0 Q 

ent L. To construct Sp(2n) ::JSU(2) labeling operators, for 
example, one needs polynomial tensors based on 
L = 2,6, ... An - 2. 

As mentioned in Sec. 1, the generators ofG2 decompose 
under its maximal 0(3) subgroup into tensors of rank 10 and 
2. Hence, the generating function F IO( U,A ) enumerates and 
defines an integrity basis for G2 ::J0(3) missing label opera­
tors. The denominator factors [( 1 - U 2) (1 - U 6

)] -1 corre­
spond to the G2 Casimir invariants and should be ignored. 
A term Cua UU A a in the expansion of (1 - U 2

) (1 - U 6
) 

XF IO( U,A ) implies the existence of just Cua linearly indepen­
dent labeling operators of degree u in the rank 10 tensor and 
degree! a in the rank 2 tensor. The fact that there are eight 
denominator factors accords with the known fact that there 
are twice as many functionally independent missing label 
operators as there are missing labels (four). Given their de-
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grees it is straightforward to construct these operators. Find­
ing four which mutually commute is, however, an unsolved 
problem. 

Two directions for extending the work come to mind. 
One is the computation of polynomial (symmetric) tensors 
for higher groups. The second is the calculation of tensors 
with exchange symmetries corresponding to all representa­
tions of the permutation group; in principle one could find a 
single generating function for tensors of all degrees and sym­
metries based on a given tensor. 

A computer program has now been developed which 
can assist in the extension of the results of this paper to arbi­
traril y high L. 21 
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The Backlund-Bianchi method is employed to generate, in three spatial dimensions, the following 
mUltiple solutions of Liouville's equation V2a = exp a: The three-wave interaction function a 3 

and the five-wave interaction functiona5. It is verified numerically that a 3 satisfies Liouville's 
equation to an accuracy of one part in 1014, while a 5 satisfies it to one part in 106

• The construction 
of a 5 is conditional upon solving ten nonlinear constraint equations. We analyze the complicated 
structures of a 3 anda5 with the help ofa three-dimensional plotting routine. It is found thata3 is, 
surprisingly enough, only characterized by a single ring singularity, while a 5 exhibits three ring 
singularities. It is speculated that the function tanh a 3 represents a ring soliton whose shape 
appears to be preserved in the nonlinear superposition of similar ring solitons. The derivation of 
Liouville's solutions a 3 and a5 is intimately connected with the auxiliary functions fJ2 and fJ4 
which solve Laplace's equation. The latter are also derived and plotted in the paper. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

The powerful method of Backlund transformations 
dates back over a hundred years to the pioneering work of 
Lie, Bianchi and Backlund, who investigated the transfor­
mation properties of certain surfaces, especially pseudos­
pherical surfaces, in a series of fundamp.ntal papers between 
1873 and 1883. 1 The reason for the revival of and sustained 
interest in Backlund transformations during the past two 
decades is fairly obvious: Judicious application of Back­
lund's theory permits, in many instances, the solution of 
physically relevant second-order nonlinear partial differen­
tial equations, among which the nonlinear Schr6dinger and 
Korteweg-de Vries equations and the sine-Gordon system 
have been analyzed with particular zest and thoroughness. 

Another nonlinear equation which is soluble by the 
Backlund technique and which has become prominent of 
late is Liouville's equation 

(a/ + a/)X = k exp(ax), ax-a/ax, etc., (1) 

with suitable boundary conditions on X, where X is a scalar 
field and a,k are real constants. It was initially solved by 
Liouville2 in 1853 in two spatial dimensions and has since 
been studied by several well-known mathematicians, includ­
ing Picard, Poincare, and Bierberbach.3 Liouville's equation 
is known to possess significant applications in electrostat­
ics,4 hydrodynamics,5-7 and cosmology.8 In recent years, 
Eq. (1) has also attracted the attention of particle physicists 
in connection with monopole theories. 9 

Liouville's equation has been analyzed not only in 1 + 1 
and 2 + a dimensions, 10 but also in 3 + a dimensions. II One 

., Present address. 

of the present authors employed a Backlund-like transfor­
mation to generate an exact three-wave interaction solution 
of Liouville's equation in three spatial dimensions, 

V2a = exp a v2=a 2 + a 2 + a 2 (2) , - x y z , 

satisfying the boundary conditions a- - 00 and da/ dr 
-0-, for r==(X2 + y2 + Z2)1I2_ + 00. A plot of this three­
wave solution, labeled a 3 in Ref. 11, is given here for the first 
time and will be discussed in Sec. 3. 

The purpose of the present article is two-fold. (i) First, 
we wish to verify numerically that the Backlund-like trans­
formation in 3 + 0 dimensions, originally derived in Ref. 11, 
is sufficiently powerful to generate multiple solutions of (2) 
beyond a 3, namely up to and including a 5 . This is no easy 
task, since the construction of the five-wave interaction 
function a 5(x,y,z) depends decisively on solving numerically 
ten algebraic and transcendental constraint equations to a 
high degree of accuracy. (ii) Our second aim is to present 
three-dimensional graphical representations of both a 3 and 
a 5• The result of this plotting exercise was somewhat surpris­
ing; the global, i.e., asymptotic, features of a 3 and a 5 turned 
out to be quite different from those normally expected from 
the superposition of "single" solutions, as in the sine-Gor­
don theory, for example. In the latter case we know l2 that 
superposing two (four) single solitons in a nonlinear fashion 
does not alter asymptotically the shape or direction of the 
individual solitons. This is no longer true for Liouville's mul­
tiple solutions; for instance, when the three lowest-order so­
lutions a I (i), 1,2,3, are combined by the usual Backlund­
Bianchi technique, the final structure of the resulting a 3 so­
lution has no resemblance to anyone of the original ai's, 
even from a global perspective. A similar situation exists for 

1566 J. Math. Phys. 23(9), September 1982 0022-2488/82/091566-07$02.50 © 1982 American Institute of Physics 1566 



                                                                                                                                    

as, implying that Liouville's solutions do not represent soli­
tons of the conventional type. 

The outline of our paper is as follows: In Sec. 2 we re­
view, for the sake of completeness and in order to establish 
the nomenclature, the Backlund transformation method for 
Liouville's system. In Sec. 3 we analyze and plot the three­
wave interaction function a 3(x,y,z). Section 4 is devoted to 
the auxiliary function /34(X,y,z) which satisfies Laplace's 
equation V2/34 = 0 in a certain domain!», and is essential for 
the construction of the next-highest Liouville solution 
as(x,y,z). The latter function, superposed from five "single" 
solutions a I (II ,i = 1,2, ... 5, and subject to ten constraint equa­
tions, is examined in considerable detail in Secs. 5 and 6, 
where we also give its graphical representation. The article 
concludes with a summary and discussion. 

2. REVIEW AND NOTATION 

The "Backlund transformation" for Liouville's equa­
tion (2) in three spatial dimensions was shown to be of the 
form I I 

K (i/3 - a) = v'2 exp((a + i/3 )/2) expiOY, 

K =Iax + i(O'lay + 0'3az ),Y = 0'1 exp( - iA0'2)' (3) 

where a and /3 satisfy Liouville's and Laplace's equations, 
respectively, 

V2a = exp a, 

V2/3= 0; 

(4) 

(5) 

0'1,0'2,0'3 are the Pauli matrices, I is the unit matrix and O,A 
(0<O<21T, 0<A<21T) are the Backlund transformation para­
meters. As shown in Ref. 11, Eq. (3) is equivalent to eight real 
scalar equations which, in turn, are subject to six integrabi­
lity conditions [cf. Eqs. (5) and (6) of Ref. 11]. We may re­
place system (3) by two real matrix equations 

Iaxa + &/3 
= v'2[Y sinO sin/p 12) - I cosO cos/p 12)] exp(a/2), 

(6a) 

Iax /3 - &a 

= v'2[Y sinO cos/p 12) + I cosO sin/p 12)] exp(aI2), 
(6b) 

where &=O'lay + 0'3az. 

Let us summarize the results for a 1/32' and a 3 • II Setting 
/3 /30 = 0 in Eq. (6a) we get the simplest nontrivial Liouville 
solution 

a/'(x,y,z) = In(2IT/), i = 1,2, ... ,5, 

T;(x,y,z) = x cosO; + sinO;{Y cOM; + z sinAi) + b, (7) 

where b is a constant of integration (we took b = + 40), pos­
sessing the dimension of a length, while the index i in (7) 
labels the five different a I solutions which are needed in the 
construction of as. See Fig. 1. Observe that formula (7) is 
equivalent to 

tanh(at'/4) = (v2 - T;)I(v2 + T;),i = 1,2, ... ,5, (8) 

provided T;>O. Since tanh(al(II/4~1- asT;-D+, we see 
that a I (II develops a line singularity for T; - 0, as indicated by 
Fig. 2. 
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FIG. 1. Extended Bianchi diagram showing the generation of a N solutions, 

N = 1,3,5, of Liouville's equation (41 and of Pj solutions, j = 0,2,4 of La­
place's equation (51. 

According to Fig. 1, the next highest Liouville solution 
is a 3, 

(9) 

which is subject to the constraint equation 

with 

.!L' pq=cosOp cosOq + sinOp sinOq COS(Ap - Aq), 

p,q integer, (lOa) 

and 

FIG. 2. The function tanh(a ,121/41 in the domain 
!iJ, = {(x,yll - 45<x< IS, - 550<51. The line singularity is clearly evi­
dent. Here ¢l = 80° and r = 135°. 
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The auxiliary function /32 ('I satisfies Laplace's equation 

V2/321'1 = 0, domain !P 2, (11) 

and is given by 

tan((f321'1- /30)14) = R12 tanh ((a,I'I- a ,(21)/4), 

R'2 = + ((1 + 2"nl/(I - 2"nl)'12, 12"121 < 1. (12) 

Figure 3 depicts a three-dimensional graph of sin /3/ I. 

3. ANALYSIS OF a3 

To study the singularity structure of a 31'1 it is conven­
ient to express Eq. (9) as 

tanh((a31'1- a,12I)14) = R I3N(x,y,z)lD(x,y,z), 

IRI3N /D 1<1, 
where 

N + [RdT3 + T2)(T2 - Td - R 23(T3 - T2) 

X(T2 + T,)](T,T3T/)-', 

D=[(T3 + T2)(T2 + Td + R12RdT3 - T2) 

(13) 

(I4a) 

X(T2 - T,))(T,T3T/)-', (I4b) 

and to observe that for fixed z, both N (x,y,z) and D (x,y,z) are 
quadratic functions of x,y. Eq. (13) implies that 

exp((a3
1'1- a,(21)/2) = [1 + RI3N /D) 

X[I-R I3N/D)-', (15) 

provided T2>0. 
To help us identify the two types of singularities in sys­

tem (13)-(14), we have plotted tanh((a31'1- a (121)/4), as 
shown in Fig. 4, and compared it with tanh a 3

1'1 in Fig. 5. 
The former figure suggests the presence of two singularities: 
a ring-like singularity associated with a 31'1, and a line singu­
larity which is connected with a, 121 and emerges in the limit 
as T2---->O+. The function tanh a/I, on the other hand, is 
even more amazing; its ring-shaped structure implies that 
a 3

1l1 contains only one singularity, the ring singularit~ de­
picted in Fig. 5. These results also follow from algebralc con-

FIG. 3. A plot of Laplace's solution.B2'11 in the representation sin.B2'lI. The 
domain is §2 = !(x,y)l- 50<x<IO, - 65<y< - 51, 
with ¢ = 6O',r = 135'. 
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FIG. 4. The function a/I in the form tanh((a3 - a,,21 )/4), the domain being 
§, (as in Fig. 2); ¢ = 65' and r = 135'. 

siderations. What appears to have happened in this: the three 
line singularities of a,I'I,a,121 and a,131 seem to have been 
transformed by nonlinear superposition into one single ring­
shaped singularity which bears no resemblance to the origi­
nala,'s. 

As mentioned in Ref. 12, the function atl is a coplanar 
solution ofV2a/1 = exp a/I which has been solved subject 
to the constraint 

We have verified numerically that for points away from the 
ring singularity, a 3

1'1 satisfies Liouville's equation (10) to one 
part in 10'4 for the parameters (0,,02,03) and (11,,..1,2,..1,3) listed 
in Eq. (27). The constraint equation (16) for the 2"1j's is satis­
fied to an accuracy of one part in 1020. All numerical work 
has been carried out in quadruple precision. 

FIG. 5. A plot of the function tanh a/I in the domain §" for ¢ = 80' and 
r= 135'. 
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4. THE AUXILIARY SOLUTION {34(x,Y,Z;()""',()4 ;A1,···,A4) 

As seen from Fig. 1, the construction of a 5 requires two 
{34 functions which must be solutions of Laplace's equation 

V2{3/1 = 0, ; = 1,2, domain i!J 4' (17a) 

It can be shown that {3/1 may be represented by 

tan(({3/1 - {3/ + 11)/4) = R;.; + I tanh((a/I - a3(i + 11)/4), 
(18) 

where 

V2{3/ + II = 0, 

while 

V2a 3(<7) = exp a 3(<7), a = 1,2,3. 

the coefficient R;.; + I is defined by 

Rpq = ( - 1)11 + p + q)IRpq I, p,q integer, p#q, 

with 

(17b) 

(19) 

(20a) 

.2" pq = cos()p cos()q + sin()p sin()q COS(Ap - Aq). (20b) 

The Backlund parameters () p,A. p are confined to the domains 
0<()p<2rr, 0<Ap<2rr. For each a 3

V1 j = 1,2,3[cf. Eq. (16)], 
there is only one constraint equation, namely 

1 + 2.2"jJ + I .2"j + IJ + 2 .2"j + 2J 

= (.2"jJ+ d + (.2"j+ IJ+2)2 + (.2"j+2)2, (21) 

while for each {3/),i = 1,2, we have these/our constraints: 

1 + 2.2" ;,; + I .2"; + I,; + 2 .2"; + 2,; 

= (.2";,;+ 1)2 + (.2";+ 1,;+2)2 + .2";+2,;)2, 

1 + 2.2";,;+ 1.2";+ 1,;+3.2";+3,; 

= (.2";,; + If + (.2"; + I,; + 3)2 + (.2";+ 3,; )2, 

1 + 2.2"; + I,; + 2 .2"; + 2'; + 3 .2"; + 3,; + I 

= (.2"; + I,; + 2)2 + (.2"; + 2,;+ 3)2 + (.2"; + 3,; + If, 

1 + 2.2" ;,; + 2 .2"; + 2,; + 3 .2"; + 3,; 

= (.2";,;+d + .2";+2,;+3)2 + (X';+3,;f (22) 

The function {34(X,y,z = - 20), which depends on a total of 
eight Backlund parameters, has been checked to an accuracy 
of one part in 1010

, We note that system (22) is characterized 
for each; = 1,2, by six distinct .2"'s which are functions of 
the eight Backlund parameters: (()1'''''()4;A 1, ... ,A.4) for; = 1, 
and (()2""'()5;A 2, ... ,A.5) for; = 2. Figure 6 shows a plot of the 
four-wave interaction {3/). 

5. THE INTERACTION FUNCTION a5(x,y,z) 

(a) It is easily demonstrated with the aid of Fig. 1 that 
superposition of the single Liouville solutions 
at),; = 1,2,3,4,5 in the spirit of Backlund-Bianchi, leads to 
the five-wave interaction function a 5(x,y,z) 

tanh((a5 - a 3(2))l4) = R I5 tan(({34(1) - {34(2))/4), 

R I5 = - ((1 + .2"15)1(1- .2"15W 12, 1.2"151 < 1, (23) 

with .2" 15 defined bys Eq. (20b) and 

(24) 
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FIG. 6. The function .8/1 in the form sin .8/1 for r/J = 80· and r = 135· in 
the domain g; ,. 

The function a 5(x,y,z;()I""'()5;A 1, ... ,A.5) will solve Eq. (24) 
provided the following constraint system is solved consis­
tently for the ten Backlund parameters (); ,A.u; = 1,2,3,4,5: 

1 + 2.2"12.2"23.2"31 = .2"12
2 + .2"2/ + .2"312, 

1 + 2.2" 12.2" 24.2" 41 = .2" 12
2+ .2"2/ + .2"41

2
, 

1 + 2.2" 23.2" 34.2"42 = .2"2/ + .2"3/ + .2"4/' 

1 + 2.2" 13.2" 34.2"41 = .2" 13 
2 + .2"3/ + .2"412, 

1 + 2.2"23.2" 35.2" 52 = .2"23
2 + .2"352 + .2"522, 

1 + 2.2"34.2"45.2"53 = .2"3/ + .2"45
2 + .2"5/' 

1 + 2.2"24.2"45.2"52 = .2" 24
2 + .2"452 + .2"522, 

1 + 2.2"12.2"25.2"51 = .2"12
2 + .2"2/ + .2"5/' 

1 + 2.2"13.2"35.2"51 = .2"13
2 + .2"3/ + .2"512, 

1 + 2.2" 14.2"45.2"51 = .2" 1/ + .2"4/ + .2"5 t 

(25) 

As mentioned previously, 12 the effect of these constraint 
equations is to force a 3.f34' and a 5 to become coplanar. 

System (25) consists often equations in precisely ten 
unknowns .2" 12'''''.2'' 45; it was solved to an accuracy of one 
part in 1020 to yield: 

.2" 12 = 0.956 786 286 485 616 000 00, 

.2" 13 = 0.721 114 935 626 545 100 00, 

.2" 14 = 0.593 187 193 522 227 000 00, 

.2" 15 = 0.568 140 304 086 613 400 00, 

.2" 23 = 0.891 418 089 642 861 600 00, (26) 

.2"24=0.801659727311 817700 00, 

.2" 25 = 0.782 890 829 596 234 700 00, 

.2"34=0.985517314624865400 00, 

.2" 35 = 0.979 834 261 020 515 000 00, 

.2" 45 = 0.999 526 709 229 567 800 00. 

The constraint equations (25) for the .2" ij's were solved, 
using quadruple precision, to give the following values to an 
accuracy of one part in 1020 (theA's are in radians, the ()'s in 
degrees): 
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A I = 0.66 391 602 978 664 308 98, 
,.1,2 = 0.747 431 140 737 200 265 76, 
,.1,3 = 0.606 370 474 119 483 888 08, 
,.1,4 = 0.287 144 414 680 506 957 00, 
,.1,5 = 0.725 240 492 717 253 436 05, 

0 1 = 65.740 776 764 056 272 193 29°, (27) 

O2 = 105.949 931 184 388 188 536 08°, 
03 = 97.561 341 430 862 637 974 37°, 
04 = 77.670 945 869 960 531 352 14°, 
05 = 104.683 428 006 073 160 110 62°. 

As in the sine-Gordon case, 12 it is essential that the A 's 
and 0 's be arranged in ascending order when the accuracy of 
a 5, as a solution ofEq. (24), is being checked. Substituting the 
values for 0i and Ai from (27) into the expression for Rpq in 
Eq. (20), we find that 

R12 = + 6.729 160 761 177 823 000 00, 
R 13 = 2.484 232 896 793 022 000 00, 
RI4 = + 1.978 955 804 601 952 000 00, 
R 15 = - 1.905 553 389 405 890 000 00, 
R 23 = + 4.173 640 423 411 595 000 00, (28) 
R24 = - 3.013 914 531 328 807 000 00, 
R 25 = + 2.865 650 959 983 701 000 00, 
R34 = + 11.708 797 397 936 890 000 00, 
R35 = - 9.908 487 069 842 504 000 00, 
R45 = + 64.997 939 177 800 580 000 00. 

Before examining the a 5 function in greater detail, we 
ought to mention that all our plots were obtained by fixing 
the third spatial component at z = - 20, and allowing the 
other two coordinates x,y to vary over the indicated do­
mains. Thus tanh a tl, ... ,tanh a 5 are all plotted in the XY 
plane. A change in z to z = 10, for example, merely causes a 
translation of the original plot-it does not lead to a change 
in structure. Moreover, our decision to plot tanh atl rather 

I 

than a 3('I,sin/3/1 rather than /3/1, and so forth, was based 
strictly on convenience. 

(b) Numerical calculations: One of the major tasks of 
generating the a and /3 solutions is an accurate determina­
tion of the Backlund parameters. In order to do so, one has to 
calculate the it'ij's from Eq. (25) and use them in Eg. (lOa) to 
obtain the parameters 0i and Ai' In both steps we are faced 
with solving a system often nonlinear equations for ten un­
knowns. Let us briefly outline the method which was used to 
obtain a solution to the above systems. 

For the sake of brevity we assume that the system of 
nonlinear equations is given by 

.t;(X I,X2, ... ,X IO) = 0, i = 1,2, ... ,10. (29) 

This is equivalent to finding a vector (X I,X2, ... ,X IO) which 
minimizes the functional J, given by 

10 

J(X IX2,··.,X IO ) = I [.t;(X I,X2,.··,X IO)]2. (30) 
i= 1 

A straightforward procedure to find a minimizer is to use the 
steepest descent algorithm, which is an iterative technique 
represented by 

Xn+1 =Xn -PnVJ(Xn) n= 1,2,.··, 

Xo = (XIO'X20' .... 'XIOO) specified. 

(31) 

(32) 

Here P n is a measure of the step size; in our calculations it 
was taken to be a positive, decreasing function of n. The 
choice of Xo is crucial for convergence of the algorithm. Our 
selection of Xo was based on our knowledge of the eight 
Backlund parameters required to generate /34 •

12 

Once the ten parameters (Oi.A.i) have been calculated, 
the accuracy of the a and /3 solutions is checked using a 
seven-point discretization of the Laplacian operator which 
has the symbolic form 

V2 I 6u iJ,k - U i + IJ,k - u i - IJ,k - u iJ + I,k - u iJ - I,k - UiJ,k + I - UiJ,k - I 
U iik-, h 2 

(33) 

where 

h =.1x =.1y =.1 z , and U u(x,y,z), 

In our calculations, h = 10- 4
, which is a reasonable value 

for the "size" of the a andf3 solutions. All calculations have 
been performed in quadruple precision on an AMDAHL 470/ 
V 5 computer, Finally, the plotting was done with the aide of 
a SYMVU package on a CALCOMP 770 plotter. 13 

6. DISCUSSION OF tanh a5 PLOT 

(i) Fig. 7: This figure depicts the nonlinear superposition 
of three a 3 solutions to produce a 5, whose functional depen­
dence reads a 5(x,y,z = - 20;01, ... ,05;A.l'''',A,S)' where x,y lie 
in the rectangular domain !fl5 = [(x,y) I - 30<;x<; 30, 
- 55 <;y<; 5 I ' The altitude, or viewing angle 1>, is 80°, 
while the angle of rotation in theXY-plane, or the azimuth r. 
is 135°, Since each a 3 solution is characterized by one "ring" 
singularity, it seems reasonable that as should contain three 
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FIG. 7. The five-wave interaction function as in the convenient representa­
tion tanh as for ¢ = 80' and y = 135' in the domain as = lix,y) I 
- 30.;;x.;;30, - 55.;;y.;;5j. 
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FIG. 8. The function tanh a, in the domain !iJ, for ¢ = 80° and r = 90°. 

more or less circularly shaped singularities. The function 
tanhas is seen to possess exactly three such rings. One of 
these rings is clearly much smaller than the other two. It is 
amusing to note (at least in retrospect!) that the small ring 
didn't even show up in our earlier plots; it appeared only 
after we had managed to increase the accuracy of the Back­
lund parameters ()I""'()s and A I"",A.S to a sufficiently high 
level. 

(ii)Figs. 8,9 and 10: The function tanhas is depicted in 
the same domain ~ s as in Fig. 7, but at different altitudes 4> 
and azimuth angles y. 

(iii)Fig.ll: This plot shows a cut view of tanhas in the 
domain ~6 = !(x,y)l- 30.;;;;x.;;;;30, - 25.;;;;y.;;;;35j at an azi­
muth angle of y = 135° and an altitude of 4> = 60°. 

7. DISCUSSION 

We have illustrated that the Backlund-Bianchi method 
can be employed to generate, in three spatial dimensions, a 
most remarkable five-wave interaction as for Liouville's 
equation. Our analysis included (a) the mathematical deriva­
tion of as and its representation in closed form, (b) the 
graphical analysis of as by means of three-dimensional com­
puter plots, and (c) numerical studies and accuracy checks. 
Here are the principal results. 

FIG. 9. The function tanh a, in the domain !iJ, for ¢ = 80° and r = 45°. 
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FIG. 10. Thefunction tanh a, in the domain!iJ, for ¢ = 70° and r = 135°. 

(a) The mathematical derivation of as proceeds from a 
Backlund-like transformation containing two essentially 
different functions a and /3; the a's are solutions of Liou­
ville's equation, while the auxiliary functions /3 must solve 
Laplace's equation. The construction of multiple solutions is 
aided considerably by the Bianchi diagram in Fig. 1. 

(b) As pointed out in the Introduction, our second aim 
in this project was to employ three-dimensional plots to 
learn what a 3 and as really "looked like." Our graphing 
techniques led to several surprising results, even for the rela­
tively simple three-wave interaction a 3(x,y,z = - 20), re­
ported previously in the literature. II The latter was found to 
possess only a single singularity, a ring singularity, whose 
amazing symmetry can best be displayed by plotting, instead 
of a 3, the bounded function tanh a 3 • We have also verified 
numerically that a 3 is a solution of Liouville's equation. Our 
latest accuracy figure stands at one part in 1014

. 

Let us look now at as. In view of the ring structure of a . ~ 
It should not be surprising to find that the five-wave interac-
tion as is dominated by three singularities which manifest 
themselves as rings in the functional representation of 
tanh as. We shall continue our discussion of these ring sin­
gularities at the end of this section. Before leaving this topic 

FIG. 11. A "cut view" of tanh a, in the domain 
!iJ 6 = {(x,y)1 - 30<x<30, - 250<35 j, r = 135°, and ¢ = 60°. 
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of 3D-plots, let us just reiterate that the above construction 
of as is intimately associated with the auxiliary functions /32 
and /34 which have likewise been derived and plotted here. 

(c) There is no doubt that numerical studies are indis­
pensable for projects of the present kind. This is particularly 
true for the verification of as as an exact solution of Liou­
ville's equation. The function as is so complicated, with its 
nested dependence on trigonometric and hyperbolic func­
tions, that it is virtually impossible to deduce its detailed 
structure from purely algebraic considerations. Using qua­
druple precision, we have been able to show that our 
a,(x,y,z = - 20) satisfies Liouville's equation to an accura­
cy of at least one part in 106

• While this figure may not seem 
particularly impressive, it is nevertheless, remarkably good 
when considering (i) that the construction of as is condition­
al upon solving ten nonlinear constraint equations [Eqs. (25)] 
and (ii) that accuracy checks on differential equations, hav­
ing an exponential dependence, are a priori trickier than 
checks on equations with a sinusoidal dependence. 

The accuracy of as hinges decisively on the attainable 
values for the ten Backlund parameters 0; and 
A.;,i = 1,2, ... ,5, in Eq. (27). To obtain the accuracy for as 
mentioned above, it was necessary to calculate the 0 's and 
A. 's to twenty significant figures and to solve these para­
meters from the :£;/s to an accuracy of one part in 1020. 
Subsequent numerical studies have convinced us that, given 
enough computing time, the accuracy figure of 10-6 can be 
improved consistently. 

Finally, let us speculate for a moment on the possible 
significance of the circular objects discovered in connection 
with a, and as. While it is safe to say that Liouville's basic 
solutions a I do not represent solitons of the conventional 
type-we recall that the three line singularities have "disap­
peared" in aJ!-the "composite" solution "tanh a J " does 
seem to portray some kind of stable entity, a type of ring 
soliton, whose shape appears to be preserved in the nonlinear 
superposition of similar ring solitons. This is certainly evi-
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dent from the graph of tanh as in Fig. 7, which shows three 
distinct ring solitons. It would be interesting to know, of 
course, to what extent, if any, our tanh a J - and tanh a s- solu­
tions are related to the monopole solutions arising in certain 
gauge theories. 9 
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In this paper we generalize the projection of the representation space of the symmetry group 
SU(2,2)xU(2) on the Minkowski space to arbitrary internal symmetries U(m). The procedure 
involves certain restrictions on the coordinates of the representation space. Representations of the 
symmetry group in the restricted space and in the corresponding restricted Hilbert space are 
constructed. 

PACS numbers: 02.40.Dr 

The problem of projecting the representation space of 
the full symmetry group of the physical system on the Min­
kowski space arises in attempts to provide a common geo­
metrical basis for internal as well as external symmetries 1.2 

(cf. also Refs. 3-5 for further literature). 
Already the lowest nontrivial linear representation 

space of the symmetry group provides such a basis. The 
physical Minkowski space must be embedded in this repre­
sentation space in a way which is consistent with the group. 
This means that transformations of the group in the repre­
sentation space should induce, via the projection, correct 
transformations of the Minkowski space. In particular, the 
last one should be invariant with respect to internal 
symmetries. 

We assume that the physical symmetry group G is the 
direct product G = G1 X G2 of the external and internal sym­
metry group in accordance with a theorem by Coleman­
Mandula and Lopuszanski [cf., e.g., Ref. 6]. G is the confor­
mal group or its Poincare subgroup whereas a sufficiently 
general candidate for G2 (internal symmetries) is U(m). 

Since we shall be interested in the most economic exten­
sion of Minkowski space, we start with the lowest linear re­
presentation space of G which is C4m

. The coordinates Sa;a 
(Sa;a EC,a = 1, ... ,4,a = I, ... ,m) of this space form a complex 
4 X m matrix the elements of which transform with respect 
to G = GI XG2 according to 

S'a;a =g(l)a bg(2Ia PSb;p. (1) 

Let us first consider the case when G2 = GL(2,q or one 
of its subgroups [in the uninteresting case G2 = GL(I,q, no 
projection on M4 exists]. In this case the solution is known. 7 

One first uses the Penrose projection C8 _M ~ 2 

Z =X -iy =iA Sa;dy
T
Y/Lt

b
Sb;2 

/L /L /L Sa;1 [yT (1 _ Y5)]abSb;2 ' 
(2) 

where the coordinates of a complex Minkowski space M ~ 
appear as ratios of anti symmetric forms [(Y/L)a b are Dirac 
matrices, (yTtb = - (yT)ab is a transposition matrix raising 
and lowering the indices according to (yTY/L t b = (yT)ac(Y/L)c b 

and satisfying (yT)ac(yTtb = - D~, (yTtb 

_ (T)ba (T lab (T )ba] Th . - - y , Y Y/L = - Y Y/L . enotation used here 

alOn leave of absence from the Institute of Theoretical Physics, Wroclaw 
University, Cybulskiego 36, Wroclaw, Poland. 

is explained in full detail in Ref. 8. 
From (2) it is seen that thez/L are invariant with respect 

to G2 = GL(2,q because the antisymmetric forms in the nu­
merator and denominator of (2) are multiplied under 
G2 = GL(2,q by the common factor det GL(2,q. It can also 
be shown [cf., e.g., Refs. 2-4 or 9] that conformal linear 
transformations G I = 5U(2,2) of the complex variables Sa;a 
given by the generators 

d = - ~iY5' 
P/L = -A -IY+Y/L' 

(3) 
k/L = -AY-Y/L, 

- 1·[ ] m/Ll' - 41 Y/L'Y" , 

(acting on the first index) induce the correct nonlinear con­
formal transformations of the complex Minkowski variables 

DZA = izA, 

P/LZA = ig/LA' 

K/LZA = - ig/LA Z2 + 2iz/LZA' 

M/Ll'ZA = - ig/LA Z" + igvAz/L 

[A in (3) is a parameter with dimension of length]. 

(4) 

It is seen from (4) that the real part x/L of Z/i transfo~ms 
with respect to translations (P/L) like a vector whereas the 
imaginary partY/L is translation ally invariant (behaves like a 
coordinate difference). We are obliged, therefore, to identify 
x/L with the coordinates of the real Minkowski space M 4 • 

It can be shown4
•
9 that projection (2) is the only projec­

tion in terms of antisymmetric forms consistent with the 
group 9 XGL(2,q, where .9' C SU(2,2) is the Poincare 
subgroup of the conformal group. Consistency with the 
whole conformal group is a consequence of consistence with 
9. It can also be shown 4.9 that the two other projections in 
terms of symmetric and Hermitian tensors are identical with 
(2) in the case when these tensors are simple (i.e., when they 
are represented by bilinear forms). 

To approach the homogeneous space of the group in the 
case when G2 = 5L(2,q or G2 = SU(2), we parametrize the 
projection C8_M4' provided by the real part of(2), by intro­
ducing the four real conformal invariants 

(5) 
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where 0"; (i = 1,2,3) are Pauli matrices, 0"0 = 1, andJabis the 
Hermitian 4X4 matrix with eigenvalues + 1, + 1, - 1, 
- 1, determining SU(2,2) [in representation (3) 

Jab = i(Y4)aC(ys)c b]. We first split the variables Sa;a into two 
parts, 

S ± = Y±s, 

by means of the projectors 

y± = ~(1 ± Ys). 

(6) 

(7) 

From (3) it follows that S - is translationally invariant. It is 
seen from (2) that 

.~ S a:1 (yTY/Ltbs b--:2 + S a-:-I (yTY/Ltbs b:2 
Z = LA. 

/L 2I: - ( T)abI:-
~ a;1 Y ~ b;2 

(8) 

is a linear combination of S + with coefficients depending on 
S -. Relations (8) can be inversed with respect to S +, and we 
obtain 

S + = - iA -lzI"Y/LS -. (9) 

It is seen that we can perform a change of variables 

{5a;a}-~{x/L'Y/L'S a-:-a} (10) 

in which Y /L and S a--:a represent the translationally invariant 
parameters of the particular embedding of M4 in e8

. 

It can be shown further that Y /L; is connected with ';/L 
(from now on we use the semicolon whenever it is necessary 
to distinguish vectors with respect to external and internal 
symmetries) by means of an inversible relation 

(11 ) 

in which the coefficients '/L;V depend on S - only and satisfy 
the orthogonality relations 7.8 

~; _ 4 I I: - ( T lab I: - 12 '/L;).r ;;;- - g;).; ~ a;1 Y ~ b;2 , 

(12) 

0). 4 II: - ( T)abI: - 12 , /L;). ';v' = g/LV; ~ a; 1 Y ~ b;2 . 

We obtain the desired parametrization by replacingy /L; by ';/L 

and S a--:/L 

and 

{5 a;a }-{x/L; ";/L'S a-:-a}. (13) 

The submanifolds 

(ij • = 1, fo/L = const <./ I' 4;/L 

/1 = const, /2: = ';0 = const, 

/1+//>0 

(14) 

(15) 

of e8 are invariant with respect to SU(2,2) X SL(2,q or 
SU(2,2) X SU(2), respectively. It is certain, therefore, that 
they contain the homogeneous manifolds of these groups 
and, if there are no other independent invariants, coincide 
with these manifolds. They also contain in a consistent and 
unique way the Minkowski space and provide therefore the 
most economic embedding. 

In the case when we restrict the conformal symmetry 
SU(2,2) to its Poincare subgroup, another invariant appears, 
namely Is a-:-I (yT t b5 b~ 12. We obtain, therefore, 14- or 13-
dimensional submanifolds of e8 containing M in a way con­
sistent with the groups 9 X SL(2,q or .0/ X SU(2), 
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respectively. 
Due to the fact that ';/L is invariant with respect to a 

phase transformation5_S ' = eit/Js, the above statements are 
valid also in the case of G2 = U(2). 

Let us go over now to the general case G2 = GL(m,q or 
one of its subgroups. Now, the representation space is e4m 

and the coordinates 5a;a form a 4 X m complex matrix. We 
can, therefore, construct, according to (2), ~m(m - 1) 
complex vectors 

zla.fJ1 = iA Sa;a(y
T
Y/Lt

b
5b;fJ, 

/L 2 5 a-:-a (yTtbs b--:fJ 
(16) 

which, according to the statement made after formula (2), 
transform in the correct way (4) if the 5a;a undergo a confor­
mal transformation G1 = SU(2,2). In fact, we have infinitely 
many such vectors given by the basic antisymmetric forms 
appearing in (16): 

. ~ afJI: (T )abI: 
z (K) = ~ K ~a;a Y Y,t ~b;fJ (17) 

/L 2 KafJS a--:a (yT t b5 b-:-fJ 

Moreover neither (16) nor (17) are invariant with respect to 
G2 = GL(2,q or its subgroups SL(m,q or U(m) because the 
antisymmetric bilinear forms 

1

5a ,;a, 

5a,a,;",a,: = 5a,;a, 
Sa,;a' i 
SU:;(1~ 

( 18) 

provide a [(i) X (;:') ]-dimensional irreducible representation 
of GL(4,q X GL(m,q and, therefore, the Zit (K) transform 
into each other like ratios of linear combinations of vectors 
of such a representation. This situation is unsatisfactory be­
cause the physical space M4 must be invariant with respect to 
internal symmetries. 

A way out of this difficulty is provided by imposing on 
the coordinates Sa;" constraints which would reduce the re­
presentation space of G, and simultaneously, the variety of 
zl" We shall consider here 4(m - 2) linear independent 
constraints 

Aia = 0, i = 3,4, ... ,m, a = 1, ... ,4, ( 19) 

where 

Aia = C,.(1Sa;a.' (20) 

and Ci a are (m - 2) independent vectors. Conditions (19) are 
invariant with respect to the group G in the sense that 

where 

c,ia = C/J (gl21 -1)fJ"· 

It follows from (21) that 

(21) 

(22) 

Aia = O~A. 'ia = O. (23) 

We shall prove in this note that conditions (19) imply 
that all the pointsz1a•f3I , a,/3 = 1, ... ,m, defined in (16) as well 
as the points Zit (K) defined in (17) coincide and are invariant 
with respect to the group G2 = GL(2,q of internal symme­
tries. The proof is immediate, but we shall postpone it for 
convenience to a later place, first deriving some general re­
sults concerning representations of G in the restricted space. 

To this end, we introduce new variables 
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1/a;A = Sa;A' a = 1, ... ,4, A = 1,2, 
(24) 

, - C af: a = 1, ... ,4, i = 3, ... ,m. A;a - ; ~a;a' 
We can assume, without loss of generality, that the subdeter­
minant det {C/"} (i,A = 3, ... ,m) of the matrix {c;ahs dif-
ferent from zero 

det{C/}i=O. (25) 

We can solve, therefore, Eqs. (24) with respect to Sa;a and 
obtain 

Sa;a = aa A1/a;A + ba ;A;a' 

where 

a A B = D! , b A; = 0, A,B = 1,2, 

a;/ = - b/C/, b;/ = [det{C;X}]-IAx;, 

(E = 1,2, i,A = 3, ... ,m) 

(26) 

(27) 

and A/ is the adjoint deter.!.l1inant of order m_- 3 corre­
sponding to the element C; A of the matrix {C; A }. The coeffi­
cients b/ satisfy the relations (following from general prop­
erties of determinants) 

i if r;:if C xb k - r;:k (28) bAC" =U.4, i.4 -Ui' 

In a new coordinate system S ~;a = g/3Sa;p, g E G2, we have 

" c'af:' -' /L ia = i ~ a;a - /L ia , (29) 

and the inverse relations 

S'a;a =a(ga)a A1/'a;A +b(ga,gb)aiA';a, (30) 

where a(ga)a A and b (ga,gb )a; are solutions of the equations 

(ga)a A = a(ga)a B(ga)oA, 

(gb V = b (ga,gb V + a(ga)a B (gb )Oi. (31) 

The coefficients a and b satisfy relations 

a(hga) = a(ha(ga)), 

b (hga,hgb ) = hb (ga,gb ) - a(ha(ga))hb (ga,gb ), 

(32) 

which ensure uniqueness of the functions alga) and b (ga,gb ) 
defined in (31) on the group G2 (we do not consider here the 
external symmetries G1 because the transformation proper­
ties of 17 and A under this group are obvious). One also easily 
verifies that alga) and b (ga,gb ) are the same functions of C '/' 
as a and b are of C; a. 

From (26) and (29) we derive finally the relations be­
tween 17 and 17': 

17' a;A = (ga)A B17 a;O + (gb )A iA;a, A';a = A ia' 

(33) 

17a;A = [g-la(ga)]A 0 17'a;o + [g-Ib(ga,gb))/A ';a' 

This closes the system of mutual relations of the variables 
Sa;a and 17a..,4' Aia in different coordinate systems. One has to 
keep in mind, however, that all these relations are local and 
valid only in the neighborhood of g = e for which 
det{C'/"}i=O. 

Imposing of the invariant conditions Aia = 0 
(a = 1, ... ,4; i = 3, ... ,m) replaces the linear representation in 
~rn by a nonlinear local representation in the space 
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C8 X c2
(m - 21 = c2

(m + 21 of the variables 17a;A and axo given 
by 

17'a;A = (ga)A
B

17a;B' 

a'a A = a(ga)a A. 

Relation (30) now takes the form 

S'a;o: = a(ga)a.417 'a;.4 = (ga)a .417a;A· 

(34) 

(35) 

Introducing this into (18), we prove both statements con­
cerning (16) and (17). We obtain first 

S 'ab;aP = (ga )aP 1217 ab; 12 . 

where 

f:' /s 'a;a 
~ ab;a{3: = f:-' 

~ b:a 

12 / (ga)a I 

(ga)a{3 : = (ga)f3 1 

and consequently 

t 'a;pl 
f:"' ' 

!> b;P 
17ab;12: = 

(ga)a 21 
(ga)f32 ' 

/

17a;1 

17b;1 

(36) 

170;2 I, 
17b;2 

(37) 

(38) 

From (38) the first part ofthe statement (coincidence) follows 
for g = e and the second part (invariance) for arbitrary g 
(satisfying condition det{C'/"}i=O) and a,/3 = 1,2. 

By imposing additional invariant conditions on the ma­
trix {5 a;a} we have obtained a unique and consistent projec­
tion c2

(m + 21_M4 in terms of the new variables 17a;A and a 
nonlinear local representation of G in the space of the varia­
bles 17a;.4 and axE. 

For applications, it is important to construct represen­
tations of G in spaces of functions which take into account 
conditions (19) (first quantization). We start with the infini­
tesimal representation of Gin L 2(C4m), which is given by the 
infinitesimal generators 

X·- a xbl:" X'.- a X'PI:" 
• - -- a ~b'a' . - -- a ~a;f3' 

as a;a' as a;a 
(39) 

for G1 and G2, respectively, whereXa b andX 'a P are the cor­
responding generators in c4

m. 

To introduce condition (19), we carry out the change of 
variables described in (24) and (26) and the corresponding 
change in derivatives 

_a_ = _a_ + ....!-.. C/, 
as a;A a17 a;.4 aA ia 

(40) 

a a A 
-- = --aU., 
a17 a;A as a;a 

to obtain 
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To restrict the representation to functions on the plane 
A;a = 0, it is convenient to use the relation 

cax' /3~ 
, a ac/ a~ (CX'a)/17a;B 

lQ 

~ (CX'b)/A ka , 
aA;a 

(43) 

by means of which we can rewrite the generator (42) in the 
form 

X' = _a_{(X'a)A B17a'B + (X'b l/A;a}- c;aX'a/3 ~. 
a17a;A' ac/ 

(44) 

The functions on the plane A ia = ° can be written in the form 

if> (17,C): = J f(Sa;a) JJI ;{(5(A;a )dA;a = f(aa A17a;A) (45) 

[the integral representation does not involve the assumption 
(25) and is, therefore, more general]. The generators (41) and 
(44), when restricted to such functions, are 

(46) 

X 'I - a (X') B C ax' /3 a A ~ 0 - -- a A 17a;B - i a --/3' 
a17a;A ac; 

The dependence on Ci a of the function 
if> (17,C) = f(aa A17a;A) occurs through the variables aA

A and we 
can put, therefore, for the last term in the second expression 
(46) 

_caX' /3~ = [(X'a)-(aX'a)]_B_a_. (47) 
I a ac/ A aaAB 

Second quantization in the case of G2 = GL(2,q or its 
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subgroups was given a preliminary treatment in Ref. 10, in­
variant differential operators in the same case were investi­
gated in Ref. 7. The present construction is intended to pro­
vide a basis to extend those investigations to the physically 
more interesting cases ofSU(3) and higher internal 
symmetries. 
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Working with the extended framework of stochastic integrals recently discovered by Ito, a 
complex of stochastic processes inherent in quantum mechanics, the Nelson process, is 
characterized in terms of sample paths. It is shown that the Nelson process belongs to a certain 
class of two-sided continuous local semimartingales. Several basics of stochastic calculus in this 
class are presented. Stochastic calculus of variations is applied in this class to construct the Nelson 
process and to further illustrate some details of its sample paths. Examples are the bound states, 
the two-slit interference, and the gravity in quantum mechanics. 

PACS numbers: 02.50.Ey, 03.65. - w 

INTRODUCTION 

A mathematical formulation of quantum mechanics in 
which the notion of stochastic processes plays an essential 
role was first presented in its systematic form by Nelson. 1-4 

It gave rise to a new quantization scheme which has been 
called the stochastic quantization procedure and applied ex­
tensively to many physical problems.5

-
16 Conceptual en­

largements have been also taken into account. 17-27 Nowa­
days it can be understood as one of the representatives of 
quantum dynamics. 23 Unfortunately there seem to be some 
elementary confusions arising from improper criticisms of 
the use of stochastic processes in quantum mechanics. The 
origin of the confusions is the conceptual gap between the 
mathematician's refined notion of stochastic processes and 
the physicist's classical notion of them. It is not so easy to 
overcome this gap and to evaluate the stochastic quantiza­
tion procedure properly if one is used to the classical notion 
of stochastic processes such as appear in macroscopic classi­
cal statistical physics. Therefore it seems meaningful to 
make the mathematical characterization of the Nelson pro­
cess clear for the purposes of making the gap as small as 
possible and facilitating the physicist's understanding of the 
stochastic quantization procedure. 

In the present paper I will clarify the class of stochastic 
processes to which the Nelson process belongs, working with 
the extended framework of stochastic integrals recently dis­
covered by Ito. It is a class of two-sided continuous local 
semimartingales. This class provides a wide ring in which 
the stochastic quantization in terms of the Nelson process 
can safely playa role. (Sec. 1) Several basics of stochastic 
calculus in this class are presented. (Sec. 1). Stochastic calcu­
lus of variations is applied in this class to reconsider the 
Nelson process globally, which permits us to illustrate the 
details of its sample path behavior. (Sec. 2). I will take the 
bound state, the two-slits interference, and the gravity in 
quantum mechanics as illustrating examples. (Sec. 3). 

The final introductory remarks are the following: Al­
though I will classify and represent the Nelson process in the 
modem language of martingale integrals, the essentials do 
not differ otherwise from Nelson's original analysis. It seems 
surprising that Nelson's observation and analysis were so 
refined and close to reality as to still survive in the modem 

theory of stochastic integrals. Chronological order proves 
this. In 1942 stochastic integrals were first discovered by Ito. 
Doob suggested the use of martingale theory approach to 
stochastic integrals in his book of 1953. On the basis of the 
work of Ito and Doob, Nelson developed his idea before 
1966, just a sunrise epoch of the modem theory of stochastic 
integrals (Fisk in 1963, Courrege in 1963, Kunita and Wa­
tanabe in 1967, and Meyer in 1967). 

1. STOCHASTIC INTEGRALS AND TWO-SIDED 
CONTINUOUS LOCAL SEMIMARTINGALES 

This section will be devoted to an exposition of a certain 
class of continuous local semi martingales in which the sto­
chastic processes appearing in stochastic quantization can 
safely be treated. The framework is Ito's extended stochastic 
integrals, and the main source for this section is his recent 
paper. 28 

Let (n, W, Prj be a base probability space, where n is a 
certain nonempty set and a G'-algebra 2[ of subsets of n is the 
domain of a probability measure Pr. A measurable mapping 
from n to Rn is a random variable. Its image of each element 
UJEfl is a sample. A family of random variables indexed by a 
continuous time parameter, X = [X, I - 00 < t < 00 I 
= [X,(UJ)IUJEfl, - 00 < t < 00 L is a stochastic process. For 

each UJEfl there is a family! X, (UJ) I - 00 < t < 00 I which de­
fines a function X (UJ) from ( - 00,00) to Rn 

• This is called a 
sample path or sample function. A stochastic process is thus 
a complex of sample paths. A mathematical property of a 
stochastic process should be understood as that of every 
sample path Pr-almost surely. Here "Pr-almost surely" 
means "except sample paths corresponding to Pr-null sets" 
and will be abbreviated (a.s.). For example, a stochastic pro­
cess whose sample paths are continuous (a.s.) is said to be 
continuous and one with sample functions of bounded vari­
ation on any finite interval (a.s.) is said to be oflocally bound­
ed variation. 

Let us fix a right-continuous increasing family of sub-G'­
algebras of W, .0/ = [ f!? ,I - 00 < t < 00 J such that 9, con­
tains every Pr-null set. This is called a reference family or a 
filtration on the time interval ( - 00,00). Take an arbitrary q 
in the interval ( - 00 00)' then 9 (q) = '9 (q) = 9 I ' , t t q+ t 

O,,;t < 00 I defines a reference family on the time interval 
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[0,00 ). A stochastic process M (q) = 1 M, (q) 1 O,t < 00 I is said 
to be a local 9(q) martingale if there exists an increasing 
sequence of stopping times, I e k I k ~ 1 , adapted to 9 (q) such 
that the stopped processes M iZ)) = I M ~in(,,/I.) 10,t < 00 1, 
k = 1,2, ... , are 9(q) martingales, that is, E [MiZ\, + U 19, (q)] 
= MiZ)), (a.s.), where E ['1.%'] is the conditional expectation 
with respect to a sub-a-algebra .%' em:. Now we reach an 
important class of stochastic processes. A stochastic process 
X = I X, 1 - 00 < t < 00 I is a continuous local 9 semimar­
tingale (or 9 quasimartingale) if X (q) = 1 X, (q) = Xq + , I 
0,( < 00 I, for every q in the interval ( - 00,00), admits a 
decomposition 

X(q) = M(q) + V(q), Vo(q) = 0, (1.1) 

where M (q) is a continuous local 9 (q) martingale and V(q) is a 
9 (q)-adapted process (i.e., V, (q) is 9, (q)-measurable for each t 
in [0,00 )) oflocally bounded variation. This decomposition is 
unique and called a canonical 9 (q) decomposition. The total­
ity of continuous local 9 semimartingales is denoted by 
Q (9). Let us denote by 1.( 9 ,dX) for each X in Q (9) the 
totality of all 9 -adapted stochastic processes Y = 1 Y, I 
- 00 < t < 00 l's such that S~ I Y, (q)I(dM, (q))2 < 00 and 
S~ I Y,Iq)lld V, Iq) I < 00 for every q in ( - 00,00) and u in [0,00), 
where (dM,lq))2 is the Lebesgue-Stieltjes measure induced by 
the quadratic variation of M Iq), and d V, (q) is that induced by 
the absolute variation of Vlq). Here we are in the position to 
introduce the notion of stochastic integrals. 

LetXeQ (9), then for any YELl 9 ,dX) the stochastic 9 
integral is defined by 

9 - i'Y dX = 9 1r
) s s 

r 

_ i' - r Y (r) dX (r) 
s s' 

o 

= 9 1r) -i'- r y (r)dM Ir) + i,-r y Ir)dV Ir) 
s s s s' 

o 0 

(1.2) 

for any r,t in ( - 00,00), where the first term of the right­
hand side is the usual 9(r)-martingale integral and the sec­
ond term the sample-wise Lebesgue-Stieltjes integral. 

The stochastic 9 integral (1.2) defines a stochastic pro­
cess Z = 1 Z, I - 00 < t < 00 I such that Z, (q) = 9 
- S: + 'Ys dXs ' It is evident that Z belongs to Q (9). If 

s,u,v, then 

9 - f y, dX, + 9 - f y, dX, = 9 - fy, dX,. 

(1.3) 

There are other notions of stochastic integrals. A family 
of sub-a-algebras Y = IY, I - 00 < « 00 I is said to be a 
time-reversed reference family if y* = (Y~ = Y _, I 
- 00 < t < 00 J is a reference family. In other words, the 

time-reversed reference family Y is a left-continuous de­
creasing family of sub-a-algebras ofm: such that Y, contains 
every Pr-null set. A stochastic process X = I X, I 
- 00 < t < 00 I is said to be time-reversed continuous local 

Y semimartingale if X * = I X ~ = X _ ,I - 00 < t < 00 I be­
longs to Q (Y*). The totality of time-reversed continuous 
local Y semimartingales is denoted by Q (Y). A stochastic 
process Y = I Y, I - 00 < t < 00 I is said to belong to 1.(Y,dX) 
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ifY* = 1 Y~ = Y _, 1- 00 <f < 00 I belongs toL(Y*,dX*). 
LetXeQ (Y), then for any Ye1.(Y,dX)thestochasticY 

integral is defined by 

Y -Ju y dX =Y* - f-uY*dX* (1.4) s s s s , 
I -, 

for any u ,t in ( - 00,00). The stochastic Y integral (1.4) also 
defines a stochastic process of class Q (Y). 

Let Y = (9,Y), Q(Y) = Q(9)nQ(Y), and 
L(Y,dX) = 1.(9 ,dX)nL(Y,dX) for XeQ (Y). If XeQ (Y), 
then X is called a two-sided continuous local semimartingale 
on the interval ( - 00,00). Now the most faithful notion of 
stochastic integrals is ready. Let XeQ (Y), then for any 
YeL(Y,dX) the symmetric stochastic Y integral is defined 
by 

Y - i' Ys ° dXs = ~ (9 -i' Ys dXs - 57 -r Ys dX,) 

(1.5) 

for r,t, and by 

Y - i' Ys ° dXs = + (9' -L Ys dXs - 9 -r Ys dXs) 

(1.6) 

for t,r. 
The symmetric stochastic Y integral (1.5) and (1.6) de­

fines a stochastic process Z = I z, 1 - 00 < t < 00 I by putting 
Z ~q) = .!t' -S: + 'Ys odXs' If 9 = Y *, then Z belongs to 
Q (Y). If Y* is finer than 9, that is, Y~::> 9, for every t in 
( - 00,00), thenZbelongs to Q (9). Zbelongs to Q (Y) in the 
opposite case. The followings are some of the useful formu­
lae for the symmetric stochastic Y integrals. For XeQ (Y). 
YeL(Y,dX) and r, t, u in (- 00,00), 

Y - i'YsodXs + Y - f YsodXs = Y - r YsodXs' (1.7) 

and so 

Y _ i' Y odX = - Y - fr Y °dX s s s s· 
r , 

( 1.8) 

If Y is continuous furthermore, then 

Y - LYsodXs =~~t:;jtlHYlj + Y" J(X'j -X'j J 
(1.9) 

for any r,t in ( - 00,00), where tj = r + j(t - r)/N,j = 0, 1, 
2, ... ,N, is a division ofthe interval [r,t ] and Li. p. is the limit in 
probability. The last formula is extremely important for ex­
tending the symmetric stochastic Y integral as also being 
defined a little outside of Q (Y). If X and Ybelong to Q (9). 
then the limit in the right-hand side of Eq. (1.9) becomes 

i' 1 i' 9 - YsodXs + - dYs dXs ' 
r 2 r 

(1.10) 

which will be denoted by S~ Ys odXs ' where the second term 
(i.e., the quadratic variation) is defined by 

LdYs dXs = ~~t:;jtl (Y'j - Y'J - J(X'j - X" J. (1.11) 

Ito calls Eq. (1.10) the forward symmetric stochastic integral 
which is one of the extensions of the symmetric stochastic Y 
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integral to the region Q (.9) \ Q (..1'). The extension to the op­
posite region Q (Y)\Q (..1') is also given by the right-hand 
side ofEq. (1.9), resulting in 

i' 1 i' Y - Ys dXs - - dYs dXs' 
r 2 r 

( 1.12) 

which will be denoted also by S~ Ys odXs' This is the back­
ward symmetric stochastic integral of Ito. Consequently we 
have the cyclic equalities between different notions of sto­
chastic integrals if X and Yare restricted to lie in Q (..1'). 

i' i' 1 i' ..1' - Ys odXs =.9 - Ys dXs + - dYs dXs 
r r 2 r 

= Y - Y dX - - dY dX i' 1 i' 
r 552 ,SS 

N 

= !.i.p. L HY'j + Y'j_1 )(X'j - X'j_I)' 
N~ooj= 1 

(1.13) 

The stochastic process Z given by the symmetric stochastic 
..1' integral (1.13) on Q (..1') by putting Z,lql = ..1' 
_ S~ + 'Y, odXs certainly belongs to Q (..1'). In other words, 

Q (..1') is closed under the symmetric stochastic Y integral. 
Immediate outputs of those equalities are 

l'd(XsYs)=..1' - l'YsodXs +..1' - l'XsodY" 

(1.14) 

X,Y, -XrYr = 9 - Lys dXs +Y - LXs dY, 

= Y - L Ys dXs +.9 - LXs dYs' 

(1.15) 

The last result (1.15) is a generalization ofa theorem of Nel­
son; 1 notice that it holds for stochastic processes of class 
Q (..1'). Again Eq. (1.14) can be extended to the region 
Q(9)AQ(Y) = [Q(9)\Q(Y)]u[Q(Y)\Q(Y)]. Namely for 
Xand Yin Q(.9)\Q(Y) or those in Q(Y)\Q(Y), we have 

1'd(XsYs) = 1'YsodXs + 1'XsodYs. (1.16) 

It is convenient to present here the basic formulae in a 
differential form. 

..1' - Y,odX, = 9 - Y,dX, + ¥1Y,dX, 

= Y - Y,dX, - ¥iY,dX" (1.17) 

d(X, Y,) = Y - Y,odX, + ..1' - X,odY, 

= 9 - Y,dX, + ff - X,dY, 

= Y - Y,dX, + 9 - X,dY,. (1.18) 

Now we will consider the mean Lebesgue differentiabil­
ity in a certain sense of continuous local semimartingales. 
Let X = f X, 1 - 00 < t < 00 1 be a stochastic process belong­
ing to Q(.9), thenXlq/ = fX,lq/ =Xq +, 100>;t< 00 1 has a 
uniquecanonicaldecompositionXlql = Vlql + Mlql for any q 
in ( - 00,00). If Vlql is an absolutely continuous process for 
any q in ( - 00,00), then X is said to be mean 9 differentia­
ble. Let vlq), be its Lebesgue derivative process and define a 
stochastic process DX = f DX, 1 - 00 < t < 00 J such that 
DX (q/ = (DX, Iql = DXq +, = V, (q)' [ - ao < t < 00 J for any q 
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in ( - ao, ao ). DX is a locally integrable process adapted to 9 
and called the mean (Lebesgue) 9 derivative. Let XeQ (Y), 
then X *, the time-reversed version of X belongs to Q (Y*). X 
is said to be mean Y differentiable if X * is mean y* differ­
entiable. The mean Lebesque Y derivative of X is defined to 
be DX * with opposite sign and denoted by D.X. This is a 
locally integrable process adapted to Y. Let us denote by 
D(9), D(Y), and D(Y), respectively, the totality of mean 
9 -differentiable processes in Q (9), that of mean Y -differ­
entiable processes in Q (Y), and their intersection 
D( 9 )nD(Y) in Q (Y). It is straightforward to see that 
limhlO [E[X'+h -X, 19,] - DX,h [ = 0(a.s.)ifXeD(9)and 
limh10 [E[X, -X,_h IY,] - D.X,h [ = 0 (a.s.) if XeD(Y). 
The formula (1.15) yields, for X and Yin D(Y), the formula 
of integration by parts, 

E [X, Y, - Xr Yr 1 = E (1' (YsDXs + XsD. Ys)ds J 

=E[1'(XsDYs + YsD.Xs)dS], 

(1.19) 

for any ro>;t in ( - ao, 00). We have also 

E[Y - J'y,OdXs ] =E[fYs+(DXs +D.Xs)dS]. 

(1.20) 

Finally we reach a class of two-sided continuous local 
semimartingales in which the stochastic quantization proce­
dure of Nelson works safely. Let us denote by N(Y) a sub­
class of stochastic processes in D(Y) such that XEN(Y) im­
plies (XED(Y), of course) DXeD(Y) and D.XeD( 9). A 
stochastic process belonging to N(Y) is called a Nelson pro­
cess. This choice of the name seems appropriate because Nel­
son considered such stochastic processes first, though his 
class is wider than the present one. He worked with the 
L 1(fl,Pr) and/or L 2(fl,Pr) analyses, whereas we work with 
the sample paths analysis. If X is a Nelson process, then 
D. DX and DD.X are locally integrable processes. A measur­
able function F: W __ Rn is said to be N admissible ifF (X), for 
any XEN(Y), defines a locally integrable process. For exam­
ple, a locally bounded function is N admissible. Let X be a 
Nelson process and Fbe an N-admissible function; then the 
equation 

tJDD.X +D.DX) =F(X) (a.s.) (1.21 ) 

is well posed since this is a relation connecting two locally 
integrable processes. Because the stochastic processes em­
ployed in the stochastic quantization are assumed to satisfy 
the equation of motion of this type, the class N(Y) is suffi­
cient to include them. A stochastic process XEN(Y) satisfy­
ing Eq. (1.21), though this would not be unique, is said to be 
an Ftrajectory. The totality of Nelson processesX's such 
that DX and D. X belong to D( Y) and DDX = D. D. X holds 
(a.s.) is denoted by N'(Y). A stochastic process in this class is 
called a locally probability conserving Nelson process, or 
simply a Nelson process hereafter. This class was first no­
ticed by Etim.9 
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2. STOCHASTIC CALCULUS OF VARIATIONS AND HOW 
TO SEE THE SAMPLE PATHS 

This section will be devoted to showing how one can 
illustrate the sample path behavior of a Nelson process 
which represents quantum dynamics by working with sto­
chastic calculus ofvariations. 29

-
31 developed recently. First 

we will present the stochastic quantization procedure in the 
terminology of Q (Y). Second the basics of stochastic calcu­
lus of variations will be presented also in the framework of 
Q (Y). Then we will proceed to the main exposition of this 
section. 

Let us start with a differentiable dynamical system in 
1R", x = [x,I - 00 < t < 00 I. Together with Newton's equa­
tion of motion 

mx=F(x), (2.1) 

where m is a mass parameter and a continuous locally 
bounded function F: 1R"-IR" represents forces acting on the 
system, it defines a classical dynamical system. A function of 
class C 2, fi---+x" is said to be a classical Ftrajectory ifit satis­
fies Eq. (2.1). If Fis integrable, that is, if there is a function V: 
1R"-1R of class C I such that F = - V V holds, the classical 
dynamical system is said to be conservative, where V is the 
gradient. A classical F trajectory x: ( - 00,00 )-IR" of a con­
servative system can be characterized by Hamilton's princi­
ple of least action 

1'1!mlX,1 2
- V(xsl] ds = stationary, (2.2) 

for any rand t in ( - 00,(0). Indeed the Euler equation equiv­
alent to the variational condition (2.2) becomes 

mx = - VV(x). (2.3) 

A family of hypotheses and substitutions is called a quanti­
zation procedure (or simply, a quantization) if it joins each 
conservative classical dynamical system (2.3) and the Schro­
dinger equation 

at/J (fz2 ) ifz - = - -.d + V t/J, 
at 2m 

(2.4) 

where fz is the Planck constant divided by 21r, .d is the Lapla­
cian. Once a solution t/J = ! t/J, EL2(1R" ,C) I - 00 < t < 00 I to 
Eq. (2.4) is given, the probability distribution of the system at 
any time t is assumed to be I t/J, 12 times the Lebesgue measure 
provided that II t/J, II = I for every t in ( - 00,(0). 

The stochastic quantization procedure originally pro­
posed by Nelson consists of the following hypotheses and 
substitutions. First, consider the classical conservative dyna­
mical system in 1R" x = ! x, I - 00 < t < 00 I, subject to the 
equation of motion (2.3). Second, replace it by a Nelson pro­
cess X = [X, I - 00 < t < 00 I subject to the equation. 

!m(DD.X + D.DX) = - VV(X). (2.5) 

This may be understood as a minimal extension of Newton's 
equation of motion (2.3). Third, assume X belongs to N'(Y). 
Namely, DDX = D.D.Xholds (a.s.). Fourth, assumeXto be 
a Markov process and that there exist two functions b, b. : 1R" 
X ( - 00,00 )-R" of class C 2 such that DX, = b (X, ,t ) and 
D.X, = b. (X, ,t ) hold for every tin ( - 00,(0). Fifth, the qua­
dratic variation of X is assumed to be (fzI2m) times the Lebes-
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gue measure, that is, 

limIE[(XI+h-X,),,219,]- ~hl=O (a.s.). (2.6) 
nlO 2m 

Sixth, the existence of the Lebesgue density of the probabil­
ity distribution is assumed, that is, Pr( [wEflIX, (w)Ed"x I) 
= p(x,t )d "x for every t in ( - 00,(0). Last, (b + b. ) is as­

sumed to be integrable, that is, b + b. = (fzlm)VS for a cer­
tain function S: 1R" X ( - 00,00 )-1R. This procedure is 
enough to reach quantum mechanics. These seven hypoth­
eses and substitutions are really equivalent to the Schro­
dinger equation (2.4) for the wavefunction t/J = pl/? 

X exp(iS). 1-4 It is worthwhile to notice that the third hypoth­
esis is not necessary since it comes from the fourth and fifth 
hypotheses and the formula (1.9). They also yield b. 
= b - (fzlm)Vplp and limhlO IE [(X, - X , __ h) "215',) 
- (fzI2m)h I = 0 (a.s.). 

Next, we shall proceed to the exposition of stochastic 
calculus of variations. In our original formulation of sto­
chastic calculus of variations we worked with the L 2(fl,Pr) 
functional analysis. 29

•
3o Here we will present it in terms of 

two-sided continuous local semimartingales and so work 
with the sample paths analysis. This has the merit of defining 
the action integral in a sample-wise way, whereas we had to 
define it as a Bochner integral in the L 2(fl,Pr) analysis. Let L: 
(1R")3 _1R be a function of class C I, and consider a functional [ 
on D(Y) defined by 

[(X) = E [1'L (X"DXs,D.X,) dS] (2.7) 

for any XED(Y). If L (X,DX,D.X) = [L (X"DX"D.X,)I 
- 00 < t < 00 I is a locally integrable process, then [ (X) is 

well defined. If not, we simply put [(X) = 00. A typical ex­
ample of such a functional is the action integral 

[QM(X) =E [1'I!(!m IDXsI2 +1mID.XsI2) - V(Xs)] dS], 

(2.8) 

where m and Vare same as in Eq. (2.2). For X 's in D(Y) such 
that DX and D.X are locally square integrable processes, 
[QM is well defined. Let X and Ybe two stochastic processes 
belonging to D(Y). The Y component of the differential of 
the functional [ at X is given by 

d 
d[(X,Y) = Ta[(X + aY)la~o· 

The integration by parts formula (1.19) leads to 

d[(X,Y) 

(2.9) 

=E[('{~ -D.(~)-D(~)}'YsdS] J axs aDXs aD.Xs 

+ E [ (a~~, + a~~s )-Y, U (2.10) 

if aL laDXED(Y) and aL laD.XED(9). From now on we 
assume that Y is a conditional stochastic process in 
D(Y) such that Yr = Y, = 0 (a.s.). For such Y's the second 
term of the right-hand side of Eq. (2.10) disappears and we 
get the fundamental theorem of stochastic calculus ofvari­
ations: The differential of the functionall atXED(Y) vanish-
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es if and only if X is subject to the equation 

D. ( aL ) + D (~) _ aL = 0. (2.11) 
aDX aD. X ax 

Such X makes the functional I stationary. This extends the 
Euler equation in ordinary calculus of variations and will be 
called the Euler-Nelson equation since it also extends Eq. 
(2.5) proposed by Nelson. Indeed, the Euler-Nelson equa­
tion for the action integral IQM given by Eq. (2.8) coincides 
with Eq. (2.5). This will provide the possibility of reformulat­
ing the stochastic quantization procedure in terms of the 
least action principle IQM(X) = stationary. 

Let Xbe a conditional stochastic process in D(Y) sub-
ject to the Euler-Nelson equation (2.11) such that X, 
= xER" (a.s.), and Ybe an arbitrary conditional process in 

D(Y) such that Yr = ° and Y, = YER" (a.s.). Then Eq. (2.10) 
claims dI (X, Y) = E[(aLlaDX,) + (JLlaD.X,)IX, =x].y, 
and therefore we obtain 

E[~ + ~Ix =x] 
aDX, aD. X, ' 

= VE [1'L (X"DXs,D.X,)dsIX, = x). (2.12) 

For more about stochastic calculus of variations, see Ref. 29. 
We shall now show how stochastic calculus ofvari­

ations works in getting informations about the sample path 
behavior of the Nelson process X. Because the seven hypoth­
eses on X of the stochastic quantization procedure are equiv­
alent to the Schrodinger equation (2.4), we may say that the 
Nelson process representing the quantum dynamics is deter­
mined by the Schrodinger equation. Therefore, the wave­
function if; seems to contain some information about the 
sample path behavior. Since the probability distribution 
p(x,t W x = Pr (! w€fl/X, (w)ed" x I) does not help us to see 
sample path behavior, we must look for it in the phase of the 
wavefunction if;. It is quite interesting to see that the key 
concept of quantum mechanics-the phase of wavefunc­
tion-has a close relation to the sample path behavior of the 
quantum dynamics. 

The stochastic quantization procedure can also be for­
mulated within the realm of stochastic calculus of variations. 
The first, third, fifth, and sixth hypotheses remain un­
changed, but the second one (i.e., the dynamical assumption) 
is replaced by the least action principle I QM(X) = stationary. 
The last one is not necessary, for it comes from this least 
action principle. Indeed Eq. (2.12) yields 

m!(b (x,t) + b. (x,t)) = E r LL (Xs,DXs,D.Xs)ds lx, = x). 

(2.13) 

We see immediately that those six hypotheses and substitu­
tions are equivalent to the Schrodinger equation (2.4), where 
the wavefunction if; is expressed explicitly in terms of sample 
paths; 

t/J(x,t) = p(x,t ) I /2 

1581 

xexp [ ~ E rL L (X"DXs,D.Xs) dS\ X, = x]]. 

(2.14) 
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Here we have a program to visualize the quantum dyna­
mics as the sample path behavior of the Nelson process: Let 
XEN(Y) be the Nelson process completely determined by 
the basic hypotheses of the stochastic quantization proce­
dure. Since XEQ (Y), x(r) = {x/(r) =Xr +, 10(;1< oo} be­
comes a usual continuous local semimartingale on the inter­
val [0,00 ) and we can think of its sample paths easily. Almost 
all sample paths X (r)(w),s are chosen in such a way that the 
basic dynamical assumption (2.5) holds. The sample path 
behavior thus defined can affect the phase of the wavefunc­
tion through Eq. (2.14). Conversely the wavefunction t/J-a 
solution to the Schrodinger equation (2.4)-provides the in­
formation about the sample path behavior through its phase. 
This fact will help us to illustrate the quantum dynamics in 
terms of the sample paths of the Nelson process. 

3. SAMPLE PATH ANALYSIS OF QUANTUM DYNAMICS: 
EXAMPLES 
A. The bound state 

Let us consider a solution to the Schrodinger equation 
(2.4) of the form if;(x,t) = u(x)exp( - ;At Ih ), t> 0, where UE 

L 2(R",C) is an eigenfunction ofthe stationary SchrOdinger 
equation 

( - ! ~ + v)u = AU, (3.1) 

and A is the eigenvalue. This solution represents a quantum 
mechanical bound state and defines a cross-section X (0) of the 
Nelson process XEN(Y) as a continuous local semimartin­
gale on the interval [0,(0). Sinceb, b., andp given by u do not 
depend on t, the cross-section X (0) is a stationary diffusion 
process on the interval [0,(0) with invariant measure 
p(x)d"x = lu(xWd"x generated by a diffusion equation 

af = (b(X),V + ~~)I (3.2) 
at 2m 

In such a case of the bound state, fortunately, we can con­
struct the Nelson process X directly from its cross-section 
X(O). Namely the Nelson process X for the bound state u is a 
stationary Markov process on the interval ( - 00,(0) with 
invariant measure p(x)d "x = 1 u(x) 12d "x which has the same 
transition probability law as the diffusion process X (0).2S 

Therefore we can illustrate freely the sample path behavior 
of the Nelson process (i.e., the quantum dynamics) in the 
bound state by applying the transition probability law of the 
diffusion process (3.2). The success of the recent probabilistic 
approach to quantum mechanical tunneling and instanton 
analysis certainly owes much to this fact. 7

- 12,24 As the func­
tion b (x) is a logarithmic derivative of the stationary distribu­
tion density in the bound state case, it may take an infinite 
value. From a mathematical point of view, however, this is 
harmless provided thatthe set! XER" /b (x) = 00 I has vanish­
ing Lebesgue measure. 25 The stationary Markov process X 
(i.e., the Nelson process for the bound state) can be generated 
by the Dirichlet form approach of Fukushima even if the 
probability distribution density p has nodal surfaces. 24 We 
can also investigate the sample path behavior of the Nelson 
process for the bound state with nodal surfaces by Fukushi­
ma's Dirichlet form approach. It has been shown quite re-
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cently that thfre exists a Pr-nonnull set of sample paths 
which go across the nodal surfaces depending on the degree 
ofzero.32 

B. Quantum mechanical interference 

Let us consider the famous thought experiment of 
quantum mechanical interferences. A quantum mechanical 
particle (e.g., a nonrelativistic electron) is emitted from a 
certain source at a certain time r, and it reaches a certain 
point of a detecting film at a time t certainly later than r. 
Between the source and the detecting film one places an infi­
nite plate with two parallel slits separated by a small distance 
a. Therefore at a certain time after r and before t the particle 
goes across the slits. The probability distribution of the parti­
cle on the detecting film, which can be obtained by succes­
sive emissions of the particles, shows the interference pattern 
when the two slits are open and one does not know through 
which one the particle goes. Once one knows that the parti­
cle goes through one of the slits, say the slit A (for example, 
by closing the other one, say the slit B ) the interference pat­
tern does not arise. Here we present the interpretation of this 
quantum mechanical interference with the use of the Nelson 
process and its sample path behavior. Let VA' VB' and VAB 
be the potential energies representing the existence of the 
infinite plate with the slit A open and B closed, that with A 
closed and B open, and that with both A and B open, respec­
tively. In each case there corresponds a Nelson process re­
presenting the quantum dynamics of the particle. Let 
X A, X B, and X AB be the Nelson processes for those three 
cases, which make the action integral (2.8) with respect to 
VA' VB' and VAB , respectively, stationary. They are differ­
ent stochastic processes in the class N( J"). Since we are inter­
ested in the case in which the particle certainly reaches some 
point on the detecting film, we see only the sample paths 
going through the two slits. 

Case 1: The slit A is open and B closed. Let x be an 
arbitrary point on the detecting film and n~ be the totality of 
sample paths of the Nelson process X A which reach x at a 
certain time t. By the formula (2.14) the wavefunction 
if; A (x,t) is given in the form 

if;A(x,t) =PA(x,t)'/2 

xexp[ ~ E~ [fL (X:,DX:,D.X:) dS]], 

(3.3) 

where E ~ [.J is the expectation over the sample paths belong­
ing to n ~, and PA (x,t)d"x = Pr(! wEflIX 1(W)Ed"x 1) is the 
probability of finding the particle in the vicinity of x. This 
gives the detecting pattern on the film for the successive 
emissions of the particles. 

Case 2: The slit A is closed and B open. The wavefunc­
tion if;B(x,t) is 

if;B(x,t) =PB(X,t)'/2 

xexp[ ~ E![fL (X~,DX~,D.X~) dS]], 

(3.4) 

where E ![.J is the expectation over the totality of sample 
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paths of X B, denoted by n !, reaching x at t and P B (x ,t )dn x 
= Pr(! wEfl IX ~(w)Ed "x 1). If the distance between the 

source and the slits is long enough compared with that be­
tween the slits A andB, if;B(x,t) coincides with the wavefunc­
tion of case 1 shifted by a, that is, 

if;B(x,t) = if;A (x - a,t) 

= P A (x - a,t ) 1/2 

xexp[ ~ E~_a [fL (X:,DX:,D.X:)dS]]. 

(3.5) 

where a here should be understood as a vector parallel to the 
film and the plate with norm a. The detecting pattern 
PB(X,t) d"x also becomes a shifted one PA (x - a,t)d "x. 

Case 3: Both A and B are open. Let n ~B be the totality 
of sample paths of the Nelson processX AB which reach x at t. 
Then the wavefunction if; AB (x,t ) becomes 

if;AB(x,t) = PAB(X,t )'/2 

xexp[ ~ E~B[fL (X:B,DX:B,D.X:B) dS]]' 

(3.6) 

where E ~B[.] is the expectation over n ~B and P AB (x,t)d nx 
= Pr( ! wEfl IX 1B(W )Ed nx 1). Notice that n ~ B 
=l=n ~un!. However n ~B admits a decomposition n ~B 
= n ABAun ABB where n ABA and n ABB are the totalities of 

sample path; of the Nelso~ process X AB which go through 
the slit A and the slitB, respectively. This decomposition can 
be used to get another expression for the wavefunction if; AB 

. h h d .. nAB nABA, ,nABB (X,t ). Smce we ave t e ecomposltlOn JJ; x = JJ; x UU x , 

at a certain time S after r and before t the probability distribu­
tion P AB (z,s), ZEIR", consists of two functions P~BA and P~BB 
EL,(IR") with nonoverlapping supports. At that time the 
wavefunction if; AB (z,s) is therefore the sum of two corre­
sponding parts if; ABA (z,s) and if; ABB (z,s). The linearity of the 
Schrodinger equation (2.4) claims, then, 

(3.7) 

where 

if;ABA(x,t) =PABA(X,t)'/2 

xexp[ ~ E~BA[ f L (X:B,DX:B,D • .x:B) dS]}, 

(3.8) 

xexp[ ~ E~BB[ f L (X:B,DX:B,D • .x:B
) ds 1], 

(3.9) 

PABA (x,t) and PABB(X,t) are probability distributions of x1
B 

satisfying the initial conditions PABA (z,s) = P~BA (z) and 
. . dE ABA dE ABB th PABB(Z,S)=P~BB(z),respectIVely,an x an x are e 

expectation over n ~BA and n ~BB, respectively. By the sym­
metry consideration again, we know that if; ABB coincides 
with if; ABA shifted by a, 
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rPABB(X,t) = rPABA (x - a,t) 
1/2 = PABA (x - a,t) 

xexp[ ~ E~~a[LL (X1B,DX1B,D.X1B) dS]]. 

(3.10) 

The detecting pattern in this case is P AB (x,t ) = I rP AB (x,! W 
which can be computed through Eqs. (3.7), (3.8), and (3.10), 
obtaining 

PAB = PABA + PABB + 2(PABAPABB)1/2 cose, 

where the phase difference e is given by 

e = fz- I [E~BA{1'L (X1B,DX1B,D.X1B) dS] 

- E~~a [1'L (X1B,DX1B,D.X1B)dS]]. 

(3.11) 

(3.12) 

This gives the quantum mechanical interference. The phase 
difference e can be manipulated by the formula (2.13) and 
we obtain 

m e = 1- (b (x,t ) + b. (X,t )).a + o(a). 
fz 

(3.13) 

The present sample path analysis of the Nelson process 
thus shows that the quantum mechanical interference ap­
pears when the slits are both open. It tells us also the interest­
ing fact that in any case the particle certainly goes through 
either the slit A or D, since the sample paths of the Nelson 
process all go through either A or D. 

C. Gravitational effect in quantum mechanics 

In classical mechanics the equivalence principle asserts 
that the dynamics of a particle is of geometric nature and 
does not depend on the mass. Indeed the classical F trajec­
tory for a gravitational force F = - m V VG satisfies New­
ton's equation of motion 

(3.14) 

in which the mass parameter does not appear. However, in 
quantum mechanics, the Schrodinger equation (2.4) contains 
essentially the mass parameter even if the gravitational po­
tential m VG is involved. Therefore it might be supposed that 
the quantum dynamics of the particle in the gravitational 
field is no longer a purely geometric one but depends on the 
mass of the particle. We will soon see, contrary to this suppo­
sition, that the quantum dynamics in the gravitational field 
is also of geometric nature as is the classical dynamics. 

Let us consider two independent particles with different 
masses m and m'. Let X andX' be the Nelson processes in the 
class N(Y) representing the quantum dynamics of those par­
ticles, respectively. Since the Euler-Nelson equations for X 
and X' are of the same form, 

1(DD.X + D.DX) = - VVG(X), (3.15) 
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we conclude that their sample path behaviors are identical 
and so their dynamics are. As the magnitude of their qua­
dratic variations are different, i.e., fzl2m and fzI2m', howev­
er, the probability measures defined on the sample paths are 
different. This fact results in having the mass parameter in 
the Schrodinger equation. Notice that the mass enters in the 
Schrodinger equation only through a combination (fzlm) in 
the case of gravitation. Even in quantum mechanics, the 
dynamics of the particle in the gravitational field is of geo­
metric nature, but the quantum fluctuation, that is, the path 
probability measure, is not. 
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Jacobi discovered that the motion of a heavy symmetrical top can be decomposed into the motions 
of two torque-free triaxial tops. In this paper we investigate the connection between the three sets 
of the dynamical constants in the three top motions. The formulas connecting these constants are 
found to be projective transformations (fractional linear transformations). 

PACS numbers: 03.20. + i 

1. INTRODUCTION 

The position of a rotating rigid body with one point 
fixed is completely determined by three independent varia­
bles, for example, three Euler's angles. Therefore, once the 
Euler's angles as functions of time are found, the further 
computation of the orthogonal matrix whose nine elements 
are the direction cosines of the moving body axes with re­
spect to the fixed space axes, may seem to be an unnecessary 
tedious work without yielding any further new information 
in it. However, Jacobi found that the orthogonal matrix M, 
which describes the motion of a heavy symmetrical top can 
be decomposed into two orthogonal matrices M, and M 2, 

each of which represents the motion of a torque-free triaxial 
top.I,2 Jacobi expressed the matrix elements of all the three 
matrices explicitly in terms of the theta functions and em­
ployed the addition theorem of the theta functions in estab­
lishing the relation 

M=MJ::t2' (1.1) 

where M2 is the transpose of M 2, The physical meaning of 
Eq. (1,1) is that the motion ofa heavy symmetrical top can be 
decomposed into two motions of two torque-free triaxial 
tops. Let us consider the motion of a heavy symmetrical top 
M with the principal axes (X2' Y2, Z2) and the motion of a free 
triaxial top M, with the principal axes (XI'YI' zd, both of 
which are described with respect to a frame of reference 
(x ,Y, z) fixed in space. Then the motion of the torque-free 
triaxial top observed from the fixed space is described by the 
orthogonal matrix M, and the same motion when observed 
from the frame of the heavy symmetrical top (i.e., the observ­
er moving with the heavy symmetrical top) is described by 
the orthogonal matrix M2. The relative motion M2 turns out 
to be also representing the motion of a torque-free triaxial 
top. But not only the dynamical parameters but also the kin­
ematical parameters (e.g., moments of inertia) of the two tri­
axial tops underlying the motions M, and M2 are different. 

In Sec. 2 we will give a summary of those aspects of the 
rigid-body motions that are needed for our study. The pre­
cise description of the position of a rigid body at any instant 
requires three transcendental constants: the modulus of the 
elliptic functions, the time scaling factor, and the additive 
constant in the argument of the elliptic functions. Klein and 
Sommerfeld call these constants transcendental in contrast 
to elementary physical constants which represent the energy 
and angular momenta of the motion. 3 Among the three top 

motions M, M
" 

M2 involved in Jacobi's decomposition 
theorem, the equality of the three time-scaling factors and 
that of the three moduli are obvious because elliptic func­
tions with different moduli represent completely different 
functions and the different time-scaling factors would make 
the concordant repetition of the periodic motions of the 
three top motions impossible. Jacobi found a simple addition 
relation (including sum and difference) for the third type of 
transcendental constants (the additive constants). 

The purpose of our study is to find some simple rela­
tions between the three sets of physical constants of the three 
top motions. The possibility of finding the simple relations is 
suggested by the following two observations: (1) The squared 
modulus k 2 of the elliptic functions is the cross ratio of the 
four physical constants and the constancy of the cross ratio 
under a projective transformation [fractional linear transfor­
mation x' = (ax + b )/(cx + d )]4 gives a hint that these three 
sets of physical constants may be connected by the projective 
transformation which will ensure the equality of the moduli 
of all the elliptic functions used in the description ofthe three 
top motions. (2) The formula for the addition theorem of the 
elliptic functions is fractional (the trigonometric functions 
are special elliptic functions with zero modulus and the de­
nominator for the trigonometric addition theorem degener­
ates into unity).5 The addition relation p = q I ± q2 disco­
vered by Jacobi for the third type of transcendental 
constants when combined with the fractional addition 
theorem of the elliptic functions also hints at the projective 
relation between the three sets of physical constants. 

We will show in Sec. 3 that the above two observations 
indeed lead to the remarkable result: the three sets of phys­
ical constants in Jacobi's decomposition theorem are con­
nected to each other by simple projective transformations. 

The relative magnitudes of the physical constants of a 
top motion must satisfy either increasing or decreasing se­
quential order in a particular way, and our result certainly 
meets this criterion which we see in Sec. 4. 

2. THE PERTINENT RESULTS FROM THE RIGID-BODY 
DYNAMICS 
A. A heavy symmetrical top 

We denote the principal moments of inertia of a rigid 
body by (11,12,13 ), For the motion ofa symmetrical top 
(I, = 12 ) with one point fixed under the action of the uniform 
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gravitational force, we have 

E = !I2(iJ 2 + ¢ 2 sin2 0) + ~I3{));, + MgI cos 0, (2.1) 

where E is the total energy. 0, ¢, and t/l are usual Euler's 
angles. ())z, is the angular velocity component along the axis 
of symmetry. M is the total mass and I is the length between 
the center of gravity and the fixed point. We rewrite (2.1) as 

E' = E - ~I3{));, = ~II(iJ 2 + ¢ 2 sin2 0) + MgI cos O. 

Now we introduce 
(2.2) 

u=(2E'/Id l
/
2 and v=(2MgI/Id l

/
2

, (2.3) 

where both u and v have the dimension of angular velocity. 
In terms of u and v, the three dimensionless physical con­
stants of the motion of a heavy top will be 

a' = u/v. (2.4) 

a = the angular momentum component along the axis 

of symmetry divided by vII' (2.5) 
b = the angular momentum component along the space 

z axis (antiparallel to the gravity) divided by vII' 
(2.6) 

We will always divide any angular velocity by v to make it 
dimensionless. The expression for the dimensionless angular 
velocity iJ of the nutation is given by 

iJ 2 sin2 0 = (1 - cos2 0 )(a' - cos 0 ) 
- (b - a cos 0 f (2.7) 

We put x = cos O. Then (2.7) becomes a cubic expression in 
x, 

x2 = (1 - x2)(a' - x) - (b - axf 

= (x - x I)(X - x 2)(x - x 3) = f(x), (2.8) 

where XI' X2, X3 are the roots of the cubic equationf(x) = O. 
It can be shown that the three roots are all real, 

x l >I>X2 >X3> -I, (2.9) 

and the physical range of x( = cos 0) is 

(2.10) 

The cubic equationf(x) = 0 has an interesting structure in it: 
when a and b are interchanged in (2.8) and if a' is replaced by 
a which is given by 

a = a2 
- b 2 + a', (2.11) 

then the three roots x I ,x2 X 3 will still remain unchanged. In 
that case, Eq. (2.8) can be written 

fix) = (1 - x 2)(a - x) - (a - bxf 

(2.12) 

with the same set of the three roots. It turns out that this 
symmetric property of the cubic expressionf(x) plays an im­
portant role in our analysis on the decomposition theorem. 

From either (2.8) or (2.12), by putting x = ± 1, we ob­
tain the following two expressions: 

a - b = ± [(XI - 1)(1 -x2)(1 -X3J]i12, (2.13) 

a + b = [(Xl + 1)(1 + x 2)(1 + x3)r 12. (2.14) 

Further, from (2.8) we obtain 

b - aa = ± [(XI - a')(a' - x2)(a' - X3J]i/2, (2.15) 

aXI - b = ± [(xi - I)(XI - a')] 1/2, (2.16) 
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b - aX2 = ± [(1 - x;)(a' - x2)] 112. 

Also from (2.12), we get 

a - ba = ± [(XI - a)(a - x 2 )(a - X3)]1!2, 

bX I - a = ± [(x~ - l)(xl - a)] \12, 

a - bX2 = ± [( 1 - x;)(a - x 2 )] \12. 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Since all the quantities in the above expressions are real and 
we have the inequality condition (2.9), the expressions (2.16), 
(2.17), (2.19), and (2.20) will give 

x\ >a' >X2>X3' 

(2.21) 

XI >a>x2>x3• 

All the above expressions (2.13) through (2.21) will be needed 
later. 

The period T of the heavy top motion is given by \ 

T=2K/n, 

when n, the time scaling factor, is defined byl 

n = HXI - x3f!2· 

Kin (2.22) is the complete elliptic integral 

K= Y i."./2 d 

o (l_k 2 sin2y)1!2' 

where k is the modulus' 

k 2 = (X2 - X3)/(X \ - X3)' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

In order to express the Euler's angles ¢ and t/l as explicit 
functions oftime, Jacobi introduced the two constants ql 
and q2 which are expressed in terms of the three roots 
through the elliptic function sn' 

sn (iql) = i[X\ - 1 ]112, sn (iq2l = i[ XI - X3 ]112. 
1 - x 2 1 + X3 

(2.26) 

Since cn2 = 1 - sn2 and dn2 = 1 - k 2 sn2
, (2.26) gives 

cn(iqd = \ - 2 ,cn(iq2) = [
XX ] \/2 [ 1 + X I ] 112 , 

1 - x 2 1 + X3 
(2.27) 

(2.28) 

where (2.25) has been used for (2.28). In accordance with 
Klein and Sommerfeld, we call the constants n (the time­
scaling factor), k (the modulus), qland q2 introduced above 
"the transcendental constants,,,3 while the constants a, b, 
ala'), XI' X2, and X3 all of which appear in the cubic expres­
sions (2.8) and (2.12) we call "the physical constants." 

B. A torque-free triaxial top 

We denote the principal moments of inertia of the first 
free triaxial top by (A" B \' ClIo Then the four physical con­
stants of the motion of the torque-free triaxial top will be6 

II lL /1 !!J.. 
A\' Bl' C;' 'I' (2.29) 

where II is the magnitude of the total angular momentum 
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and h I is twice the total energy (the kinetic energy). Each of 
these has the dimension of angular velocity. In the decompo­
sition theorem, since the motion of a heavy top is connected 
with the motions of two free tops, we divide each of the above 
four constants by v which is defined by (2.3) to make it di­
mensionless as we did in the case of the heavy top motion. 
Therefore it is always understood that the four physical con­
stants in (2.29) have already been divided by v and they are 
dimensionless. For the sake of conveniency, we write the 
four physical constants as 

hi II II 
50 = -, 51 =-, 52 =-, 

II C, A, 
(2.30) 

The period T, of the motion is given by6 

TI = 2K/n" (2.31) 

where n I' the time-scaling factor, is defined by6 

n, = [(50 -52)(5, -53)]'12. (2.32) 

K, in (2.31) is the complete elliptic integral 

KI = {"/2 dy 
Jo (1 - k~ sin2 y)I!2 

k, is the modulus given by6 

k ~ = (53 - 52 )(5 I - 50) . 

(50 - 52 )(5, - 53) 

(2.33) 

(2.34) 

Since two torque-free triaxial tops are involved in the 
decomposition theorem, we write the four physical con­
stants for the motion of the second free top as 

5b = h2, 5; = lL, 5; = lL, 5; = lL. (2.35) 
12 C2 A2 B2 

Like the case of the first free-top motion, the period T2, the 
time-scaling factor n2, the complete elliptic integral K 2 , and 
the modulus k2 are given by 

2 (5; - s; )(s; - s~) 
k2= . 

(s~ - s; )(s; - s; ) 

(2.36) 

(2.37) 

(2.38) 

In order to express the Euler's angle ¢I of the first free­
top motion as an explicit function of time, Jacobi6 intro­
duced a constantp, 

. . [So - S2 ] 112 sn(lp,) = I --- , 
5, -So 

(2.39) 

whence we get 

(2.40) 

. [51 -52]'12 dn(lpd= -- , 
S, -S3 

(2.41) 

where (2.34) has been used for (2.41). 
Similarly, for the second free-top motion, a constantp2 

is defined by 

[

S' - 5' ] '/2 
sn(ip2) = i _0 __ 2 , 

S; -sb 
(2.42) 
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whence we have 

cn(ip2) = _' __ 2 , [
S' - S'] 112 

s; -S~ 
(2.43) 

dn(ip2) = _' __ 2 • 
[

S' - s' ] 112 

S; -s; 
(2.44) 

3. DERIVATION OF THE PROJECTIVE 
TRANSFORMATIONS CONNECTING THE THREE SETS 
OF PHYSICAL CONSTANTS 

Our goal is to find the connecting formulas between the 
three sets of physical constants (XI' X 2, x 3), (so, SI' S2' S3)' and 
(sb, si , s~ , s~ ). 

Because of the concordance of the periodic motions of 
the three tops, the periods of the three motions must be the 
same and further the nature of all the elliptic functions de­
scribing the three top motions must also be the same, that is, 
the three moduli must be equal. Then we must have 

k = kl = k2' (3.1) 

n = n l = n2 • (3.2) 

The expressions of the three squared moduli, 

k 2 _ X 2 -X3 
- , 

X, -X3 

(53 - S2)(SI - So) 
k~= , 

(So - S2)(SI - S3) 

(.5; - S; )(s; - 5~) 
k ~ = .:...:.---=.:..:....:..--=..:. 

(sb - S; )(5; - s; ) 

indicate that they are cross ratios of (XI' x 2, x 3), (so, 51' 52' S3)' 

and (sb, 5; , S;, s;). There is a theorem which states that the 
cross ratio of four numbers is invariant under a projective 
transformation. Therefore, we try the projective transforma­
tion4 

5= 
Ax+B 
Cx+D' 

(3.3) 

where A, B, C, D are constants. The transformation (3.3) 
carries the four numbers ( 00, X l' X 2, x 3) into the four 
numbers (50' Sl' 52' S3) and automatically ensures the equality 
of the two squared moduli k 2 = k i . Since X = 00 is trans­
formed into so, (3.3) can be rewritten as 

BC-AD A 
5 - So = , 50 = -. (3.4) 

C(Cx+D) C 

Now from (2.32), (2.34), and (2.39)-(2.41), we obtain6 

i dn(ipd 
s, -50 = + n, , 

- sn(ipI)cn(IPI) 

sn(ipddn(ipd 
52 - So = + n, , 

- i cn(ip,) 
(3.5) 

k;2 sn(ipIl 

S3 - So = ± n, i cn(IPI)dn(ipIl ' 

where k ;2 = 1 - k i. 
Jacobi found the addition relation between the tran­

scendental constantsp" q" q2 all of which we have intro­
duced in Sec. 2. It is' 

(3.6) 
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We apply the addition theorem of the elliptic function sn to (3.6)5: 

( 
.) (. . \ sn(iq dcn(iq2)dn(iq2) + sn(iq2)cn(iq ddn(iq d 

snip, =snlq, +lq21 = 1 k 2 2(' ) 2(' ) . (3.7) 
- sn Iq, sn Iq2 

We substitute (2.26) through (2.28) into (3.7) to obtain 

(
1_X2)112 b _ . 2 Xl a 

=/ ---
xi - 1 a - bX2 

in which we have used (2.13) and (2.14). Substituting (2.19) 
and (2.20) into (3.8), we obtain 

[
X _a]l12 sn(lpd = i _I __ 

a -X2 

Since cn2 = 1 - sn2
, dn2 = 1 - k 2 sn2

, and 
k 2 = (X2 - X3)/(X l - x 3), (3.9) leads to 

cn(ipd = [Xl - X2] 112, 
a-x2 

dn(ipl) = [(Xl -x2 )(a -X3 )]I12 
(Xl - X3)(a - x 2 ) 

From (2.23) and (3.2), we have 

n l = n = HXl - X3]1I2. 

From (2.25) and (3.1), we have 

k ;2 = k ,2 = 1 _ k 2 = Xl - X 2 . 

X l -X3 

Now we substitute (3.9)-(3.13) into (3.5) to obtain 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

a-ba . 
s, -so = , 1= 1,2,3, (3.14) 

2(a-x, ) 

where we have used (2.18). Comparing (3.14) with (3.4), we 
can put 

BC-AD 

C(Cx+D) 

a -ba 

2(a-x)' 
A 

so= -. 
C 

Since this relation must hold for any x, we obtain 

So = A IC = b 12. 

Thus (3.14) can be written 

(3.15) 

b a - ba a - bx. 
s, = - + = I , i= 0,1,2,3,(3.16) 

2 2(a - x,) 2(a - x,) 

where Xo = 00 and it is transformed into So = b 12. So the 
transformation formula between the two sets of four 
numbers s, and x, (xo = 00) can be written, dropping the sub­
script i, 

S = (a - bx)/2(a - x), (3.17) 

which has the same form as (3.3) and we have obtained the 
desired projective transformation between s, and x, with 
i = 0,1,2,3. 

For the second free top motion, that is, the relation 
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(3.8) 

between the physical constants s; and x,, starting with the 
relation P2 = q 1 - Q2' using (2.15)-(2.17) and employing the 
same method used for the derivations of(3.14) and (3.17), we 
obtain 

s; - s~ = 
b-aa' 

(3.18) 

, a 
So =-, 

2 
(3.19) 

b-ax 
S' = 

2(a' -x) 
(3.20) 

Xo = 00 is carried into s~ by (3.20). If we recall (2.30) and 
(2.35), the above results (3.17) and (3.20) can be written 

11 a - bX2 -= , 
Al 2(a -X2) 

11 a - bX3 
-= , 
Bl 2(a -X3 ) 

II a - bX I -= , 
CI 2(a-x l ) 

hi b 
-=-, 
II 2 

12 _ b - aX2 

A"; - 2(a' - x
2

) , 

12 _ b - aX3 

n;- 2(a' -X3)' 

12 _ b - aX I 

C;- 2(a'-x l )' 

h2 a 
7;="2' 

Thus we have found that the two sets of physical constants of 
the two free-top motions are connected to the physical con­
stants of the heavy top motion in the form of projective trans­
formation. 

4. DISCUSSION 

In the motion of a free triaxial top, if we denote the 
principal moments of inertia by A, B, C, twice the kinetic 
energy by h, and the magnitude of the total angular momen­
tum by I, it can be shown that for any possible motion of the 
top, the parameter h II must lie between IIA and IIC for 
A > B > C or A < B < C, otherwise no physical motion is pos­
sible. 6 Observing (3.14) and (3.18), we note that all the nu­
merators in each set of the expressions are the same. Then if 
we use the inequalities in (2.21), we can easily show 
S2 > S3 > So > S I for a - ba > 0 and the opposite order of se­
quence for a - ba <0. s~ >si >s~ >s; for b - aa' > 0 and 
the opposite order of sequence for b - aa' < O. If we use 
(2.30) and (2.35), the above argument can be written 
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(4.1) 

/2 /2 h2 /2 h . - > - > - > - or t e oppoSIte sequence. 
A2 B2 /2 C2 

This result (4.1) certainly meets the criterion mentioned ear­
lier. 

1588 J. Math. Phys., Vol. 23, No.9, September 1982 

'c. G. J. Jacobi, Werke (Reimer, Berlin, 1882), Vol. 2, p. 493. 
2W. D. MacMillan, Dynamics o/Rigid Bodies (Dover, New York, 1960), 
Chap. VII, Sec. 117. 

3F. Klein and A. Sommerfeld, Uber die Theorie des K reisels (Teubner, Leip­
zig, 1897), p. 428. 

4R. A. Silverman, Introductory Complex Analysis (Dover, New York, 1972), 
Chap. 5, Sec. 25. 

5E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge U. P., 
Cambridge, 1943), p. 494. 

6Reference I, pp. 306--314 and pp. 427-430. 

K. Yamada and S. Shieh 1588 



                                                                                                                                    

Vector fields generating invariants for classical dissipative systems·) 
F. Cantrijnb),C) 
Department of Physics, Northeastern University, Boston, Massachusetts 02115 

(Received 11 May 1981; accepted for publication 26 June 1981) 

A class of vector fields is identified which (locally) generate first integrals of a dissipative system. 
The structure of these vector fields and of the corresponding invariants is studied. The 
relationship with a previously proposed generalization of Noether's theorem for nonconservative 
systems, is pointed out, 

PACS numbers: 03.20. + i, 02.40. + m 

I. INTRODUCTION 

In this paper we will study a relationship between a 
class of vector fields, defined on the extended state space of a 
classical dissipative system, and the set of (local) first inte­
grals of that system. 

In calling a system dissipative (or nonconservative) we 
refer to the property that, in terms of a given Lagrangian .Y, 
the equations of motion are of the form 

:r(~:) -~: = Qi' i = l, ... ,n, (1 ) 

with Qi some functions which may depend on all variables t, 
qi,qi. As is well known, I such a description does not necessar­
ily prevent the system from admitting a purely Lagrangian 
description in terms of some other Lagrangian 'y'. The no­
tion of dissipativity should therefore always be interpreted 
relative to some given Lagrangian. 

Recently, several papers2
-

5 have been devoted to the 
problem of finding transformations which, in some way or 
another, generate an invariant of a dissipative system. A gen­
eral approach, based on d'Alembert's differential variational 
principle, has been presented in Ref. 2. More closely related 
to the present paper is a generalized version of Noether's 
theorem and its converse, which applies to general noncon­
servative systems (see Ref. 3). This result has been further 
extended to generalized mechanical systems (with .Y and Qi 
depending on higher-order derivatives),4 whereas the field­
theoretical case has been treated in Ref. 5. 

The method described in this paper arises mainly from 
the geometrical description of a dissipative system in terms 
of a nonclosed two-form of maximal rank. The existence of 
such a two-form immediately allows for the identification of 
a class of vector fields which generate first integrals of the 
given system in an unambiguous way. To a certain extent the 
present treatment will closely resemble the discussion of 
Noether symmetries of a Lagrangian system (with Lagran­
gian .Y), regarded as symmetries of an exact contact struc­
ture de, where e represents the so-called Cartan-form associ­
ated with cY: 

,iWork supported by a NATO Research Fellowship Grant. 
b) Permanent address: Ryksuniyersiteit Gent, Instituut Yoor Theoretische 

Mechanika, Krijgslaan 271-S9, B-9000 Gent, Belgium. 
ciSenior Research Assistant at the National Fund for Scientific Research 

(Belgium). 

(2) 

(see, e.g., Refs. 6 and 7). Unlike the case of Noether symme­
try vector fields, however, the vector fields associated with 
invariants of a dissipative system in general fail to be dyna­
mical symmetries of that system. 

In Sec. 2 we recall some general concepts which we shall 
adopt in this paper concerning the description of a dissipa­
tive system. In Sec. 3, we exhibit a set r of vector fields on 
the extended state space, which can be related in a very pre­
cise way to the first integrals of the system under consider­
ation. It is also shown that r remains invariant under a class 
of dynamical symmetries. Section 4 is devoted to the struc­
ture of vector fields YEr, and a system of partial differential 
equations for the components of Y is derived. In Sec. 5, we 
analyze the structure of an invariant of a dissipative system 
in terms of the components of the corresponding generating 
vector field. Noether's theorem for nonconservative sys­
tems, as presented in Ref. 3, is briefly reviewed in Sec. 6 and 
its connection with the present approach is clarified. Before 
concluding with a few general remarks we discuss, in Sec. 7, 
a special class of dissipative systems for which one can imme­
diately associate a dynamical symmetry with each YE7/. 

The following notations will be used. The sets of smooth 
functions, vector fields and p-forms on a differentiable mani­
fold N are denoted by Coo (N), /?E(N) and {lP (N), respective­
ly. The Lie derivative of a p-form /3 with respect to a vector 
fieldXis denoted by Lx/3, while the inner product of X and/3 
is written asix/3 or, in case/3isaone-form, as (X,/3). Finally, 
for the Lie derivative of a function/with respect to X we also 
frequently use the notation X (f). 

II. DISSIPATIVE SYSTEMS 

Let M be a real n-dimensional differentiable manifold, 
representing the configuration space of a mechanical system. 
Local coordinates on M will be denoted by (ql, ... ,qn). Since 
we will primarily be dealing with time-dependent systems, it 
is convenient to introduce the extended state space 
N = R X TM. The natural coordinates on N are (t, q"qi). 

A dissipative system will be characterized by a function 
.Y E Coo (N), the Lagrangian of the system, and a semi-basic 
one-form Ii on TM, which may be time dependent. While a 
general discussion on semi-basic forms can be found, e.g., in 
Ref. 8, it suffices for our purpose to point out that Ii will 
locally be of the form 
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(3) 

i.e., without terms in dij', but with the functions Q, depend­
ing on the 2n + 1 variables (t, cj,if). Regarding fi as a one­
form on N in a natural way, we now introduce the following 
two-form on N: 

(4) 

with e the Cartan-form (2) associated with .2". For conve­
nience, we henceforth put I-l = fi 1\ dt. 

The further discussion will be restricted to those cases 
in which ~ is regular, i.e., the Hessian matrix (a 2 ~ / aq' ail) 
is nowhere singular. It then easily follows that a is a two­
form of maximal rank, namely 2n. In particular, Ker a(p) 
= I vETp N:iva(p) = 01 defines a one-dimensional subspace 

of the tangent space TpN atpEN We furthermore 

assume that Ker a( = u Ker a(p)), as a line bundle over N, 
pEN 

is trivial. This means that there exists a nowhere-vanishing 
vector field XEf?(N) which generates Ker a(p) at each PEN. 
A straightforward computation (in local coordinates) reveals 
that (X,dt) ::;60. This in turn guarantees the existence of a 
vector field .1Ef?(N) which is completely determined by 

illa =0, 

(.1,dt) = l. 

(Sa) 

(Sb) 

Using the local expressions (2) and (3) for e andfi, respective­
ly, it can easily be verified that .1 is a second-order vector 
field which, in terms of the natural coordinates on N, is given 
by 

.1 =i.+ij'~+A ,~, 
at aq' aij' 

where the functions A ' are uniquely specified by the 
identities 

a
2
!f Aj + a2~ if + a

2
!f _ a~ =Q" 

aq'aij aq'aq' aij'at aq' 

(6) 

i = I, ... ,n. (7) 

Consequently, the vector field .1 defined by (Sa and Sb) is 
precisely the dynamical field associated with a dissipative 
system whose equations of motion are locally given by (I). 

Before proceeding, we notice the following. Suppose the 
one-form fi is such that dl-l=d (ji 1\ dt) = O. Poincare's 
lemma 9 then assures us that I-l is locally exact. Since fi is a 
semi basic form, this leads to the following local expression 
for f-t: 

I-l = - d (V01T) I\dt, 

where Vis some function defined on (an open subset of) 
R X M and 1T:R X TM--+R X M denotes the natural projec­
tion. Hence, in this case the substitution 
y --+y' = Y - V0 1T immediately provides us with a pure­
ly Lagrangian description of the system in terms of ~/ (i.e., 
without dissipative terms). Unless explicitly stated otherwise 
we henceforth restrict our attention to those cases whereby 
da = dl-l ::;60, in this way narrowing somewhat the notion of 
a dissipative system. If ~ represents the usual physical La­
grangian of a mechanical system (i.e., Y = kinetic energy 
- potential energy), the functions Q, can then be interpret-
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ed as the components of forces that are not derivable from a 
potential. 

In order to fix the terminology we now introduce a few 
definitions. 

Definition 1: YE2.t'(N) is a dynamical symmetry of 
.1 iff [Y,.1 ] = hL1 for some function hEC "'(N). Dynamical 
symmetries map integral curves of .1 into integral curves, up 
to a possible change of parametrization. 

Definition 2: YE2"(N) is a trivial symmetry of 
.1 iff Y = h.1 for some hEC "(N). The set of trivial symme­
tries is precisely the subset of dynamical symmetries which 
consists of all smooth sections of Ker a. 

Definition 3: YE,'?"(N) is a conformal symmetry of 
a iff Lya = ka for some kEC "(N). In particular, Yis called 
a symmetry of a if L ya = O. 

From these definitions, the definition (5) of .1 and the 
observation that all smooth sections of Ker a form a one­
dimensional module over C "(N), we immediately derive: 

Corollary 2.1: YEsY-'(N) is a dynamical symmetry of .1 iff 
i[y.1l [a = O. 

Corollary 2.2: Each conformal symmetry of a is a dyna­
mical symmetry of .1. (The proof of Corollary 2.2 is based on 
the formula" i[y.1l [a = Lyilla - iIlLya.) 

To close this section we now give some useful expres­
sions for certain differential forms on N, in terms of a specific 
basis of one-forms. 

Given a dissipative system with Lagrangian x and se­
mibasic one-form fi, a basis for the set of one-forms on a local 
coordinate neighborhood UcN is provided by the forms: 

dt, dq' - i/dt, dij' - A 'dt, (i = I, ... ,n) (8) 

whereby the functions A 'are defined by P). For any function 
FEC "(U) we then have 

dF = .1 (F )dt + aF (dq' _ q'dt ) + aF (dq' - A 'dt), (9) 
aq' aq' 

and the local expressions for I-l and a become 

I-l=Q,(dq'-q'dt)l\dt, (lOa) 

a2 y .. .. 
a = -~ -(dq' - qdt ) 1\ (dq' - q'dt ) 

aq'aq' 

+ a
2 

X (dqi _ A idt) 1\ (dcj- ifdt ). (lOb) 
aq'aq 

III. VECTOR FIELDS GENERATING FIRST INTEGRALS 

For a given dissipative system with associated two-form 
a, we consider the set of vector fields Y defined on N, or on 
some open subset of N, which satisfy the condition 

d(iya) = O. (11 ) 

This set will be denoted by 'Y. Clearly, 'Y contains all trivial 
symmetries of .1. For each open subset UCN (regarded as a 
submanifold of N) the corresponding subset of 'Y, consisting 
of those vector fields which are defined on U and satisfy (11), 
admits the structure of a linear space (over R). However, due 
to the fact that da ::;60, 'Y will not be closed under the Lie 
bracket, i.e., the vector fields in 'Y do not form a subalgebra 
of f?(N). Taking into account the definition (4) of a, we find 
that YE'Y iff 

F. Cantrijn 1590 



                                                                                                                                    

(12) 

If J.L were closed we would recover here the characterization 
of Noether symmetry vector fields for Lagrangian sys­
tems.6

•
7 The following result is now straightforward: 

Proposition 3.1: For each YEr there exists, at least lo­
cally, a first integral G of.1 which is related to Yaccording 
to 10 

iya = dG. (13) 

Proof By Poincare's lemma,9 condition (11) implies 
that iya is locally exact. Hence, a relation like (13) holds at 
least in a neighborhood of each point (where Yis defined). 
Using (5a) we then see that 

0= (.1,dG) =.1 (G). o 
Conversely, we also have 

Proposition 3.2: For each first integral G of.1, defined 
on some open subset UCN, there exists a vector,field 
YE&"'( U) for which (13) holds (and hence, YE7/). This result 
is an immediate consequence of the following lemma. 

Lemma 3.3: Let.8be a one-form defined on some open 
subset UCN. Then, (.1,/3) = 0 iff .8 = iya for some 
YE&"'(U). 

Proof We prove the lemma for U = N. The sufficiency 
immediately follows from (5a). 

To prove the necessity we first notice that a induces a 
vector bundle homomorphism p: TN-T * N, defined by 
p(v) = iva(P) for vETpN. Simple algebraic considerations re­
veal thatp(TpN) = !.8pET;N:(.1 (P),/3p) = OJ. It then fol­
lows that for a given.8EflI(N), satisfying (.1,/3) = 0, the 
equation i ya =.8 admits a solution for Y in a neighborhood 
Up of each point PEN. In order to obtain a global solution, we 
usea partition of unity argument (see, e.g., Ref. 9, p. 122). Let 
! UA fA I be a partition of unity subordinate to the covering 
! Up I of N. In particu~ar we have ~A fA (P) = 1 at each point 
p. It follows from above that for each A. there exists a vector 
field Y ~ E&"'( UA) such that iy-Ja I uJ =.8 I U

A
' Next, we de­

fine a vector field YA E&"'(N) by 

YA(P){ :_fOA(P)Y~(P) for all PEUA, 
for all piuA • 

Putting Y = ~A YA , whereby the sum on the right-hand side 
reduces to a finite sum at each point, we finally have 

iya = ~fAiyJaluJ = (~fA.8) =.8, 

which completes the proof. 0 
In order to prove Proposition 3.2, it now suffices to 

notice that G is a first integral of.1 iff (.1,dG) = o. A few 
remarks are in order here. First of all, it is clear from (13) that 
for a given YEr, the corresponding first integral G is locally 
determined up to a constant. Conversely, it follows from the 
maximal rank condition for a that for a given invariant G of 
.1, the vector field Y satisfying (13) will be determined up to a 
trivial symmetry of .1. Consequently, if we call two vector 
fields in r equivalent if they differ by a multiple of.1, it is 
seen that there exists, at least locally, a precise one-to-one 
correspondence between the resultant set of equivalence 
classes of vector fields in r and the set of first integrals of .1 
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(whereby two first integrals are identified if they differ by a 
constant). 

Moreover, it is interesting to notice that each invariant 
G of.1 is also an invariant ofthe corresponding vector field 
YEr. [This follows immediately from (13)]. 

Obviously, the invariants generated by trivial symme­
tries of.1 are constants. However, if r contains a globally 
defined vector field YE&",(N) which is not a trivial symmetry 
of.1, and if moreover N would be such that its first cohomo­
logy class vanishes [i.e., H I(N) = 0], then (13) would provide 
us with a global (nontrivial) first integral G. This follows 
from the fact that if H I (N) = 0, then each closed one-form is 
globally exact. II 

SO far, the situation described here is quite analogous to 
the one encountered in the theory of Noether symmetries.7 

In the present case, however, the vector fields YEr are in 
general not dynamical symmetries of .1. This can be easily 
seen from 

i[y . .j Ja = Lyi.ja - i.jLya 

= - i.jiydJ.L, (14) 

whereby use has been made of(5a) and (12). Since the right­
hand side does not vanish in general, 12 Corollary 2.1 tells us 
that Y can not be a dynamical symmetry of .1. 

A well-known property concerning symmetries and in­
variants of a dynamical system, is that the deformation L z G 
of an invariant G under a dynamical symmetry Z yields a 
new (not necessarily independent) invariant. This result, 
which is sometimes referred to as the related (first) integral 
theorem,13 enters the present discussion as follows (taking 
into account Corollary 2.2): 

Proposition 3.4: If ZE&",(N) is a symmetry of a, then it 
leaves r invariant, i.e., [Z, Y]Er for each YEr. Moreover, 
if G is a first integral of.1, generated by Y, then L z G is the 
corresponding first integral generated by [Z,Y]. 

Proof If Lza = 0 and YEr, we immediately obtain: 

d(i[z.y Ja) = d(Lziya) = Lzd(iya) = O. 

Hence, [Z,Y]E7/. Furthermore, we locally have [using (13)]: 

i[z.y Ja = LZiya = d(LzG), 

which completes the proof. 0 
We can extend this result slightly to conformal symme­

tries Z of a for which Lza = ea for some constant e. We 
then also have that Z leaves r invariant and the related first 
integral, generated by [Z,Y], will be given by LzG - eG. 

In Sec. 4 we will focus our attention on the local struc­
ture of a vector field YEr. 

IV. STRUCTURE OF VECTOR FIELDS IN 'r 
From (4) and (12) it follows that YEr iff 

Lydf} = - diyJ.L. 

Applying Poincare's lemma,9 we find that locally 

Lyf} = - iyJ.L + dg, (15) 

for some smooth function g. 
Within the local context to which we restrict ourselves 

henceforth, we may contend that (15) represents the basic 
equation for constructing a vector field YEr. 
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Suppose we are working in a local coordinate neighbor­
hood and put 

,f-J ' J ,J 
Y=~- +s'-, + Tj'-,. 

Jt Jq' Jil 
( 16) 

Using (2) and (3) we find that Eq. (15) splits up into a set of 
partial differential equations for S i, Tji,; and g 

X' J; + JX' (Js J _ if J; ) = Jg 
Jil Jq Jil Ji/ J(l' 

(17a) 

J; JX'(JsJ .J;) J2X' ' 
,2" Jqi + Jq Jqi - q Jqi + Ji/Jql j 

J2X' ,J2X' J 
+--V+--,f--Q,f-=~ 

Ji/Jq Ji/Jt ~ ,~ Jqi' 
(17b) 

X' J; + JX'(JsJ _ qJ;) + J:£'; + Jx' Si 
Jt Jq Jt Jt Jt Jqi 

, '( J2 X' ' J2 X', J2 X') ,J 
-q' Ji/Jr/sJ+ Ji/JqV+ Ji/J/ +Q,S'= J~' 

( 17c) 

When Qi = 0, these equations are precisely the partial 
differential equations for the components of the infinitesimal 
generator of a one-parameter family of Noether symme­
tries. 7 Moreover, from (17) we can easily derive the so-called 
generalized Killing equations for Noether symmetries of 
nonconservative systems, as established in Ref. 3. Indeed, 
multiplying (17b) by ii, summing over i, and adding the re­
sulting equation to (17c) we obtain, together with (17a), a 
system of n + 1 partial differential equations in S I,;, and g, 
which precisely coincides with the system of equations de­
rived in Ref. 3. We will investigate this relationship more 
thoroughly in Sec. 6. 

In order to gain further insight in the structure of solu­
tionsof(17), we return to relation (14). WithLl and Y given by 
(6) and (16), respectively, we have in local coordinates: 

[Y,Ll 1 = - Ll (;)~ + (Tji - Ll (S '))~ 
Jt Jq' 

+ (Y(A ') - Ll (Tji))~. 
Ji/ 

Writing out (14) in terms of the basis of one-forms (8) and 
using expressions (lOa and lOb), we get by equating the coef­
ficients of di/ - A idt, 

Tji = Ll (Si) _ qiLl (;) + gi
J

Qk (S k _ qk;), (18) 
q 

whereby we have introduced the matrix 
(gij) = (J2 X' /JqiJq)-I. Consequently, the vertical compo­
nents Tji of each YE.:Y' are completely determined by the hori­
zontal components Si and the time component;. From (18) 
we can also learn· that the flow generated by Y will map 
integral curves of Ll into curves on N which in general do not 
arise from a natural lifting (and extension) of curves on the 
configuration space M. For the latter to hold it would be 
necessary that Tji = Ll (5 i) - qiLl (;), (see, e.g., Ref. 7). 

Next, we recall that for each YEY' the vector field 
Y + hLl (with h an arbitary smooth function) again belongs 
to 7~· and moreover generates the same constant of the mo-
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tion. Since Ll has time component 1 it is clear that, in order to 
find a vector field Y which generates a certain invariant of Ll, 
the time component; may, in principle, be chosen arbitrar­
ily (e.g., ; = 0). It is conceivable that in some cases this free­
dom of choice might enable one to reduce the complexity of 
the system of Eqs. (17). 

V.INVARIANTS OF A DISSIPATIVE SYSTEM 

Rewriting (15) we get 

i yde = - i y/1 + d (g - (Y,e»). 

With (4) this becomes 

i ya = d (g - (Y,e ) ). 

Comparing this with (13) we may conclude that, up to a 
constant, the invariant generated by Y is given by 

Hence, whenever (5 i,Tji,;,g) is a solution of (17), Eq. (19) im­
mediately provides us with a (local) constant of the motion. 
(Notice the resemblance with the expression for an invariant 
of a Lagrangian system, generated through Noether's 
theorem.) 

Conversely, let us assume we are given a constant of the 
motion G of a dissipative system. According to Proposition 
3.2 there exists a vector field YE':'V for which (13) holds. 
Using (9) and (10) and again representing Yby (16), we can 
write (13) in terms of the local basis of one-forms (8), as 

(20) 

Hereby we have taken into account thatLl (G) = O. Equating 
the coefficients of dqi - A idt in (20), we then obtain 

J;-i _ q'i,f- = -gijJJ~." . 1 ~ ~ '1 1= , ... ,n. (21) 

In view of the observations made in the previous sec­
tion, we may conclude that for a given constant of the motion 
G, the corresponding vector field Y is locally completely de­
termined by (21) and (18), taking into account the liberty of 
choice we have for ;. 

As a control, a simple but rather tedious calculation will 
show that if S i and Tji are given by (21) and (18), respectively, 
(e.g., with; = 0), the remaining conditions which result 
from (20) by equating the coefficients of dqi - qidt will be 
satisfied identically. 

We illustrate the above procedure for linking a vector 
field to a given invariant of a dissipative system, on the fol­
lowing example. 
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Consider a mechanical system with Lagrangian 
.!f = !l:7 ~ 1 (l/)2 - V (q), and "gyroscopic forces" 
Q, = Qi(t,q,q), satisfying the condition QAi = 0, (e.g., take 
Qi = Yij(t,qjff, with Yij = - Yji)' The equations of motion 
are 14 

.. av 
q' + -. = Qi(t,q,q). 

aq' 
(22) 

As is well known, a first integral of (22) is provided by the 
energy E = !l:7~ 1 (qi)2 + V(q). From (21) and (18) we then 
derive that the corresponding vector field Y (with (; = 1) is 
given by 

Y=!..-+Q~. 
at 'aq' 

Note that, accidentally, Yhere also represents a symmetry of 
the Lagrangian (i.e., Ly.!f = 0). All other vector fields, gen­
erating the energy integral, are obtained by adding to Yan 
arbitrary multiple of the given dynamical field 

A a ., a ( av Q) a 
L.I = at + q aqi + - aqi + i aqi' 

In Sec. 6 we will compare the generalization of Noether's 
theorem for nonconservative systems, as established in Ref. 
3, with the method and results described above. 

VI. NOETHER'S THEOREM FOR NONCONSERVATIVE 
SYSTEMS 

We first briefly summarize the main argument devel­
oped in Ref. 3. 

Suppose we are given a dissipative system, described by 
Eqs. (1). One then considers an infinitesimal transformation 
of the form 

8t = E{;(t,q,q),8qi = E5 i(t,q,q). 

8q' = dt i - q't + 1//(t,q,q)]. i = 1, ... ,n, (23) 

with E an infinitesimal parameter and where t i and t repre­
sent the formal total time derivatives of g i and {;, respective­
ly, with 

d a 'i a "i a ---+q-. +q-.. 
dt at aq' aq' 

By requiring the functions (;, g i, and tI/ to satisfy the relation 

(24) 

it can be shown3 that, whenever the corresponding transfor­
mation (23) leaves the form .!f dt gauge-variant, i.e., 

8(.!f dt) = E dg, (25) 

(to the first order in E) for some function g(t,q,q), one can 
assign to it a constant of the motion of the given system. This 
constant of the motion, which can be expressed in terms of 
.!f, g i,{;, and g, is precisely given by the expression on the 
right-hand side oft 19). Conversely, with each constant of the 
motion one can associate an infinitesimal transformation 
(23) for which (24) and (25) hold. 

Condition (25) leads to a set of n + 1 linear first-order 
partial differential equations in g i,{;, and g 
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!t' a{; + a!t' (a
gj 

_;,j a{;) = ag 
aqi aij aqi '1 aqi aqi ' 

(p( a{; 'i a{;) a!t' r ay f: i 
2. -+q-. +-~+-.~ 

at aq' at aq' 

a!t'(agj .,ag) 'i;,ja{; ;,ja{;) +--. -+q-. -q'1-. -'1-
aq at aq' aq' at 

Q( f:i 'ir)_ag 'iag + i~ -q~ --+q-., 
at aq' 

the so-called generalized Killing equations. This sytem of 
equations, henceforth referred to by (*), is precisely the sys­
tem one obtains from (17) by making a suitable combination 
of (17b) and (17 c), as explained in Sec. 4. 

Hence, whenever we have a solution ({;,g i,r/) oft 17), for 
somefunctiong, then + 1 functions ({;,g i) also satisfy (*). We 
now claim that the converse also holds if 17 i is defined by (18). 
This equivalence between (17) and (*, 18), establishes the 
link between the two methods for associating vector fields 
(i.e., infinitesimal generators of certain transformations) 
with invariants of dissipative systems, always under the as­
sumption that ,Y' is regular. The proof of the equivalence is 
completely analogous to the one presented in Ref. 7, where a 
similar equivalence has been pointed out between two ver­
sions of No ether's theorem for classical Lagrangian systems. 

First of all it should be noticed, however, that the infini­
tesimal transformation (23) can not be represented by a vec­
tor field on the extended state-space N, because of the explic­
it q-dependence of 8qi. (A rigorous interpretation of (23) in 
fact requires the introduction of a higher-order jet space.f 
However, since the functions tI/ do not appear in (*), nothing 
prevents us from assigning, in a purely formal way, to each 
(n + 1 )-tuple ({;,g i) which satisfies (*), a local vector field on 
N of the form (16), with the functions 17 i defined by (18). 
Using the expression (2) for the Cartan-form e, one can then 
easily verify that (*) can be rewritten in a concise form as 
follows: 

/~,Lye-dg\ =0, j= 1, ... ,n, 
\aq / 

(26a) 

(Ll,d(g - (Y,e») = 0. (26b) 

With Ya (local) vector field on N of the form (16), the pro­
posed equivalence then becomes: 

Proposition 6.1: Y satisfies (26a), (26b) with 17 i defined by 
(18), Iff Lye = - iyJ-l + dg. 

Proof The sufficiency is trivial and in fact follows from 
previous considerations (see also Sec. 4). 

Conversely, suppose (26a), (26b) and (18) hold. From 
(26a) it immediately follows that (alaij,iyde - dG) = 0, 
where G = g - (Y,e ) is a first integral of Ll in view of(26b). 
This in turn leads to the relations 

aG _glJ_ 
aq' 

i = 1, ... ,n. (27) 

On the other hand, we know from Proposition 3.2 that a 
vector field :fE7/' exists (with components ti i,~i) which sat­
isfies (13), i.e., 

iy(de + p) = dG. (28) 
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The idea is now to prove that Y = Y - h,,1 for some function 
h. It then follows that Ybelongs to r and, hence, satisfies 
(15). 

Since, by definition, jJ, contains no terms in di/, we de­
rive from (28) 

(~,iyde - dG) = 0, 
Ji!' 

from which we obtain 

ii _ q'i;: = fjJG . 1 
~ ~ -g Jd' 1= , ... ,n. 

Comparing this with (27) it is seen that ~i - 1/ ~ = Si - i/ s. 
If we then define a function h by S = ; - h, it follows that 
S' = ti -i/h. 

Finally, since both 1/ (by assumption) and fti (as shown 
in Sec. 4) satisfy (18) in terms of(s,s i) and (t.t i), respectively, 
an immediate computation gives 

rl' = ,,1 (t i - i/h ) - (/,,1 (t - h ) 

+ gljJQk (t k - (/t) 
Jij 

= ~i _ hA I, 

which completes the proof that Y = Y - h,,1. o 
From the equivalence established in the previous pro­

position it follows in particular that in practical applications, 
when looking for a vector field YEr, it suffices to solve the 
somewhat simpler system of equations (*) instead of (17). 

As an illustration we now give an example which has 
also been treated in Ref. 3. 

Example: Consider a mechanical system whose equa­
tions of motion are 

q\ + kq\ + 2jJ,q\ - pq2 = 0, 

q2 + kq2 + 2jJ,q2 + pq\ = 0, 
(29) 

where k, jJ" and p are constants and where, for convenience, 
we have denoted the generalized coordinates with lower in­
dices. The Lagrangian 2" and dissipative forces Qi are here 
given by: 

2' = Hq~ + q;) - ~k (q~ + qn, 

Q\ = - 2jJ,q\ + pq2' 

Q2 = - 2jJ,q2 - pq\. 

A solution of the generalized Killing equations (*) is pro­
vided by (see Ref. 3): S = D,S \ = e2l"t(q2 + jJ,q2); 

S2 = e2111 (q\ +jJ,qtl; with 

g = e2ll1 [ - kq\q2 + q\q2 + iJJ(qi - q~)]. 
From (18) we obtain for the vertical components r/ of Y: 

1]\ = - e2ll1 (j.Lq2 + kq2 + pq\), 

1]2 = - e2I"t(j.Lq\ + kq\ - pq2)' 

The first integral of (29), generated by Y, becomes [see (19)] 

G = - e21"t [4\42 + jJ,(q2Q\ + q\42) 

+ kq\q2 + iJJ(q~ - qi)]. 

Although, as has been pointed out before, vector fields in 'J/~ 
in general do not represent symmetries of the given system, it 
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is not excluded that in certain cases a prescription can be 
found for assigning a dynamical symmetry to each YEr. In 
the next section we will consider a special class of systems for 
which such a prescription is immediately at hand. 

VII. A SPECIAL CASE 

Suppose we are given a dissipative system for which the 
associated two-form a is such that the dynamical field,,1, 
defined by (5a) and (5b), satisfies the condition 

L,j a = ka, kEC 00 (IR), (30) 

i.e., ,,1 is a conformal symmetry of a, with k at most a func­
tion of time only. Putting I (t) = exp(ftk (s) ds), it follows that 

Proposition 7.1: For each YEr the vector field IY will be 
a dynamical symmetry of,,1. 

Proof First of all we notice that 

,,1 (I) = kl. (31) 

Taking into account (5a) and (11) we have 

ijly.,j Ja = - i,jL1ya = /iyi,jda -,,1 (l)iya. (32) 

Combining (5a) and (30) we see that 

i,jda = ka. (33) 

Substituting this into (32) and taking into account (31), we 
finally obtain 

i[IY.,j Ja = (k - ,,1 (I ))i ya = 0, 

which completes the proof, according to Corollary 2.1. 0 
We now analyze condition (30) which, in view of (5a), is 
equivalent to (33). In a local coordinate neighborhood we 
have, in terms of the basis of one-forms (8), and using (lOa) 

da = djJ, = dQi 1\ (dqi - Qidt ) 1\ dt 

JQi .. .. 
= -. (dq' - ijdt ) 1\ (dq' - Q'dt ) 1\ dt 

Jq' 

+ JQ~ (dij _ A jdt) 1\ (dqi - q'idt) 1\ dt. 
Jij 

Herewith, (33) becomes 

JQ, (dq' _ ijdt ) 1\ (dqi _ Qidt ) 
Jq' 

+ JQi (dq _ A jdt) 1\ (dqi - q'idt) = ka. 
Jij 

With the expression (lOb) for a, this leads to the following 
relations between Qi and .Y: 

JQi JQj ( J22" J2 it' ) 
Jqi - Jqi = kJqlJq' - JijJqi ' 

JQi =k J2y 
Jij JqiJij 

Hence, condition (30) will be satisfied iff the functions Qi are 
of the form 

Q = k J2" _ ~(V01T), 
I JQ' Jq' 

for some function V defined on an open subset of IR X M, and 
with 1T:1R X TM-+IR X M the natural projection operator. It 
then follows that the given dynamical field,,1 will be (locally) 
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a Lagrangian vector field with Lagrangian 
!/" = I '(!/' - V01T), where I' = I-I = exp( - S'k (s) ds). 

If we introduce the Cartan-form 

B!/,' .. e' = !/,'dt + -. (dq' - q'dt), 
aq' 

we will therefore have i.1 de' = O. Moreover, it can be shown 
by a straightforward computation that, for each YEr, the 
vector field IY will satisfy the condition L1yde' = 0 or, 
equivalently, 

d (ilyde ') = O. 

Consequently, IY turns out to be a Noether symmetry vector 
field of the given system,7 with respect to the new Lagran­
gian !/,'. This also confirms the result mentioned in Proposi­
tion 7.1. A typical example ofa system for which (30) holds, 
is provided by the damped harmonic oscillator: 

q + yq + (i)2q = 0, 

with 

!/' = !W - (i)2q2) 

and 

Q 
. B!/, 

= - yq = - y aq . 

VIII. FINAL REMARKS 

It is by no means our intention to recommend the meth­
od described in this paper, above others, for the detection 
and construction of first integrals of dissipative systems. 
However, in studying these systems it might be useful, at 
least from a theoretical point of view, to gain further insight 
into the relationship between vector fields and invariants, as 
established in Sec. 3. In particular, it would, for instance, be 
nice to find criteria for the existence of a precise connection 
between the vector fields defined by (11); and symmetries of 
the systems under consideration (as illustrated by Proposi­
tion 7.1). For that purpose it would probably be interesting 
to look at special classes of dissipative systems, such as, e.g., 
systems with a Rayleigh-type dissipation 15 (a special case of 
which has been treated in Sec. 7). 

Finally, it should also be noticed that the above treat­
ment applies equally well to the Hamiltonian description of 
classical dissipative systems. One then simply has to replace 
a by aEfJ 2(JR X T· M), which in canonical coordinates is giv­
en by a = dpi Adqi - dH Adt + Qidqi Adt,with Hthe Ha­
miltonian and Qi = Qi(t,q,P) the phase-space components of 
the dissipative forces. 
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The slow-fluctuation technique for integrating autonomous, conservative, nonlinear, near­
resonant oscillatory systems of many degrees of freedom requires ultimately no more than the 
study of a certain polynomial. It is shown that a parity like property can be attributed to the roots 
of this polynomial, which proves helpful in even the most complex situations. It aids to classify the 
solutions of the equations of motion in terms of "representatives" which involve only one-half of 
the integration constants, the other half being rather unimportant physically, and it allows one to 
start up the representative motions from representative initial conditions. It also leads to a 
characterization of phase behavior which in particular describes not only the constant-amplitude 
motions but also their dynamical neighborhoods, and in many cases it explains gross features of 
the motion such as the occurrence of Lissajous-like patterns and orbit reversals. 

PACS numbers: 03.20. + i, 46.10. + z, 02.30. + g 

I. INTRODUCTION 

In two previous papers, hereafter referred to as SF I and 
STAB,2 we have developed the slow-fluctuation method in 
its primary mathematical aspects I as an integration and ap­
proximation technique for conservative, autonomous, non­
linear oscillatory systems of several degrees of freedom (dJ.), 
and in its application2 to the dynamical stability of constant­
amplitUde (c-a) motions. The next task in the general devel­
opment of the method should be the qualitative description 
and classification of motions with variable amplitUde. 

The method rests upon a complete integration of the 
equations of motion by quadratures involving ultimately 
only one polynomial, calledJ( PI) in the previous notation. 1.2 

Most qualitative properties of any particular solution of the 
equations should be derivable more or less directly from that 
polynomial. In the present paper, we show how an inconspi­
cuous property of the roots ofJcan help in the classification 
of the solutions. We call it "parity." In many cases, various 
gross features of the system motion depend on nothing but 
root parities. 

The sequence of quadratures in the solution process is 
such that we are led in general to relate the integration con­
stants to given initial conditions in a particular way which 
singles out "representative" solutions depending on only 
one-half of all integration constants. The other constants are 
all additive; they are merely phase shifts and a shift of the 
zero of time, with little potential for complications. Thus 
each representative stands for an entire class of solutions 
which differ amongst each other only by these relatively un­
important shifts. The integration constants which determine 
the representatives are also those which determine the po­
lynomial!; as a consequence the special initial conditions 
pertaining to the representatives are also connected with the 
parities of the roots off 

In order to illustrate our general observations we shall 
repeatedly refer to details in two completed studies of specif­
ic nonlinear systems by means of the slow-fluctuation tech­
nique. 3

,4 

The subject is crisscrossed by overlapping classification 
criteria, and studded with exceptions and special cases, in a 
rather dismaying way. Such is the variety of nonlinear pro­
cesses. The concept of root parity, despite its simplicity, 
seems to possess practical usefulness even in awkward situa­
tions. Still, our presentation does not strive for utmost gener­
ality, but only for emphasis for what we have come to regard 
as fairly typical. Momentum-dependent couplings are not 
mentioned at all, for sheer brevity [root parity can readily be 
defined, but the analog to the all-important phase synchroni­
zation (2.10) becomes less incisive]. 

II. INITIAL CONDITIONS 

We begin with the Hamiltonian SF (2.8): 
n 

S(p,q) = LWjPj +B(p) + F(p) cos(glql + ... +gnqn)' 
I 

(2.1) 

whereB andF 2 are polynomials, and thegj are integers. This 
may be the exact Hamiltonian of some model system, or it 
may be the slow-fluctuation approximation to the Hamilton­
ian SF (2.4) of an oscillatory system having the internal reso­
nance 

glw I + ... + gnwn = E (2.2) 

(where g I > 0 by a numbering and sign convention). In the 
latter case the variables p,q normally arise from original Car­
tesian variables p,q by the canonical transformation SF (2.1), 
(2.2); therefore, we always callp and q amplitudes and 
phases, respectively. 

The amplitudes PI, ... ,Pn arising from the transforma­
tion of a physical, oscillatory system are necessarily non­
negative. Still, there is no reason why the Hamiltonian (2.1) 
should not be studied without regard to the signs of the ca­
nonical momenta. We shall accordingly not introduce the' 
restrictionpj >0 until later, in Sec. III C. 

The system defined by (2.1) is completely integrable by 
quadratures, as described in SF. When there are only two 
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d.f., the integration process is straightforward inpI,P2,'QI,q2; 
see Refs. 3 and 4 for explicit examples. In three or more d.f., 
however, various relations become quite clumsy in the 
barred variables. For conciseness, double-barred variables 
are therefore introduced by the canonical transformation SF 
(3.1), (3.2): 

glq) + ... +gnqn = ql' PI =gJI' 

q; = q;, P; = g;PI + P; for i = 2, ... ,n. (2.3) 

The Hamiltonian (2.1) then takes the form 

S(p,q)=EPI+ Iw;p;+B(p)+F(p)cosql' (2.4) 
2 

and we use this in the following. 
Initial conditions will consist of values of the 2n canoni­

cal variables prescribed at some time to' Since the barred, the 
double-barred, and the original variables are connected by 
1-1 transformations, they are interconvertible without ambi­
guities, and we usually need not distinguish between differ­
ent sets of initial values specified at to' The important task is 
to connect the 2n initial values, whichever set may be given, 
to the 2n integration constants with due regard to simplicity 
and transparency of the resultant classification of all solu­
tions. 

Since q2, ... ,qn are cyclic in (2.4), the quadrature process 
begins with 

p; = const = a; for i = 2, ... ,n. (2.5) 

These n - 1 constants are clearly independent. The phase 
equations q; = as lap; yield n more, independent constants 
q; (to). In order to integrate these equations in their explicit 
forms SF (4.2), (4.3) one needs to know PI(t) explicitly. Using 
the amplitude conservation laws (2.5) the equation of motion 
PI = - as IOqI can be written in the form SF (3.8), 

PI = F(Pha ) sin ql' (2.6) 

from which ql can be eliminated by means of the obvious 

S = S = const = E (2.7) 

together with Eqs. (2.4) and (2.5); the result is SF (3.9), 

p~ =J(PI)' (2.8) 

whereJis a polynomial which contains a 2, ••• ,an and also E. 
The general integral of this equation is 

l
P' 

t-to= [J(pdl- I /2djjl; 
P,(t.) 

(2.9) 

it conveniently brings in the initial time to, and also contains 
the initial value PI(tO) in the role of another integration con­
stant. 

If we organize the quadrature process in this manner, 
the 2n integration constants PI(tO)' a 2, ... ,an, ql(tO), ... ,qn (to) 
are identical with the given initial values, and E merely plays 
the role of an auxiliary which is easily calculated from Eqs. 
(2.4) and (2.7) by insertion of the n + 1 valuesPI(to), ... ,ql(to)' 
Moreover, the other n - 1 initial values Q2(tO), ... ,qn (to) are 
simply additive phase constants, corresponding in physical 
systems to simple shifts of carrier oscillations cos qj (t ) under 
fixed amplitude modulation curves, and which we may well 
regard as physically trivial. Thus we have effectively ob­
tained an (n + I)-way classification of solutions (excepting 
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the n - 1 phase shifts) directly in terms ofinitial valuesPI(to), 
a2, ... ,an ,q I (to)· Nothing could be simpler, or better suited for 
numerical computations, yet an n-way classification can be 
devised which yields better insight and links up much more 
readily with all formal developments. 

The appropriate change of viewpoint derives from the 
physical fact that the n phase functions qj (t) are in general 
synchronized. We noted this in passing in SF Sec. IV, and 
gave detailed examples in two d.f. in Refs. 3 and 4. We now 
develop the idea in full. 

Consider the system at some time t = te such thatPI is 
at an extremum, i.e., PI(te ) = 0 holds. We include here all 
motions, even if at constant amplitude, or aperiodically mod­
ulated and reaching an amplitude extremum only for 
te = ± 00 (see Ref. 4, Sec. 3 F, for an example). Whichever 
the case, Eq. (2.8) implies thatJ( PI) = Oholdsatt = te' In the 
earlier form (2.6) of this equation there are two distinct fac­
tors. It is entirely possible that the first of them, F, has a zero 
simultaneously with! Now Fis in general not a polynomial, 
butF 2 always is. If the root ofJat t = te is a multiple root of 
F2, then the explicit form ofJin SF(3.9) [repeated in asimpli­
fied way below in Eq. (3.4)] shows that the root ofJis also 
multiple; consequently the motion is a c-a Case (I), the phase 
behavior of which may require separate study, as we discuss 
exhaustively below in Sec. IV. If p2 has only a single root at 
t = te , then the explicit form of Fin STAB (3.2) [repeated 
below in Eq. (3.5)] shows thatPI goes through one of those 
exceptional low-amplitude conditions which require special 
treatment because the phase equations become singular, cf. 
SF Sec. VI and the complementary discussion in Sec. IV E 
below. Ifon theotherhandF #Oatt = fe' thenpi can vanish 
if and only if the second factor sin q I in Eq. (2.6) vanishes, so 
that ql(fe ) must be a multiple of Jr, as stated in SF (4.4). We 
summarize this trichotomy in the 

Theorem: At any time fe such that the amplitude modu­
lationpi is at an extremum, either exceptionallow-ampli­
tude conditions hold with attendant phase singularities 
which may require separate study, or the motion is a c-a Case 
t!J whose phase behavior may also require separate study, or 
F #0 holds and for the extremum it is necessary and suffi­
cient that 

lJl(te)=f1T, rinteger. (2.10) 

The vast majority of extrema clearly belongs to the 
third type, which is characterized by Eq. (2.10). The associat­
ed property that F #0 at t = te will repeatedly be used in 
later sections; in passing, note that it also covers all c-a mo­
tions which are Case (II) but not simultaneously Case (I), see 
SF Sec. V. In the remainder of this section, we deal only with 
this type, except where explicitly stated otherwise. 

According to the transformation (2.3), the meaning of 
the condition (2.10) is that the n single-barred phase func­
tions q; (f) are at any amplitude modulation extremum time 
te synchronized to each other in the linear combination q!. 
The consideration of an arbitrary initial time to against this 
background of synchronization times te leads us naturally to 
deal first of all with the special case to = f,.. We may then 
regard a motion with to = te as the representative of a class of 
motions which is generated by time shifts to - (., with to 
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arbitrary, treating to like an i:ntegration constant. Indeed, a 
representative motion with to = te has its phase constants 
tied by the synchronization condition (2.10), so that one inte­
gration constant is pre-empted by the need to ensure thatp, 
is at an extremum, i.e.,pdte ) = R, a root of the polynomial! 
The class will thus consist of all motions which differ only by 
to and have the same values of all other integration constants. 
It remains to be seen how these others are most conveniently 
chosen. 

In order to standardize the representative solutions, we 
may take to = te = o without loss of generality. Ifinorderto 
shorten the notation we set 

q,(O)=b" 

q;(O) = lIdO) = 15; for i = 2, ... ,n, (2.11 ) 

we may write the constraint (2.10) as, say, 

(2.12) 

with 15 1 dependent on the other n - 1 phase constants whose 
freedom of choice continues unrestricted. Since these re­
maining phase shifts appear physically not very important, 
we may disregard them to start with, and adopt the special 
initial conditions 

15, = mig" 152 = ... = b n = 0 (2.13) 

which give rise to what we call for brevity a "15 = 0 state" of 
motion. Again, each such state can serve as the representa­
tive of an (n - 1 )-fold class of motions which are generated 
by n - 1 shifts of carrier oscillations cos q; (t) under fixed 
amplitude curves, subject only to the constraint (2.12). Note 
that this class is similar to, but not quite identical with, the 
phase shift class left over by the previous classification in 
terms of n + 1 initial values at an arbitrary to' 

So far, the constant E still plays the role of an auxiliary 
which must be calculated from the initial values. The proce­
dure is un logical, for E arises in the elimination process be­
fore the PI(tO) in Eq. (2.9) is introduced, and before phase 
relations play any role. It is proper, therefore, to replace p, (0) 
by E, and accordingly to characterize the representative mo­
tions by the parameters a 2, ••. ,an , E. Now we have essentially 
the mentioned n-way classification, with each representative 
solution standing for an n-fold class of solutions which is 
generated by a time shift of the entire motion and n - 1 
independent phase shifts of carrier oscillations, subject to 
(2.10). 

Since E does in general not depend monotonically on PI' 
we pay for the formal clarity of the new classification by a 
certain complication in determining inversely the proper 
PI(O) from the given a 2, ••• ,an , E. The polynomial/calculated 
from these values can have several suitable pairs of roots, and 
afteronepairhasbeenchosen,sayR 'andR ",eitherR 'orR" 
may still be taken as the P t (0) of a representative motion. Nor 
is it immediately clear what value of r should be associated 
with the root which is chosen. Thus, for any given set 
a 2, ••• ,an , E there may be several (distinct) representatives 
associated with different pairs of roots andlor different val­
ues of r. 

It is helpful to characterize these differences in terms of 
"representative initial conditions" which set up the repre-
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sentative motions. We deal with this largely practical matter 
in Sec. III E. 

The remaining question is technical: Given arbitrary' 
initial conditions at some time to, how do we find the explicit 
solution if we know only 15 = 0 states calculated beforehand 
for to = te = 0, with 15, = r7rlg, and possibly several values 
of r, of which the right one is not at once obvious? We give 
the answer in the form of a complete procedure. 

Since we are always free to choose the zero of the time 
scale, we may regard to at first as indeterminate to the extent 
of a zero adjustment. As a preparatory step, if a 2, .•• ,an are 
not given directly, calculate them from the initial values to­
gether with the conservation laws (2.5). Then calculate E 
from Eq. (2.4). Likewise calculatejt(to), ifnot given directly. 
If applicable, check the value of F for an exceptional low­
amplitude condition and treat the motion accordingly, or 
else go on. Calculate/and find its roots. IfpI(to) should be 
identical with a multiple root off, treat as Case (I) or (II) c-a 
motion and stop there. Otherwise select the two roots R ' and 
R " which enclose pdto)' Go to Eq. (2.6) and determine by 
means of the initial values whether p,(to)~O; then call R ' that 
oneoftherootsR ',R "from whichp, evolves away at to. If R ' 
is single, calculate first by obvious adaptation of Eq. (2.9), 

(2.14) 

with the given initial value as the upper limit and the sign of 
the square root + or - according as p, increases or de­
creases from R ' onwards; in this manner the shift to is defined 
uniquely so as to be non-negative and less than half a modu­
lation period in duration. Next, for every i = 2, ... ,n calculate 
15, from 

(2.15) 

where on the left stand the given initial values and on the 
right the given phase functions calculated for te = 0, for R " 
and for zero phase constants, but taken at the instant to cal­
culated from Eq. (2.14). Lastly, determine r from 

lJ,(to) = mig, - (g2bz + ... + gnbn )/g, 

+! [lJ,(t)Lrr L-I", (2.16) 

where the notation is as in Eq. (2.15) (with the phase function 
calculated for a zero phase constant), and the 15; have the 
values calculated above. Evidently the representative solu­
tion, if phase-shifted by the calculated b2 , .•. ,Dn and by 15, as 
determined from Eq. (2.12), will at the calculated instant 
t = to fulfill the given initial conditions. Finally, adjust the 
zero of the time scale such that to takes a prescribed value, if 
any. If R 'is multiple, modifications are necessary which are 
fairly obvious and can be omitted. The procedure is awk­
ward but feasible in principle; we presented it here in order to 
demonstrate that the classification of solutions by means of 
representatives leaves no gaps. 

III. ROOT PARITY 

In the full classification of all representative solutions 
and initial conditions one needs the numerical values of the 
integer r generated by the synchronization condition (2.10), 
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but for many other purposes it suffices to consider only the 
parity of r. For instance, in the study of Case (II) c-a motions 
the distinction between even and odd types is enough for a 
general theory; see STAB. We now show that a paritylike 
property can be associated directly with every root of the 
polynomial! 

A. Definition of root parity 

By means of the conservation laws (2.5) and (2.7) the 
Hamiltonian (2.4) can be written as a hybrid conservation 
law, 

E - i (t)jaj - EPI - B (PI,a) = P (p"a,E) 
2 

= F(jj"a) cos ql' (3.1) 

With the explicit notation} = ~ bjp/ from STAB (3.5) we 
can write the polynomial P as 

P(p"a,E) = CI - (E + bdp, - .,. - bmP,m, (3.2) 

where 
n 

C I = E - L (t)ja, - bo; 
2 

this new constant C I is the only one which contains the qua­
sienergy E. 

When the motion is at an amplitude extremumpi = R, 
with F(R,a)#O, then ql = m holds, the cosine in Eq. (3.1) 
equals + 1 or - 1, and 

P(R,a,E) = ±F(R,a), r ven 
odd (3.3) 

follows. The existence of this twofold algebraic constraint is 
the physical origin of the importance of the parity of r. Bya 
slight change of approach the idea can yet be generalized. 

Ifq, is eliminated between Eqs. (2.6) and (3.1) by squar­
ing and adding, the equation of motion results in its final 
form (2.8) with 

/(pIl = F2 - p 2 = (F + PHF - F). (3.4) 

It is seen that at any root of/ either one or the other relation 
(3.3) holds, or both in caseF = 0 (and only then). We are thus 
led to the exhaustive 

Definition: A root of/with F #0 is called even if 
F = + F and odd if F = - F. A root with F = 0 is called 
skew. 

This applies to all roots including the negative and the 
complex ones which are not necessarily associated with 
physical motions. The new term "skew" is a generalization 
which also helps in the classification of solutions; according 
to the theorem of the preceding section, a motion at a skew 
root is either "exceptional low-amplitude" or Case (I), and 
conversely every Case (I) [even ifit is simultaneously Case 
(II)] takes place at a multiple skew root. 

An obvious question is: Givenf, how many roots are 
even, odd, and skew, respectively? There is no general an­
swer because the possibilities are unlimited, but at least one 
partial result can be stated in worthwhile generality. It fol­
lows directly from the factorization (3.4) as the 

Theorem: If F is a polynomial, and if F and F are of 
different degree, then half the roots are even and half are odd 
(if each root is counted according to its multiplicity, and if a 
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skew root is counted as both even and odd with equal multi-
plicitie~l: = 

If F and P happen to have the same degree this would 
not always be true because cancellation could take place and 
leave F + F and F - F at different degrees. Still, even in that 
case no skew roots of odd multiplicity will be possible, for 
instance. 

If F is not a polynomial, everything seems possible, be­
ginning with odd-order skew roots. For example, in STAB 
Fig. 2 the polynomial/is cubic, point B represents a third­
order odd root, and the p 1 axis represents a single skew root, 
as is easily shown from the details given there. 

B. Conservation of root parity 

Since the parity of a particular root is a discrete at­
tribute we should expect it to be conserved under small var­
iations ofthe parameters a 2 , ... ,an , E; a change of parity 
should only be possible at the ends of certain parameter 
ranges where singular conditions arise, or where a con­
fluence of several roots with a kind of barter of parities takes 
place. This is indeed so, but the possibilities proliferate as 
system complexity grows. We therefore discuss only some 
principal cases. 

In the assumed Hamiltonian (2.1), 13 (p) andJF(pWar~ 
given as polynomials. From these we derive the P and the F 
of Eq. (3.1) through the substitutions (2.3), (2.5), and (2.7) 
together with the extraction of square roots. These opera­
tions are continuous in every respect, hence F and Fare both 
continuous functions of PI and of the parameters a 2, ... ,an ,E. 

If we choose a continuous curve in a comple~p, glane 
and map it into a complex w plane by means of ± For P at a 
fixed set of values a 2, ... ,an ,E, the map curves will be contin­
uous. Moreover, if we restrict the chosen curves to the interi­
or of a suitably bounded domain of the P 1 plane, the map will 
be 1-1 and the entire plane can be covered by such domains. 

The roots of/are also con tinuous in a 2'''' ,a n ,E, a fact of 
which much was made in STAB. Ifwe vary these parameter 
values through a continuous n-dimensional sequence, a root 
R will trace out a continuous curve in thep, plane. Call it a 
root curve. Two root curves may intersect or touch. A root 
may also abruptly appear or disappear at certain parameter 
values, but only if at these values the degree of/ changes. 
This is an exceptional case which would always need special 
study, cf. STAB Sec. III A, so we exclude it by a suitable 
restriction on the parameter variations. 

Now choose an arc of some root curve and map it triply 
into the w plane by means of + F, - F, and F at a set of 
parameter values which is associated with a particular 
PI = R lying on the chosen curve. R will be even or odd if the 
map of either + For - F, respectively, intersects with F,' 
and conversely; it will be skew if and only if all three maps 
intersect at one point (which must be the origin of the w 
plane). Under a change of parameter values to another set 
associated with an R ' nearby on the same root curve, inter­
sections off the origin in the w plane cannot jump between 
the + F and - F maps, because only continuous deforma­
tions of the maps are possible. There may also be an intersec­
tion (or contact) of the given root curve with another one; by 

M. F. Augusteijn and E. Breitenberger 1599 



                                                                                                                                    

continuity, there will be corresponding multiple intersec­
tions of the + F maps or the - F maps with the P maps. 
From this all-round continuity alone we conclude the 

Conservation Theorem: Throughout some open neigh­
borhood of a set of values a 2, ... ,a" ,E, a root off( PI) of even 
or odd parity keeps this parity, or splits into, or coalesces 
with, roots of this same parity. 

Thus, a change of parity between even and odd, or a 
mixing of parities, can only occur through an intermediary 
skew stage. 

C. Sign conventions 

An arbitrary sign reversal of Fwould turn even roots of 
f into odd, and vice versa. Thus, when the system (2.1) is 
defined in the abstract, with p2 given as a polynomial, the 
square root leading to the eventual F needs to have its sign 
fixed by a convention in order to fix the parities. On the other 
hand, when the system is defined in terms of physical proper­
ties, then P and with it Fwill usually have their signs unmis­
takably defined within the range of amplitude values permit­
ted in the system, but there may be doubt as to the 
continuation of Fbeyond this range, and hence, a sign con­
vention may again be needed if we want to discuss the pari­
ties of roots which are not associated with physical motions. 

The explicit form of F is always as given in SF (3.2): 

F(PI,a) = C(gIPd,/2(g2PI + a2)1,/2 

... ( gn PI + an )V2Q (PI,a), (3.5) 

where C is a system constant and C ,to, Q is a polynomial, 
and the Ii are positive integers or zero, with II ,tOby number­
ing convention. If for p~sical reasons, say,p»O is pre­
scribed, do we continue £ to negative P I values, say, by writ­
ing Ipi I everywhere in (3.5)? TEe same doubt might exist in 
regard of the continuation of P, and hence, even off 

The basic conservation laws (2.5) become, after the sub­
stitutions (2.3), 

gi PI + a i = Pi> i = 2, ... ,n. (3.6) 

[In conjunction withg l PI = PI' this is what makes theelimi­
nation from (2.1) to (2.4) possible, and what causes t;.he struc­
ture of the factors in (3.5).] It is seen that a ze!o of F implies 
the vanishing of one or more Pi' or a root of Q, or both. The 
observation is as general as it is trivial, but it leads to a much 
sharper distinction when the given system is a physical one 
of coupled oscillators having non-negative amplitudes. 

Ifp, >0 for i = 1, ... ,n is thus prescribed, then also 
PI = p/gl>O holds and Eqs. (3.6) imply that 

- gi PI <;ai , i = 2, ... ,n. (3.7) 

This means an upper or lower bound to PI according as gi is 
negative or positive. In STAB Sec. III C we called the (closed 
or right-infinite) interval from the least upper bound to the 
largest lower bound (includingpi >0) the "domain ofpl". No 
physically possible motion can take place outside the do­
main. If now aPi (withgi ,to) vanishes, it follows from Eq. 
(3.6) that the bound (3.7) is actually reached by this Pi; the 
vanishing therefore occurs exactly at an endpoint of the do­
main, and F vanishes at this endpoint, too. On the other 
hand, F can vanish inside the domain only if the=equality sign 
in (3.7) does not hold for any i; then a root of Q must be 
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responsible. T~is can happen only in systems which have a 
(nonconstant) Q-polynomial. For reference purposes we de­
scribe the main features of the situation in the 

Theorem: A skew root of/inside the domain of PI is due 
to a root of Q and has even multiplicity. 

Of course, a root of Q could also by coincidence occur at 
a domain endpoint. If so, one of the bounds (3. 7) mu~t be 
reached at the same time so that the resultant zero of Fis of a 
higher order than the root of Q. 

At any rate, except for this occasional possibility of a 
root of Q inside the domain, skew roots can occur only at the 
domain endpoints, together with a vanishing of One or more 
Pi' and beyond the domain. Accordingly, changes of root 
parity by passage through a skew stage will in general take 
place at domain endpoints. It becom~s all the more impor­
tant to be definite about the signs of F, etc., on both sides of 
the endpoints. We shall henceforth ~mploy th~ 

Physical Oscillator Convention. P, Q, and £2 being given 
as polynomials over the domain ofp), they will be continued 
as polynomials beyond the domain. Even-I, factors in Fwill 
likewise be continued as polynomials, but odd-I, factors will 
be continued as positive square roots. 

The immutable sign of the square roots has the conse­

quence that the rule,fX x,fX = x does not hold where x can 
be negative, i.e., precisely outside the domain within which 
all the arguments in the parentheses of Eq. (3.5) are non­

negative; we must write ,fX X ,Fx = ~? = Ix I inste~d. For 
example, when there is a confluence of two zeros of Fwhich 
are both of order! (and equivalent;.to "exceptionallow-am­
plitude conditions"), the graph of F will have a kink. Such a 
confluence can only occur in special systems, as in the case of 
the "three interacting waves" of STAB Fig. 6b, where the 
looped curve haEpens to be (apart from a numerical factor) 
the graph of ± £ with the upper and lower halves corre­
sponding to the two signs, and kinks at the confluence 
a 7 = a,. 

- This sign convention is entirely natural and simple. In 
systems with negative momenta, different conventions are 
possible, of course, and could conceivably appear more na­
tural. 

D. Change of root parity 

We now discuss a few typical instances of parity 
change. We assume the physical oscillator convention and 
speak only of real roots, but the generalization to complex 
ones will be obvious where appropriate. 

Let rbe real and F (F,a) = O. Such_aris generally not a 
root ofjbecause it need not be a root of P. However, from the 
explicit ~xpression (3.2) it is seen that E is an additive con­
stant in P, hence there exists exactly one E = Er such that 
P (r,a,E r ) = O. This E r does not have to be a physically 
possible sYJtem ~nergy; it is merely a (real) parameter ~value 
such that P and F at the given set of values a 2, .. ·,an ,E r 
vanish for the same PI = r, which is therefore a skew root of 
f For brevity, we now write the polynomial (3.2) in Taylor 
series form 

P=(E-Er)+Kl(Pl-r)+.... (3.8) 

Assume first for discussion that F vanishes near r as 
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P, 

-F 
~ 

FIG. I. The formation of a single skew root in accordance with Eqs. (3.8) 
and (3.9). As drawn, r is a lower endpoint of the domain ofjj,; K, > 0 has 
been chosen for definiteness, but it makes no essential difference if K, < 0 or 
evenK, =0. 

(3.9) 

with some Ko > O. Then r is a single root of p2 and a double 
root of P 2 for E = E r, hence it is a single, skew root of/ for 
the parameter values a 2, ••. ,an ,E r' If E is increased slightly 
over E r , the graph ofPwill intersectthe graph of + p to the 
right of r at some PI which is then an even, single root off, 
see Fi~: 1; decrease of E yields an intersection with the graph 
of - F and therefore an odd root. Thus, as E is varied, the 
root parity changes between even and odd by a passage 
through skew. 

Equation (3.5) shows that a single skew root can only be 
of the form r = 0 or r = - ailgi for some i: it is therefore 
real. According to the Theorem of Sec. III C it cannot lie 
inside the domain of PI' Under a variation of the a i as well as 
of E the single root of/ evolving out of r and back must also 
be real, for a complex root can only approach r jointly with 
its conjugate. The only way this argument could be vitiated is 
that under the parameter change r itself coalesces with some 
other root and becomes multiple, but by continuity this is 
only possible for sufficiently large changes. In fair generality 
we may therefore state the 

Theorem: A single skew root r is real and does not lie 
inside the domain of P I' For sufficiently small parameter 
changes a root of definite parity evolving out of r is real and 
single, and changes parity when passing through r. 

Next, assume instead of (3.9) that near r we have 

(3.10) 

with some Ko > 0, and take also K, > 0 but K, #-Ko. Instead 
of Fig. I we then have the two graphs of Fig. 2, according as 
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P 

a 

+F 

p 

P, 

'--. 

b 
'" '--. '--.- F 
'-

FIG. 2. The formation of the simplest type of double skew root in accor­
dance with Eqs. (3.8) and (3.10), when both P and F exhibit locally linear 
behavior (with different slopes). Depending on the steepness of the graph of 
P, the c-a motion at rwill be (a) orbitally stable, or (bl unstable. r may be an 
upper or lower domain endpoint, or may lie inside the domain ofp,. 

Ko~K" Hereris a double, skew root of/for E = E r , and if 
the graph of Pis shifted up or down by a change of E the skew 
root is seen to split into an even and an odd one. Characteris­
tically, the two new, single roots of/straddle the skew one in 
Fig. 2(b) but lie to one side of it in Fig. 2(a). Ifwe write the 
inequality Ko~K, as 

(3.11 ) 

with all the derivatives taken at the value P 1 = r, the crite­
rion STAB (3.12) shows that the Case (I) c-a motion at the 
double root R = r (if it is physically possible) will be orbital­
ly stable or unstable, respectively, in the two situations. The 
skew root can here be regarded as the confluence oftwo roots 
of opposite parity, and can only split into such an even-odd 
pair. Reference 4 contains clear examples. 

Third, assume instead of (3.9) that 

(3.12) 

with someKo> 0, and also assumeK, > 0, see fig. 3. With r 
now a triple root ofF 2 but still a double root of}> 2, it is again a 
double, skew root off Under a decrease of E the skew root 
splits into a real, even-odd pair, much as in the orbitally 
stable situation of Fig. 2(a), but an increase of E evidently 
yields a pair of complex roots which again must be of oppo­
site parity, since of the two factors on the right-hand side of 
Eq. (3.4) neither can have a double zero in the vicinity of r, 
by continuity. 
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p, 

FIG. 3. The formation of a dauble skew raot in accordance with Eqs. (3.8) 
and (3.12). As drawn, ris a lawer endpaint of the domain afp,; K, > ° has 
been chasen far definiteness, but it makes no essential difference if K, < 0, 
and the c-a mation at r is always orbitally stable, a Case (I) withp,,,,,r. 

The row of examples (3.9)-(3.12) can readily be contin­
ued. We may also in the Taylor expansion (3.8) admit 
K, = 0, and so on, to explore the behavior of complicated 
higher roots. The principle of the argument is always the 
same, and no further instances are needed. 

Double skew roots deserve particular attention because 
of their frequent occurrence. If real, their properties are de­
scribed by Figs. 2(a) and 2(b) and obvlous generalizations of 
these. However, a first-order zero of F, which is the least we 
must have, can also arise in certain systems as the confluence 
of two zeros of order 1 (i.e., exceptional low-amplitude condi­
tions are reached si~ultaneously by exactly two d.f.). If it is 
also a double skew root, the latter can split into two single 
roots which may be of any parity, or skew. Figure 4 explains 
the situation. Considering all the possibilities, we have the 

Theorem: A real, double, skew root can only split into, 
or result from the confluence of, two single roots of opposite 
parities; except ifit occurs as a confluence of two exceptional 
low-amplitude conditions, when it can split into two single 
roots which may be of any parity, or skew. 

A word of caution: These results hold for variations of 
the parameters only. Under other changes parity may be sig­
nificantly affected. In particular, parity can change under 
the (degenerate) coordinate transformations which often are 
allowed in systems with intrinsic symmetries. Thus, Ref. 4 
contains clear examples of straight-line c-a motions which 
COnvert between Cases (I) and (II) under 45° rotations, with 
conversion of double roots between skew and even. 

E. Representative initial conditions 

The representative 0 = 0 motions which start out with 
P at one of the roots off depend on the root parity by Eq. 
(d. 13). Since an entire range of21T must be available for 01> 
2g values of r will be admissible. For instance, if g I = 1, then 

I . 
no more than the values r = r' = 0,1 (say) come mto ques-
tion, but if g I = 2, then r = r' = 0,1,2,3 (say) are admissible. 
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p, 

p. (2) 

FIG. 4. Schematic representation .of the c,!nftuence of twa single skew roots 
r r into a double skew root r at which F graphs as a kinked straight lIne. 
The ~otians in the neighborho~d of the c-a motian at r can be of entirely 
different types. Assuming that P graphs as a straight line and that T, IS an 
upper endpoint of the domain ofp,: (1) shows three possibilities of neighbor­
ing motions in the orbitally stable case, one even Case (II) c-a, .one even--eve!:! 
and one even-{)dd modulation; (2) shows one unstable posslblhty (slape of P 
less than the slope .of the kink at T). 

And so on. Thus the representative initial conditions which 
set up the 0 = 0 states come with a multiplicity which d.e­
rives from the multiplicity of values r'. Furthermore, thIS 
multiplicity depends on the g-coefficient of the phase shift 
for which we solve Eq. (2.10). In Eq. (2.12) we solved for 0 1, 

but there is no need for that, we might solve for any OJ if only 
g #0. (In fact, in both Refs. 3 and 4 the choicej = 2 was. 
~ade for simple reasons of convenience.) Evidently, in a gIV­
en system, for different choices ofj (or what may amount to 
the same, for different numberings of the d.f.) the representa­
tive initial conditions, and consequently the sets of rep res en­
tative solutions, can be substantially different. Usually it will 
be best to choose a d.f. with the smallest available gj to be 
assigned that phase shift which depends on the others. ~s 
there can be no universal rule we assume for the followmg 
that a firm convention has been made, and that the specific 
numerical values r' of r have been selected. 

The initial conditions are most easily understood in a 
physical oscillatory system with all Pi ;;.0 when the motion is 
translated back into coordinate oscillations by means of the 
canonical SF (2.1), 

qj = (2pJmi (J)i) 1/2 cos qj' 

Pi = -(2mi(J)iPi)I/2 sinqj' (3.13) 

Using Eqs. (2.3), (2.5), (2.11), and (2.13), together with the 
notationpl(O) = R " we have first 

qj(O) = (2( gjR ' + a,)/mj(J)j ]1/2, 

Pi (0) = 0, i = 2, ... ,n. (3.14) 

The n - 1 dJ. with the independent phase constants 0i = 0 
are therefore always released from rest at t = 0; to be precise: 
From canonical rest in the p,q phase space, see Ref. 3, Sec. 
XI, for an example of the distinction. 
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On the other hand, 

q.(O) = (2g.R 'Im.(tJ.)1I2 cos(r'1Tlg.), 

p.(O) = - (2m.(tJ! g.R ')112 sin(r'1TIg.) (3.15) 

dependsong. and the choices ofr'. Letg! = 1; thenp.(O) = 0 
and we again have release from rest, while q! (0) > 0 or < 0 
according as r' is even or odd, so that parity distinguishes 
merely between release over the two halves of the q! axis. 
Reference 3 is a type case. If g! = 2 and we choose 
r' = 0,1,2,3 as above, then the even r' = 0,2 are seen tocorre­
spond to release from rest over the two axis halves, but the 
odd r' = 1,3 yield q.(O) = 0, withp.(O) < 0 and> 0, respec­
tively, a condition which in the type case of Ref. 4 we called 
"transverse launch." If g. = 3, release from rest is still ob­
tained for r' = 0,3 but other values require transverse launch 
at certain coordinates q,(O)#O. And so on. 

Regardless of the various conventions made, these links 
of root parity with physical features of the system motion are 
seen to rest mainly upon theg coefficients. That is, they arise 
from the nature of the resonance in the Hamiltonian (2.1) 
rather than from the physical coupling terms lJ and F. The 
corresponding patterns of motion can claim physical interest 
as well as classification usefulness. 

Still, the coupling terms determine the structure off( p,) 
and hence, the number and location of its real, non-negative 
roots. When several such pairs of roots R " R " coexist, re­
lease from rest in one region of space will lead to a root of one 
pair, release in another region to a root of another pair, and 
similar for the other g-dependent initial conditions. Refer­
ence 4, Fig. 2, is a type case. A general discussion is better not 
attempted because of too much variety in the possible cou­
plings. 

IV. ROOT PARITY AND THE PHASE FUNCTIONS 

The evolution ofq,(t) between two roots off( p.) must 
depend sensibly on whether they have equal or opposite pari­
ties. This aspect of the synchronization (2.10) can be exploit­
ed variously to put the concept of root parity to practical use. 

A. The main result 

Lemma: At a rootp, = R of/(pJ! with F(R,a)#O the 
slope off satisfies 

j' = ± 2Fq" ~~~'. (4.1) 
Proof At a root of definite parity, the cosine in Eqs. (2.4) 

and (3.1) is stationary at ± I. From the definition of/in Eq. 
(3.4) we have in general 

df = 2F dF _ 2P dP . 
tip, tip, tip, ' 

if we specialize to p, = R we can first eliminate both P and its 
derivative by means of (3.1) to yield 

j' = 2F[dF ± (E + dB)], 
tip, tip, 

and he!:e the bracket is seen from the equation of motion 
q, = as lap, to be ± the value ofq, at R. Q.E.D. 

Corollary: At a root of definite parity, ifq, is stationary 
then the root is multiple. 
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Consider now an amplitude modulation between two 
single roots R ',R " of definite parities (even or odd). The 
phase q. starts out at R " say, with the value r1T, and necessar­
ily with q. ::j:. O. As p! evolves towards R ", but before R " is 
reached, q t cannot change by as much as + 1T or - 1T, or 
return to the value r1T, because according to the equation of 
motion (2.6) that would imply an extremum ofp, between R ' 
and R ", contrary to hypothesis. When R " is reached there 
are consequently two possibilities. 

Either q, is back at its initial value m; then R " is of the 
same parity as R '. Also, the sign of q, must be opposite to 
what it was at R ',otherwise q. would again have a zero 
betweenR 'andR ". In essence, q, issinelike, with zeros at the 
modulation extrema and nowhere else. 

Or we have q, = (r ± 1)1T at R "; then the root parities 
are opposite. The rate of change q, must have the same sign 
at R " as at R " otherwise q. would also go through the value 
(r + 1)1T or (r - 1)1T somewhere in between. Thus q, could be 
described as an unbroken straight line which rises or de­
scends by 1T per half-period of modulation, with a superim­
posed periodic function having simple or multiple zeros at 
the modulation extrema, and possibly others; the sum of the 
two is not necessarily monotonic, although the straight line 
is. In short summary we have the 

Theorem: In amplitude modulation between simple 
roots with definite parities, the combined phase obeys 

(4.2) 

in every open interval between successive modulation ex­
trema. If the parities are equal, r remains constant; q. is pure­
ly periodic with simple zeros at the extrema, and has no 
other zeros. If the parities are opposite, r goes through con­
secutive integers; q. at the extrema is positive or negative 
throughout according as r increases or decreases, but q! is 
not necessarily monotonic in between two extrema. 

As an immediate application, consider the representa­
tive initial condition for motion between roots of equal par­
ity. Since r remains constant, one single type of condition 
suffices, e.g., release from rest, with certain regions of space 
corresponding to the two roots of the pair. Quite different for 
roots of opposite parity; the pertaining monotonic change of 
r presents a cycle of2g, possible, representative initial condi­
tions. One of these will have to be chosen by convention, for 
definiteness. In fact, a 0 = 0 state will not have the phases 
back toqj(te) = OJ at the next extremum te #0 because of the 
lack of synchronization between modulation and carrier os­
cillations; in other words, the representative solutions are 
rather different for different choices of zero time. 

Note that, occasional graphic language notwithstand­
ing, this entire section is independent of the Physical Oscilla­
tor Convention. 

B. Orbit patterns in configuration space (roots of 
definite parity) 

For ease of discussion, let us take a physical system of 
oscillators and return into the space of the configuration co­
ordinates qi by means of the transformation (3.11). Assume 
two d.f.; assume both normal frequencies positive, and a 
near-resonanceg,(tJ, + g2(tJ2 = E. Sinceg, > 0 by convention, 
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it is necessary that gz < 0; we write gz = - gi with gi > O. 
Now consider only motions between (or at) roots of definite 
parity; if, in particular, a representative 0 = 0 motion at 
t = te = 0 is set up, the constraint equation (2.12) yields with 
Oz = 0 and the specific choice r = r', 

0 1 = r'1TIg l (4.3) 

for the initial phase difference. 
Our aim is to compare the orbit in the q pqz plane to 

Lissajous figures. As this term is commonly understood, it 
applies to the closed paths which a complex vector q I + iqz 
will map out if both real and imaginary part are purely har­
monic with constant amplitudes, while the two frequencies 
are commensurate, say n Ifl and nzfl, where n p nz are inte­
gers which we take to be relatively prime to avoid ambigu­
ities. For each frequency ratio n I :n z there is an infinity of 
such figures, depending on the initial phase difference 
between the two harmonic motions, 

ql = A I cos(nlflt + dIl, q2 = A z cos(nzflt + dz). (4.4) 

Note that the arguments of the two trigonometric functions 
satisfy the almost trivial identity 

nz(nlflt + dd = n l(nz!lt + dz) + (nzd l - nldz) (4.5) 

at all times. 
Our system motion is 

ql = A I cos ql' qz = Az cos qz. (4.6) 

We may compare it to (4.4) provided A I' A z are constant; this 
will be the case, at least to a good approximation, for some 
time interval around a modulation extremum time t = te 
when the amplitudes are stationary. If in these circum­
stances the motion were to be an exact Lissajous figure, it is 
necessary first of all that the two phase functions satisfy an 
identity 

(4.7) 

in analogy to (4.5), at all times during some subinterval of the 
said interval. 

Equation (4.7) resembles the synchronization condition 
(2.10), 

ql(te) = glql(te ) - giqz(te ) = nr, r integer. (4.8) 

Here g I and gi are not necessarily relatively prime, in con­
trast to n I and nz, but if we divide (4.8) by d, the greatest 
common divisor of g I and g; , then the two relations can be 
equated term-by-term with the result 

nz=g/d, nl=gild, nzd l -n ldz =r1Tld. (4.9) 

The last of these three identifications shows how the 
two phase functions in Eqs. (4.4) must be synchronized in the 
particular Lissajous figures which may arise from the mo­
tion (4.6). The two phase constants d I' d z are tightly connect­
ed; for instance, in a{j = o state withdz = 0, we see from (4.9) 
that d l = mldnz holds at t = te = 0, consistent with (4.3). 
Given this link between d I and d z, we shall henceforth regard 
our Lissajous figures as determined, not by the phase differ­
ence d l - d2 in Eqs. (4.4), but by the value mid of the linear 
combination nzd I - n Idz, which is a kind of "weighted rela­
tive phase" and unambiguously determines the simple rela­
tive phase d l - dz as soon as one of d l, d 2 is given in any 
manner whatever. 
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For an exact Lissajous figure to emerge it is further­
more necessary that q I' qz have proportional rates of growth. 
Hence, if the instantaneous frequencies happen to be exactly 
commensurate at the modulation extremum under consider­
ation, 

i} I (te ):i12(te ) = n I :nz, (4.10) 
then the motion must begin as a Lissajous figure having the 
frequencies and phases specified by the relations (4.9); in par­
ticular, the frequency ratio will be n I :nz = g; :g I' Because of 
~ I = g I q I - gi qz, the condition (4.10) will be met exactly if 
q = 0; according to the Corollary of the preceding section we 
are then at a multiple root, and so we have simply a Case (II) 
c-a motion, and an orbit of permanent Lissajous shape. At a 
single root, according to the same corollary, ql(te ) #0 holds 
so that the frequencies cannot be exactly commensurate at 
the ratio gi :gl' nor can they remain at any constant ratio for 
long. Still, the ratio g; :g I will hold approximately for some 
time, and the orbit will still resemble a Lissajous figure for a 
while. We may speak loosely of a "Lissajous pattern," mean­
ing a curve which is not necessarily closed or exactly period­
ic, but still lies in the neighborhOOd of a specific Lissajous 
figure for some time. As time passes, the pattern may be lost 
rapidly, depending on the evolution of amplitudes and 
phases. At the next modulation extremum, however, the am­
plitudes are again stationary and another phase relation (4.8) 
is in effect; hence in general the orbit alternates between Lis­
sajous patterns which are most clearly recognizable near the 
modulation extrema. Depending on conditions, a pattern 
may also persist, of course; typical are the motions of an 
elastic pendulum in the vicinity of a cup or cap c-a motion 
which never lose their approximate cup or cap shape.3 On 
the other hand, in between extrema, a well-formed pattern 
can hardly arise, both amplitudes and periods being variable. 

Suppose now that we have amplitude modulation 
between two roots of equal parity. Then r remains the same 
throughout, r = r', and with it the weighted relative phase in 
(4.9) remains the same, whether or notg l andg; are relative­
ly prime. The pattern near a half-period t;:::: T !2ofthe modu­
lation must consequently be the same as near t;::::O, only it 
will be traced at a different amplitude ratio. 

With modulation between roots of different parities, 
suppose for definiteness that we start at the even root and 
with r' = O. At t = T!2 we must have (j1(T 12) = ± 1T, and 
the Lissajous pattern will obviously be different. Continuing, 
we shall have q I( T) = ± 21T, but does the orbit return to the 
original pattern it had around t;::::O? Noting that ql and q2 are 
determined only mod 21T, we must conclude that the weight­
ed relative phase nzd l - nldz, too, is determined only mod 
21T and not modulo some lesser multiple of 1T. Ifit changes by 
21T, then the combined phase ql goes through a correspond­
ing change by 2d1T, but if conversely q I changes by 21T, then 
nzd

l 
- n1dz changes only by 21Tld. We must, therefore, dis­

tinguish d = 1 and d # 1. 
If g I and g; are relatively prime, the pattern at t;:::: Twill 

be the same as at t;:::: 0 because the weighted relative phase 
has remained unchanged (mod 21T). At t;:::: 3 T 12 the pattern 
will be the same as at t;:::: T /2, and so on. Thus there is a pair 
of different, typical, alternating patterns for each even-odd 
modulation. 
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Quite different if d =1= 1. At t z, T, q j has changed by 21T, 
but n2d j - n j d2 only by 21Tld so that the pattern cannot be 
the same as at t z, O. Similar for the odd patterns occurring at 
T 12, 3T 12 and so on. Thus now there is an alternation of2d 
patterns, until n2dl - n ld 2 has run through a change by a 
full 21T. The modulation period is still T, but the recurrence 
time of the orbit patterns will be 2dT. 

How many distinct patterns are possible in a given sys­
tem will depend on the pair of integers g I> gi, i.e., on the 
resonance but not on the coupling. If g I = 1 so that only two 
values r' = 0,1 are possible, there are obviously just one even 
and one odd pattern. In the elastic pendulum, 3 these are 
simply cup- and caplike, respectively. If both gl' gi are 
greater than 1 but relatively prime, there is still only one even 
and one odd pattern; the different possibilities for r' then 
correspond to different points on the pattern where the mo­
tion is started up at t = O. If d =1= I, there are more patterns, 
however. For example, in the simplest caseg I = gi = 2, with 
r = 0,1,2,3 possible, there are two even patterns in the form 
of straight -line motions like the arms of a St. Andrew's cross, 
and two odd patterns in the form of the same ellipse de­
scribed in opposite senses. Reference 4 is an example (with an 
added symmetry degeneracy leading to a X cross and a cir­
cle). 

Many Lissajous figures are not closed loops but curved 
line segments with motion reversals at the two ends. At such 
endpoints the phases ql and q2 go simultaneously through 
multiples of 1T. Release from rest necessarily takes place at an 
orbit endpoint, whatever the pertaining value of r, cf. Sec. 
III E. Of course, the phases of a {j = 0 state, even if it has 
been set up by release from rest, do not remain precisely 
synchronized to the amplitude modulation later on, so that 
at a later amplitude extremum the orbit will only exception­
ally backtrack precisely on itself, but whenever both phases 
go nearly through multiples of 1T near an extremum, there 
will be a cusplike or looplike return motion with, character­
istically, a reversal of the sense of motion around the origin. 
Such reversals are possible because the restoring force in the 
system is in general not exactly central. Angular momentum 
about the origin is then not conserved and can indeed change 
so much that the angular velocity reverses as described. Ref­
erence 4 contains typical examples. 

When a system has more than two d.f. there are general­
ly no closed orbits. Arguments similar to the above can still 
be valid for two-dimensional projections of the orbit, how­
ever, given that c-a motions usually still exist and will induce 
two-dimensional patterns. 

C. Approach to stable c-a motion at a double root 

We return to an arbitrary system of any number of d.f. 
When initial conditions are changed such that the mo­

dulation range between two single roots R I and R2 tends to 
zero, the motion gradually approaches an orbitally stable c-a 
motion of ease (I) or (II) at a double root. Between the roots, 
the polynomial! can be approximated by a parabola opening 
downward, say 

!(pd =K(PI -Rd(R2 -pd, K>O. 

The integral in the formula SF (3.11) for the modulation 
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period then becomes elementary and yields at once 

T=21TIK. (4.11) 

In the limit R I-R2' K becomes in essence the curvature of! 
at the top, and this is finite. 

The limit process is thus straightforward for two simple 
roots of equal parity: Going towards a Case (II), the modula­
tion does not become infinitely slower; it only narrows to 
zero while q I(t ) tends to the constant value r'1T (and in a phys­
ical oscillatory system of two d.f. the orbit would tend to a 
stable Lissajous figure). 

For roots of opposite parity, ql(t) must stiIl change by 1T 
in every interval T /2, with T remaining finite. It is not to be 
seen immediately how such a steady variation of the com­
bined phase can go with constant amplitudes. The approach 
to a Case (I) motion thus requires special attention. It will be 
clarified in the following section in Theorems 3-6. 

It is also possible that a Case (I) motion at a double skew 
root be reached as the limit of motion between a single root of 
definite parity and a single skew root. Equation (4.11) still 
applies, but a single skew root marks Lipschitz-singular con­
ditions of exceptional low amplitude which demand special 
study; we must defer this exceptional case until Sec. IV E. 

D. Motion at and near a multiple skew root 

For ease of discussion we generally assume that the giv­
en system is one of physical oscillators, and we use the sign 
convention of Sec. III C. 

1. Phase equations 

For c-a motionpl=R at a multiple rootR off, the n - 1 
phase equations SF (4.1) become 

qi = uiO + U i I cos ql' i = 2, ... ,n, 

where 

U
iO 

= Wi + aB(PI,a) I ' 
aa i jJ,=R 

U
i 

I = aF(PI,a) I ' 
aa i jJ,=R 

(4.12) 

(4.13) 

(4.14) 

with all UiO , Uil therefore constant in time. Likewise the 
equation of motion for the combined phase becomes 

ql = as lap I = Vo + VI cos ql' (4.15) 

where 

(4.16) 

(4.17) 

with Vo, VI constant. 
Any nonresonant d.f. with gi = 0 (but i =1= 1 because of 

the numbering convention gl > 0) also have the phase equa­
tion (4.12), but do not take part in the combined phase ql; 
therefore, their integrated phases qi cannot be tied to the 
resonant phases by some synchronization condition. Their 
amplitudes are necessarily constant, regardless of phase 
variability; see SF Sec. IV. If such an amplitude should be 
zero, it could also nullify the entire nonlinear coupling in 
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some systems. It is to be understood that the language in the 
following excludes the possibility that [; -0 for all Pl' 

In a Case (II), the cosine is constant _ ± 1; the phases 
are then seen to be linear functions of time, with all n periods 
q; constant and given by SF (5.7) together with SF (5.8), 
which is merely the synchronization condition (2.10) in dis­
guise. The periods of any participating nonresonating d.f. 
are also constant, ~Iy unrelated. 

Case (I), with]: 0 as a function of time, is quite differ­
ent. The (resonant) phases are not necessarily synchronized, 
as the discussion leading up to the theorem with the condi­
tion (2.10) clearly shows. The phase behavior can, in fact, be 
understood only with proper regard to both root parity and 
orbital stability of the motion. In SF we did not yet possess 
the requisite concepts; thus, in some places the preliminary 
discussion of Case (I) [but not of Case (II)] given there needs 
to be amended, as will be mentioned explicitly after Theorem 
6 below. 

The possibility of frequency variations in Case (I) c-a 
motion evidently depends on the vanishing, or otherwise, of 
the coefficients VI in Eq. (4.15) and U; I in Eqs. (4.12). It so 
happens that these coefficients can vanish only in patterns 
which depend markedly on the multiplicity of R as a root of 
[;2 (which can be higher than its multiplicity as a root off, 
depending on the multiplicity as a root of P). Thus the phase 
behavior of a Case (I) turns out to depend sensitively on the 
type of coupling which operates in the given system. 

2. Higher-order roots 

Assume first that R is a root of]:2 of the third or higher 
order. A glance at the explicit Eq. (3.5) shows that in this 
case, either one I; equals at least 3, or Q has a root of at least 
the second order at R, or a confluence of zeros of suffi~iently 
high order takes place. In any event, a derivative of]: with 
respect to eitherpI or anyone of thea; must still vanish atR; 
hence 

Theorem 1: If R, a root off, is a root of [; 2 of at least the 
third order, then VI = 0 and U i , = 0 for all i = 2, ... ,n (includ­
ing the nonresonant d.f.). 

It follows from Eqs. (4.12) that in the c-a motion at such 
an R the d.f. Q2, .. .,qn move harmonically with the frequen­
cies U iO, which Eq. (4.13) shows to be identical with SF (5.3). 
One or more amplitudes may vanish, of course. The com­
bined phase (4.15) obeys 

q, =g,q, + ... +gnqn = vo, (4.18) 

where the definition (2.3) has been used. Thus q, also moves 
harmonically, with its frequency q, determined from Eq. 
(4.18) by the value ofvo• as stated in equivalent terms in SF 
Sec. V. Since vo#O in general, integration of Eq. (4.18) will 
normally not yield a result equivalent to Eq. (2.10); there is 
no such synchronization now, except, of course, if the Case 
(I) is simultaneously a Case (II), with R being a root offof 
order at least three, in which case it is seen from Eqs. (4.16) 
and SF (5.5) that indeed Vo = 0 holds, and also vice versa. In 
summary _ 

Theorem 2: If R, a root off, is a root of]: 2 of at least the 
third order, then the c-a motion at R is purely harmonic in all 
d.f., the frequencies of the resonant d.f. are always related by 
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Eq. (4.18), but phase synchronization as in Eq. (2.10) is ob­
tained if and only if the motion is simultaneously a Case (II). 

This theorem completely describes all Case (I) c-a mo­
tions at roots off of order three and higher, including the 
behavior of nonresonant d.f. Note, however, that it also de­
scribes motions at those skew roots of [which are only dou­
ble but are still at least triple roots of F2. Such motions are 
necessarily orbitally stable, according to STAB (3.12); see 
also Fig. 3 above. Their special interest is that they may be 
Liapunov-unstable in a higher approximation only, as we 
showed in STAB Sec. IV by an argument which rested deci­
sively on the c-a frequencies's being constant (and equal to 
the linearized OJi because also B _0). 

We have not attempted in Theorem 2 to characterize 
the phase behavior of motions in the neighborhood of the c-a 
motion at R, because there are too many possibilities of high­
er-order roots and of ways of approaching them. Each case 
will have to be studied on its own terms. Lemma (4.1) and 
Theorems 5 and 6 below point to suitable procedures. The 
only conceivable mathematical difficulty is an exceptional 
low-amplitude condition, and we deal with the main features 
of that in Sec. IV E. 

3. Lowest-order roots 

We are now left to treat double roots of F2, which can 
only be double (skew) roots off Referring again to Eq. (3.5), 
it is seen that a first-order zero of F at R can arise because 
Ii = 2 for one particular i, say i = j, or because Q has a simple 
zero at R. However, this is not all. 

In certain systems, according to the Theorem at the end 
of Sec. III D, there also exists the further possibility of a 
confluence of two exceptional low-amplitude conditions, 
i.e., a confluence of two zeros of order! in Eq. (3.5). If this is a 
root off, the corresponding c-a motion again needs special 
study. Its dynamical neighborhood, as is demonstrated by 
Fig. 4, can in general contain a medley of different motions. 
First, there are orbitally unstable motions with two ampli­
tudes having their lower bounds at zero, and therefore with 
Lipschitz conditions not guaranteed. Then there are stable 
motions of the three kinds listed in the previous section. 
They may take place between two roots of equal parity, in­
cluding limiting Case (II) motions when the two roots co­
alesce, and then they have a constant or almost constant 
combined phase ij, (t ). They may also take place between two 
roots of opposite parity, and then they have a combined 
phase which changes by 1T in each half-period of the modula­
tion. They may even occur between a single root of definite 
parity and a single skew root, with the combined phase be­
having as will be discussed in Sec. IV E. To some extent these 
complications are academic precisely because of the low am­
plitudes: When two amplitudes tend to zero, then in the limit 
of the c-a motion with both of them identically zero the be­
havior of the combined phase becomes irrelevant if only the 
phases of the other (non vanishing) d.f. behave in an unexcep­
tional manner. Still, one may wish to understand the ap­
proach to the c-a motion in some detail. Any particular ap­
proach is equivalent to some (continuous) path in the space 
of the parameters a 2, ••• ,an ,E. It stands to reason that not 
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every geometrically possible path is necessarily allowed in 
any specific, given system which may possess its own, specif­
ic, restrictive properties. Thus, no general statement seems 
possible, and we leave these cases to be studied ad hoc when 
they arise. 

To return to the other double roots of p2, suppose to 
begin with that there is one resonant dJ. (havinggj #0) with 

(gjPI+aj)I=O forPI=R= -aj/gj (4.19) 

iff# 1, or simply R = 0 ifj = 1. As in Sec. III C, using Eq. 
(3.6), we conclude that Pj = O. Since R is to be a double root 
off, we even have Pj ==0. Furthermore, from the inequality 
(3.7) we conclude that R is an endpoint of the domain of PI 
(upper or lower according as gj < 0 or > 0). Vice versa, if R 
lies at an endpoint, then (4.19) must hold for some resonant 
d.f. withj# 1, or R = 0 withj = O. 

We need all the derivatives (4.14) and (4.17). Note that Q 
in Eq. (3.5) cannot vanish at R because the given zero (4.19) is 
single, by hypothesis. Now ifj # 1, it is seen directly from the 
definition (3.5) that u.i.J #0 while U j I = 0 for all resonant d.f. 
with i#j; if we writeF = PI/,/2 (gj PI + aj ) G (PI,a), we find 
by differentiation with respect to P I that simultaneously 
~ #0 holds. Ifj = 1, then R = 0, and if we write 
F= PIG (PI,a), we find that all resonant Uj 1= 0 while again 
VI #0. In either case, the nonresonant d.f. withgj = 0 have 
U jl =0. 

On the other hand, if R lies inside the domain, none of 
the resonant d.f. can have a zero amplitude and we must 
ha~eQ(R,a) = O. Conversely, azeroofQ, ifitisasimple zero 
of F, cannot lie at an endpoint of the domain because addi­
tionally either (4.19) or R = 0 would be required, in order to 
reach e'l!lality in one of the bounds (3.7). As for the deriva­
tives of Fat R, begin with VI' If in Eq. (3.5) we differentiate 
factor by fa£tor with respect to PI' at R each resultant term 
containing Q vanishes, and only the term with dQ / dP I needs 
to be considered. This can vanish if and only if Q has a double 
zero at R, contrary to hypothesis; thus always VI #0. As for 
U 21 "",U n I' any or all of them may vanish or may differ from 
zero, for res<?nant and nonresonant d.f. alike; it all depends 
on the given F, especially the structure of Q, and hence on the 
interplay of different resonant terms in the nonlinear inter­
action governing the given system. 

In summary 
Theorem 3: Let R be a root of/which is a double root of 

F- 2 and does not result from the confluence of two exception-
allow-amplitude conditions. If R lies at an endpoint of the 
domain of PI , then in the c-a motion at R exactly one reso­
nant d.f. is at rest, say Pj=O, while VI #0 and also u· #0 if 
j # 1; all other U j I = O. If R lies inside the domain, th~~ in the 
c-a motion at R no resonant d.f. can be at rest; VI #0 holds 
always but U2\>""U n I mayor may not differ from zero de-
pending on the given P. ' 

4. Phase integration, general 

By Theorems 1 and 3 the behavior of the coefficients 
V I ,U21 ,,,,Un I. is recognized to be unexpectedly complex. We 
proceed to mtegrate the phase equations explicitly for the 
cases covered in Theorem 3. 
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The integration of Eq. (4.15) is slightly complicated by 
the existence of a singular integral 

cos ql = - voIvl = const. (4.20) 

Stability also enters the picture. From the criterion STAB 
(3.12) it is seen that c-a motion at the given R will be orbitally 
stable iff 

(4.21) 

and unstable for the opposite sign (with equality impossible 
at a double root R ). Since in the physical system the cosine of 
a phase cannot be larger than 1 in amount, the singular inte­
gral cannot apply in the stable case, but will have to be consi­
dered if c-a motion at R is orbitally unstable. 

In the stable case (4.21) the (elementary) integration of 
Eq. (4.15) yields 

ql(t) = 2 arctan { Vo + VI tan U(v~ - v~ )1/2(t - to)]}. 
(v~ - Vi)l!2 

(4.22) 

This is evidently periodic with full period 
T 2 ( 2 2)-1/2[ h'h' fi' = 1T Vo - VI W lC is mte, and must be equivalent 
to the value (4.11)]. It changes monotonically from zero at 
t = to to + 1T or - 1T half a period later; from there, mono­
tonic change continues because under the condition (4.21) 
the derivative in Eq. (4.15) cannot change sign, and so q 
exhibits precisely the behavior required by the Theoremlof 
Sec. IV A for the combined phase of a motion between two 
single roots of opposite parity. 

In the unstable case, condition (4.21) with the sign re­
versed, integration of Eq. (4.15) yields 

(}1(t)=2arctan{ vl+VO tanh[!(v2 _V2)1/2(t_t)]} 
(vi _V~)1/2 2 1 0 o· 

This is a monotonic function with asymptotes at 

tan 4 ql( ± 00) = + VI + Vo 
- - (vi - V~)lf2 

By means of the trigonometric formula cos x 

(4.23) 

(4.24) 

= [1 - tan2(x/2)]/[l + tan2(x!2)], (4.24) can be converted 
to 

(4.25) 

which coincides with the singular integral (4.20). Which of 
the two integrals applies at an unstableR, (4.23) or the singu­
lar (4.20), will depend on initial conditions. 

With unstable c-a motions one has in addition the con­
ceptua.l difficulty of never quite knowing how to set them up 
operahonally. At best, they should be regarded as limiting 
cases of neighboring motions. For any unstable R there must 
exist some other root R I such that/( PI) > 0 for PI lying 
between Rand R '; cf. STAB Fig. 1. Consider now a motion 
with an initial amplitude in this range, and with the ampli­
tude evolving towards R. 

When PI(t )-'>-R, the desired c-a motion will result after 
infinite time. During the approach to R the coefficients v V 
. h h o· I 
m t e p ase equation (4.15) are not yet rigorously constant so 
that the singular integral (4.20) is not valid, but to a first 
approximation the combined phase should be represented by 
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the integral (4.23) during some time interval and with some 
to' After a while, the approximation will have to be renewed, 
of course, but the process clearly tends to the singular limit 
(4.25). 

It is still unrealistic to try and set up a modulation 
evolving towards an exact double root R. The faintest inac­
curacy in meeting the initial conditions will split R into two 
single rootsR I andR 2, say, with R I lyingbetweenR 2 and the 
above R '. The modulation will then evolve towards R I' very 
slowly, with the combined phase again representable by 
(4.23) and therefore again evolving toward the limit (4.25). 
Close to R I' relatively rapid phase change will take over in 
accordance with Lemma (4.1), and consistent with the syn­
chronization (2.10) required as PI passes through R I' This 
phase change will proceed monotonically towards an as­
ymptote of (4.23), which then remains valid approximately 
for some time as the amplitude still remains close to R I dur­
ing its subsequent evolution towards R '. Except for this time 
interval around/(R I) = ° the phase is again approximated by 
the singular value (4.25), as long as the motion remains in the 
dynamical neighborhood of the c-a motion. For reference, 
we summarize the salient feature of this neighborhood thus: 

Theorem 4: Let R be a root of/which is a double root of 
"j2 and does not result from the confluence of two exception­
allow-amplitude conditions. If the c-a motion at R is orbital­
ly unstable, every motion in its phase space neighborhood 
tends towards the singular behavior (4.25) of the combined 
phase, for P I either approaching R, or approaching one of the 
single roots from which R is being formed by confluence, or 
developing away from such a root, except for relatively short 
time stretches while P I is passing through such a root. 

5. Neighborhoods of motions at lowest-order roots 

We now turn to a root of the type covered by Theorems 
3 and 4, and assume first that it lies at an endpoint of the 
domain ofp I' Without loss of generality we may assume that 
it is R = 0, and hence, that q I (or PI) is the one dJ. that must 
remain at rest. Indeed, if the resonant d.f. at rest is some 
other qj (or Pj) withI¥ 1, and which also has uj I ¥o accord­
ing to Theorem 3, then we may simply renumber the d.f. so 
that this qj becomes the new number one, and in the process 
the old uj I becomes the new VI whereas all the new U j I must 
vanish because no resonant d.f. qj (or pj) vanishes besides the 
new ql (or pd. 

It now becomes clear how a stable Case (I) c-a motion 
withpl=O can arise through the coalescence of two single 
roots of opposite parity: All d.f. apart from q I approach har­
monic motion at constant frequencies U j 0' while q I' owing to 
VI ¥O, takes on the entire variability required to make the 
combined phase iiI vary by 2rr per period as it should. The 
resultant ql(t) is thoroughly anharmonic but becomes 
progressively irrelevant as its amplitude PI = g I P I shrinks to 
zero. In the limit of root coalescence the phase synchroniza­
tion (2.10) also becomes irrelevant, again on account of the 
vanishing amplitude PI' and leaves the remaining n - 1 d.f. 
to follow their harmonic motions with the frequencies U jO 

unrelated, and with arbitrary phase constants, as stated in 
equivalent terms in SF (5.3). 
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In the unstable case, the approach to the c-a motion is 
subject to Theorem 4. When the motion is close (in phase 
space) to the exact c-a motion, it is again only q I (t ), which can 
have a notably variable phase, and only during the relatively 
short time stretches while the modulation PI goes through a 
minimum at a single root R I; since R I is by hypothesis very 
close to an R2 (of opposite parity) with which it is to coalesce 
into R = 0, this phase behavior again becomes irrelevant in 
the unstable limit R I = R 2• The other d.f. again move har­
monically as long as PI remains close enough to zero. In 
summary: 

Theorem 5: Let R be a root of/which is a double root of 
"j 2 and lies at an endpoint of the domain of P I but does not 
result from the confluence of two exceptional low amplitude 
conditions. The c-a motion at R, with exactly one resonant 
d.f. vanishing, is purely harmonic in all remaining dJ. In the 
course of the approach to the c-a motion the phase function 
of the vanishing resonant d.f. assumes in the stable case the 
entire variability required to account for the behavior of the 
combined phase (4.22), whereas in the unstable case it tends 
to harmonic behavior and remains approximately synchro­
nized to the other resonant dJ. by the condition (4.25), ex­
cept for relatively short stretches of time while the pertaining 
amplitUde modulation goes through a minimum close to 
zero with attendant phase synchronization (2.10); in either 
case this phase becomes irrelevant when the c-a limit is 
reached, and then all other phase constants are arbitrary. 

These results go beyond the statements made in SF in­
asmuch as the approach to the exact c-a motion is clarified. 

Secondly, let R lie inside the domain of P I' Since in the 
c-a motion at R according to Theorem 3 no resonant d.f. can 
be at rest, and always v, ¥ 0, at least one resonant d.f. has an 
anharmonic phase function, and so have all dJ. with u, 1#0, 
resonant or not. We can eliminate the cosine between Egs. 
(4.12) and (4.15) to yield 

and integrate to 

vlqj = Uj Iq, + w;f + const, (4.26) 

where ql must be of the form (4.22) or (4.23). Thus the phase 
functions of all d.f. with U j I ¥ 0, and possibly of q" have 
essentially the same time dependence; in the stable case they 
are anharmonic with the superimposed period Tofthe func­
tion (4.22), whereas in the unstable case the most important 
feature is again the tendency towards almost harmonic be­
havior described by Theorem 4. In short: 

Theorem 6: Let R be a root of/which is a double root of 
F2 and lies inside the domain of PI (and is therefore a single 
rootofQ). In the c-a motion atR at least one resonantd.f. has 
an anharmonic phase function, and so have all d.f. with 
U j I #0, by Eg. (4.26); the remaining d.f. move harmonically. 
In the course of the approach to the c-a motion none of the 
anharmonic phases becomes irrelevant, but in the unstable 
case approximately harmonic behavior occurs in accordance 
with Theorem 4. 

These "double skew root inside the domain" motions 
are thoroughly exceptional. We overlooked their existence 
in SF. They are the one and only exception to the statement 
made there that all c-a motions are purely harmonic, and to 
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the implication that in Case (I) the phase functions are al­
ways unrelated. 

A motion with constant amplitudes but a nonlinear 
phase evolution is, of course, not stationary in the customary 
sense. Suppose for the sake of illustration that we have only 
two d.f., that we have one of these double skew roots inside 
the domain, and that also u2 • = O. Then at this rootq2 moves 
harmonically, but because ofg. = g.q. + g2q2 the phase q. 
consists of a linear part together with either a periodic part 
(4.22) or a monotonic but nonlinear part (4.23). We may 
paraphrase: q. moves at a constant frequency but with a (pe­
riodically or monotonically) changing phase constant. Thus, 
in the Lissajous picture the orbit will start as a particular 
pattern which gradually evolves through other patterns as 
the phase difference d. - d2 in Eqs. (4.4) runs through its 
(periodic or monotonic) evolution. When such a motion is 
observed in a real system it need not stand out amongst the 
usual amplitude-modulated motions and may go unrecog­
nized despite its mathematically different character. 5 

E. Phase behavior at a single skew root 

A single skew root is a single root of p 2 and therefore 
entails that in Eq. (3.5) one of the Ii equals 1. It lies at an 
endpoint of the domain ofp.; see Sec. III C. Hence, when the 
modulation PI reaches this root, the d.f. in question has its 
amplitUde going through a zero. In SF Sec. VI we discussed 
in detail what happens in a real oscillatory system with a 
nonlinear coupling involving one d.f. to the first power, 
when the amplitude of that d.f. drops to zero. The main 
result was that the phase went through a 1800 jump and in 
addition changed quite rapidly in the vicinity of the ampli­
tude zero. For completeness we now demonstrate the exis­
tence of an analogous phase jump in all systems with Hamil­
tonians of the rype (2.1). 

Th!:,s, let Fbehave as in Eq. (3.9) at a r which is also a 
root of P (of at least the first order). From the conservation 
law (3.1) we conclude that 

cosg l =PIP=P(Plp 2
) (4.27) 

as long as P =1=0. Ifnow PI~r, the!lPapproaches a root of at 
least the same order as the root ofF 2

, whenceP Ip 2 remains 
bounded and 

lim cos gl = 0 asPI~r. 
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It follows that 

lim sin g, = ± 1 as p,~r. (4.28) 

r is an extremum of the modulationp,. The derivative P.(t) 
must therefore have opposite signs before and after the pas­
sage through r, but in Eq. (2.6) the factor P does not change 
sign, hence sin q I must change sign, and it can only do so in 
accordance with (4.28) ifg l jumps by Jr. Thus, 
sin q.( t e - ) = - 1 and sin q. (t e + ) = + 1 or the other way 
around, depending on the sign of Ko, and on r being a mini­
mum or maximum ofp •. 

The equation of motion for q I (t ) is ofthe form (4.15), and 
if we at once eliminate the cosine by means of (3.1) it becomes 

.;. BE BP P 
q =£+ - + --..-. 

BPI Oft, P 
Here the derivative of P has a square-root singularity at r, 
and formally no Lipschitz condition holds, but in analogy to 
the manipulation in (4.27) we can write 

.;. B'B 1 Bp 2 P 
q, =£+ - + ---..r- (4.29) 

BP. 2 BPI p 2 

and conclude that q. remains safely bounded as p.~r, be­
cause both E and p2 are polynomials and P Ip 2 is bounded. 
Except for the 1800 jump, ill is therefore entirely regular; 
however, its transient behavior right and left of the singular­
ity depends strongly on the coupling terms in the given Ha­
miltonian, as Eq. (4.29) indicates. 

Under these circumstances, the phase behavior in each 
given case will require separate study. The elastic pendulum 
is typical; for a detailed comparison of phase transients in the 
real system and its slow-fluctuation approximation, see Sec. 
X of Ref. 3. 

'M. F. Augusteijn and E. Breitenberger, J. Math. Phys. 21, 462 (1980). 
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3E. Breitenberger and R. D. Mueller, J. Math. Phys. 22, 1196 (1981). 
4M. F. Augusteijn and E. Breitenberger, "Bifurcation in a complex-valued 
wave-field model" (to appear). 
~We have found one case (in connection with "N = 6 phase anisotropy" 
waves) which we expect to publish in due course. 
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In Segal'~ approac~ to li~ear Fermi quantum systems, a one particle picture with linear 
symmet~Ies (e.-g., .wIt.h a linear dyna~ics) can be quantized very straightforwardly when a 
complexIficatIo~ IS ~1Ven for the (r~al IIn.ear) one particle picture. We examine how the symmetries 
that .are embodIe~ In t~e one partIcle pIcture can determine the structure of the family of the 
pOSSIble co~plexIfi.catlOn.s. Among other results, we prove that if the symmetries can be 
represented In a s~Itably Irr~ducible way then the complexification is essentially unique. Also, 
when the one partIcle space I~ a ge~eralization of the one defined by the Dirac equation, we prove 
that there a.re many comple~IficatlO~s, and inequivalent too as they generate inequivalent 
r~presentatlOns of the canomcal antlcommutation relations; however, we find two criteria that 
smgle out the "physical" complexification. We use the general results we prove to discuss a few 
familiar models. 

PACS numbers: 03.65.Bz, 03.65.Ca, 11.1O.Cd, 02.20. + b 

1. INTRODUCTION 

In Segal's approach to linear Fermi quantum systems, 
to quantize a system means to represent the coordinates and 
the conjugate momenta of a "one particle" or "classical 
phase space" picture in a C *-algebra (sometimes called the 
Clifford algebra of the system) in such a way that the canoni­
cal anticommutation relations hold. I The one particle pic­
tUre that underlies this approach can be represented by a 
triple (M,S,T), where 

(a) the pair (M,S) is an even finite or infinite dimensional 
real Hilbert space, i.e., M is an even finite or infinite vector 
space and S is an inner product on it, 

(b) Tis a group homomorphism from a group G into the 
group of the orthogonal transformations of (M,S). 
The picture described by (M,S, T) is quantized when a repre­
sentation of the canonical anticommutation relations (c.a.r.) 
Over (M,S 1 is given, i.e., a real linear injection R from Minto 
the self-adjoint part of the Clifford algebra (which need not 
be a concrete algebra) such that Vm,m'E M, 

[R (m), R (m')]+=R (m)R (m') + R (m')R (m) 

=S(m,m'). 

Indeed, once R is given T also is quantized, since for each 
element g of G a unique automorphism T [l. of the Clifford 
algebra exists such that V m E M 

Tg(R (m)) = R (T(g)m). 

Although the quantization of linear Fermi systems can be 
discussed in this purely algebraic framework,2 we examine 
here the well known straightforward quantization proce­
dure called "second" or "Segal" quantization,3 in which the 
Clifford algebra is realized as an algebra of operators on a 
(complex) Hilbert space and the automorphisms Tg are im­
plemented by unitary operators on this space. Indeed, we 
examine in this paper "how many" Segal quantizations exist 
for a given one particle picture. For a discussion about the 
one particle picture as a kinematical description in which a 
symmetry group is also defined (which can embody a linear 
dynamical evolution), see Ref. 4. For a discussion of Segal 

quantization versus general algebraic quantization, see Ref. 
5. Actually, Bose systems are examined in Refs. 4 and 5. 
However, the discussion to be found there can be easily 
adapted to the Fermi case treated in the present paper by 
replacing symplectic spaces with real Hilbert spaces, sym­
plectic transformations with orthogonal transformations, 
Wey I systems with representations of the canonical anticom­
mutation relations, Weyl algebras with Clifford algebras, 
and symmetric Fock spaces with antisymmetric Fock 
spaces. 

Segal quantization of (M,S,T) can be performed when 
there exists a complex Hilbert space structure on M that 
embodies the real Hilbert space structure already existing on 
M and such that T(g) is a complex unitary operator for each 
element g of G (of course, this "one particle" complex Hil­
bert space is not the complex Hilbert space where the second 
quantized quantities are defined). The existence of such a 
complex Hilbert space structure is equivalent to the exis­
tence of a linear operator J on the real Hilbert space M 
satisfying 
(CI) J is an orthogonal operator on M, i.e., Vm,m' EM 

S(Jm,Jm') =S(m,m'), 

(C2l J 2 = - 1 (the identity operator on M), 
(C3) Vg E G, [T(g),Jl_=T(g).J - JT(g) = O. 

In fact, if the complex Hilbert space exists, J is simply multi­
plication by the imaginary unit. If conversely J is given, a 
complex Hilbert space M J with the required properties is 
constructed defining on M a complex scalar multiplication 
as 

Va E C,Vm EM, am=((Rea)l + (Ima).J)m 

and a complex inner product as 

Vm,m' EM, (m[m')J-S(m,m') + is (Jm,m'). 

We call an operator Jon M with the properties (Cl), (C2), 
and (C3) listed above a complexification operator of(M,S,T) 
and denote the set of such operators by C (M,S, T). Different 
elements of C (M,S, T) lead to different Segal quantizations of 
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(M,S,T). Notice that in this very precise sense, a variety of 
"Fock quantizations" may exist, corresponding to the vari­
ety of elements ofC (M,S, T); each of them is a Fock quantiza­
tion in its own right and is determined by an element of 
C(M,S,T). They are comparable, though, as quantizations 
over the same real Hilbert space, and some criteria exist 
which may be used to check whether the Hilbert space repre­
sentations of the c.a.r. over (M,S) they contain are unitarily 
equivalent. As we will see, in the cases we are concerned with 
the representations of the c.a.r. that arise are all unitarily 
inequivalent. 

In Sec. 2 we show how the structure of C (M,S, T), when 
this set is not empty, can be determined by the structure of T. 
In particular, we find the condition for T that makes 
C (M,S, T) contain a unique (up to the sign) complexification 
operator, if any. When a choice among many admissible 
complexification operators is possible, it will also be shown 
that all the corresponding (Fock) representations of the c.a.r. 
are unitarily inequivalent, thus making meaningful the prob­
lem of singling out one of them. It is worth mentioning that 
Weinless too proved a uniqueness condition for complexifi­
cation operators, which is, however, quite different from 
ours; indeed, he proved that if G is a Lie group and Tis 
strongly continuous, then in C (M,S, T) there is at most one 
complexification operator with respect to which the self-ad­
joint generator of a fixed (but generic) one-parameter sub­
group of Tis positive (Lemma 1.6 in Ref. 2). A few more facts 
about C (M,S, T) are worth mentioning. First, at most unique­
ness up to the sign can hold, because if an operator J is an 
elementofC(M,S,T),sois - J.Second, whenG = ]Rand Tis 
strongly continuous, a condition for C (M,S, T) not to be emp­
ty was found by Weinless (Theorem 5.5 of Ref. 2). Finally, 
the discussion of the one degree of freedom case, which is 
interesting for Bose systems (see Ref. 4), is not really instruc­
tive for Fermi systems. In fact, for M = ]R2 there is just one 
(up to the sign) operator that satisfies conditions (CI) and 
(C2) above. 

In Sec. 3 we use the results obtained in Sec. 2 to discuss 
nonfamiliar features of a few familiar models. 

2. STRUCTURE RESULTS 

In this section we show what operators are contained in 
C (M,S, T) in the case that C (M,S, T) is nonempty and Tsatis­
fies particular conditions. Of the four results we prove, the 
first one is a uniqueness condition for the complexification 
operators and the third one bears a uniqueness condition as 
an easy consequence. The statements of the first three results 
have the following common pattern. If J is a complexifica­
tion operator and T has some properties as a unitary repre­
sentation of Gin M J, then C (M,S, T) has some structure de­
termined by J. 

Before the lemmas and the results, it may be useful to 
notice explicitely that, if J and K are two complexification 
operators, a (real) linear operator Bon Mis a (complex) linear 
operator from the complex Hilbert space M J into the com­
plex Hilbert space M K if BJ = KB; it is antilinear if 
BJ = - KB. In particular, Jbeing a complexification opera­
tor, a (real) linear operator in M is a (complex) linear (or 
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antilinear) operator in M J ifit commutes (or anticommutes) 
with J. As to the notation, remember that M J denotes M 
"complexified" by a complexification operator J. Also, we 
denote by T J the (complex) unitary representation ofG that 
is defined by T in the complex Hilbert space, M J, namely 
'rIgEG 

TJ(g) = T(g), 

where the difference between the left hand side and the right 
hand side is just the difference between M J and M. 

Lemma 1: Let J and K be elements of C (M,S, T) and let 
the (complex) unitary representation TJbe (complex) irredu­
cible. The following statements hold true. 

(a) A real number {f exists such that [J,K]+ = {fl. 
(b) 'rim E M,II[J,KLmI1 2 = (4 - {f2l1lmI12, where {f is 

the number that appears in (a). 
(c) If[J,KL = 0, then K = ± J. 
Proof (a) Because of property (CI) of the complexifica­

tion operators, JK + KJ is a bounded real linear operator on 
M. It is also complex linear on M J because 
[JK + KJ,JL = ° as a result of(C2). Therefore, JK + KJis 
a bounded complex linear operator on M J which commutes 
with T J

, because of (C3). Thus, by Schur's theorem, a com­
plex number {f exists such that JK + KJ = {fl. Moreover 
'rim EM 

Im((JK +KJ)mlm)J = -S(Km,m) -S(KJm,Jm) =0, 

since 

S(Km,m) =S(K2m,Km) = -S(m,Km) = -S(Km,m), 

where use is made of(CI) and (C2). Hence {f is real. (b) A 
straightforward calculation, in which use is made of(CI), 
(C2), and of the result (a) proved above, shows this equality. 
(c) This result is an easily proved consequence of (a) above 
and of(C2). 

To state our first result, we need a remark which is used 
also in the proof of Lemma 2. Indeed we observe that if a 
(complex) unitary representation of a group is irreducible, 
then its antiunitary commutant either is empty (if the repre­
sentation is not self-contragredient, i.e., it is not antiunitarily 
equivalent to itself) or contains just antiunitary operators 
that differ from one another by a phase factor. This is a direct 
consequence of Schur's theorem. Therefore, all the squares 
of the antiunitary operators that commute with the represen­
tation have the same value, which can be called the square of 
the anti unitary commutant of the representation. 

Result 1: Let/be an element ofC(M,S,T). If the (com­
plex) unitary representation T J is (complex) irreducible and 
either of the following two conditions holds, (I) T J is not self­
contragredient, (2) the square of the antiunitary commutant 
of T J is not - 1, then C (M,S,T) contains only the operators 
±J. 

Proof We show that, if in C (M,S, T) there is an operator 
K =I=- ± J, then an antiunitary operator A exists on M J that 
commutes with T and such that A 2 = - 1, which contra­
dicts both (I) and (2). In fact, if such a K exists, take 

A -(4 - {f2)-1/2[J,KL, 

which is a well defined (real) linear operator in M because of 
(b) and (c) of Lemma 1. Using (a) of Lemma 1 and (C2) we can 
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see that A 2 = - 1. This directly implies that the range of A 
is M. Moreover A is isometric because of (b) of Lemma 1. 
Finally, A is an anti linear operator inM J since [A,J 1 + = 0 
follows from (C2). Therefore A is an anti unitary operator on 
M J and commutes with Tbecause of(C3). This ends the 
proof. 

Notice that-for an irreducible unitary representa­
tion-the case not covered by the result above is that the 
representation is self-contragredient through an anti unitary 
operator whose square is - 2. Such are, for instance, the 
continuous unitary irreducible representations ofSU (2). Re­
sult 2 shows that in this case there is not (up to the sign) 
uniqueness for the complexification operator, in contrast 
with the situation dealt with by Result 1. We prove now a 
lemma that we need in the proofs of both Results 2 and 3. 

Lemma 2: Let J be an element of C (MS, T) and A an 
anti unitary operator on M J that commutes with T and such 
that A 2 = - l. If a, {3,y are real numbers such that 
a 2 + {32 Y 2 = 1, the (real) linear operator J(a,{J,rl defined by 

J(Cl,{J,r) =aJ + {3A + yJA 

is an element ofC (M,S,T). Moreover, the (complex) unitary 
representations T J in the complex Hilbert space M J and 
T J ,,,.!),» in the complex Hilbert space M J

,a,{1,r' are unitarily 
equivalent if a#-- 1, antiunitarily equivalent if a = - 1, 

Proof Notice that A, as a (real) linear operator on M, is 
anelementofC(M,S,T)andtherelation[J,A]+ = Oholds,A 
straightforward calculation in which use is made of this anti­
commutation relation and the properties (eI) and (e2) of J 
and A shows that 'r/ m,m' EM 

S (J(a,{J,rl m, J(aB,rlm') = S (m,m'), 

i.e" the condition (eI) holds for J(Ct,{3, 1'1' Direct computation, 
in which use is made of[J,A ] + = 0 and the property (e2) of J 
andA, also shows that J

r
",(1,r) 2 = - 1, i.e" the condition (C2) 

holds for J(a,(3,]'I' Finally, (C3) obviously holds for J(a,(3.]'1 since 
it holds for both J and A. This ends the proof of the first 
statement ofthe lemma. For the equivalence between T J and 
TJru,R,rr, consider first the case a = - 1; this means 

J(a./3,),1 = - J and the identity map on M is an antiunitary 
operator from M J onto M - J that commutes with T, i.e., 
that transforms T J into T - J. Taking now a#-- 1, define 
the (real) linear operator Von Mas 

V = (2( 1 + a))- 1/2 (I - J(a,{J.),)J). 

The range of the operator V is M, since the equality 

(1 - J(a,(1.rIJ)(1 + 2a + J(a,(3,1'/) = 2(1 + a) 

can be shown by direct computation, making use of 
[J,A L = ° and of property (e2) of J and A; further, using 
these properties of J and A and also (CI), it is possible to see 
that V is an orthogonal operator on M, and therefore it is 
isometric; finally, Vis (complex) linear from M J onto M J,a.{1,1' 

since 

(1 - J(a.{J,1')J)J =J(Cl.{J.rd l - J(a.(3,rI J ) 

holds as a consequence of (e2) for both J(a,(3.rl and J. There­
fore V is a unitary operator from M J onto M J,a.{1.'1 and com­
mutes with T since both J(a.{J,rl and J do. This completes the 
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proof of the lemma. 
Result 2: LetJbe an element ofC(M,S,T). If the (com­

plex) unitary representation T J is (complex) irreducible and 
self-contragredient through an anti unitary operator A on 
M J such that A 2 = - 1, then these two properties hold for 
TK for any KEC (M, S, T). Under these conditions, the set 
C (M,S, T) coincides with the set of the operators 

J(a.{J.YI -aJ + {3A + yJA, 

for a,{3,y real numbers such that a 2 + {3 2 + Y = 1. 
Proof The only thing we must prove is that for any 

K E C (M,S, T) there are real numbers a,/3, ywith the property 
a 2 + {3 1 + Y = 1 such that K = J(".(3,rl . When this is proved, 
the result follows as an easy corollary of Lemma 2. Take then 
KEC(M,S,T). IfK= ±J, then of course 
(a, {3, y) = ( ± 1,0,0). If K #- ± J, as in the proof of Result I 
wecan consider the operator (4 - ~ 2)-If2[J, KL, whichisa 
(complex) antiunitary operator on M J that commutes with 
T. Owing to the uniqueness up to a phase factor of an opera­
tor with these properties, which stems from the irreducibi­
lity of TJ, two real numbers;1 and;2 with the property 
; i + ; ~ = I exist such that 

[J,KL =(4_~2)1/2(;11 +;~JA. 

Summing this equality with the equality [J,K] + = ~l (see 
Lemma Ia) and using the property (C2) of J we obtain 

- 2K = ~J + (4 - ~2)1/2 (;1 J - ;21JA. 
ThereforeK = J(a,(3;:t with a = - W,{3 =! ;2(4 _ ;2)1/2, 

Y = -! ;1(4 - ; 2)1 2. This proves the result. 

It is worth pointing out explicitly that, if we chose in­
stead of A another operator in the anti unitary commutant of 
T J

, the family of operators J(a,(3.rl would not be affected. So it 
must be for the statement of Result 1 to make sense and so it 
is because another operator would differ from A by just a 
phase factor. Also, notice that the conditions of both Results 
1 and 2 are conditions for (M,S,T) and not really conditions 
that hold for a particular complexification operator only. 
This is explicitly stated in Result 2 and immediately seen in 
Result 1 (since T J and T '" J are antiunitarily equivalent 
through the identity map on M). 

We prove now our last structure result for C (M,S, T). In 
contrast with Results 1 and 2, the representation r J is not 
requested to be irreducible here. Indeed, this result is suited 
for discussing the one particle picture that is defined by the 
Dirac equation. 

Result 3: Let an element J of C (M,S,T) exist such that 
the (complex) unitary representation T J decomposes into a 
(complex orthogonal) direct sum of two (complex) unitary 
irreducible representations. Suppose these two representa­
tions are mutually anti unitarily equivalent and unitarily ine­
quivalent. Then there is a unique (up to a phase factor) an­
tiunitary operator A on M J that commutes with T and such 
that A 2 = - 1. Moreover, the operators 

J(n.(3.r}=aJ +{3A + yJA, 

with a,{3,yreal numbers such thata2 + {3 2 + Y = 1, areele­
ments of C (M,S, T) and the only operators of C (M,S, T) that 
are not of this form are ± Jo, with 
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JO==J(PI - P2) 

if PI and P2 denote the (complex) projections from M J onto 
the supports of the two components of TJ. The unitary re­
presentations TJ(aJJ.Y) are unitarily equivalent to T J, while 
T J

• (respectively, T - Jo
) is the (complex orthogonal) direct 

sum of two copies of the component of T J relative to PI 
(respectively, P2). 

Proof Denote by M; and M ~ the ranges of the projec­
tions PI and P2, respectively, i.e., the two mutually orthogo­
nal (complex) subspaces of M J that are invariant with re­
spect to T J, and by T~ and T~ the restrictions of T J to M; 
and M~, respectively. If B is an antiunitary isomorphism 
from the (complex) Hilbert space M ~ onto the (complex) 
Hilbert space M ~ such that V g E G 

B T; (g) = T~ (g)B, 

then 

A =BP, -B -IP2 

can be quite easily shown to be an anti unitary operator on 
M J that commutes with T and such that A 2 = - 1. More­
over, A is the unique (up to a phase factor) antiunitary opera­
tor on M J that has these two properties; in fact, if V is an­
other such operator, then VA -, is a unitary operator onMJ 
that commutes with T; therefore, since T J is a multiplicity 
free unitary representation, two complex numbers p, and P2 
of modulus one exist such that 

VA -, =p,P, +P2P2;6 

thus we have 

- 1 = V 2 = ((PIPI + P2P2)(BPI - B -IP2W 
= - (P;2PI + P';IP2) 

(bar means complex conjugation), whencep;2 = 1; there­
fore p, = P2 and this shows that V and A differ by a phase 
factor only. Thus, A is an operator on M that satisfies the 
conditions of Lemma 2, and therefore the operators ~a./3.rl 
areelementsofC (M,s,T) for all the real numbers a, P,ysuch 
that a 2 + P 2 + Y 2 = 1. The uniqueness up to a phase factor 
of A shows that if we defined the operators J(aJ3. rl through a 
different anti unitary operator that meets the conditions of 
Lemma 2, we would obtain the same family of complexifica­
tion operators. Also, from Lemma 2 we know that the uni­
tary representations TJ1aJJ.Y) are unitarily equivalent to TJ. 
Notice thatthis holds also for a = - 1; in fact, for a = - 1, 
TJ1aJJ.Y) is known to be antiunitarily equivalent to T J, but in 
the present discussion T J is also known to be self-contragre­
dient (through the antiunitary operator A ). 

Consider now the operator Jo on M. Taking into ac­
count that if for two vectors m,m' of M the equality 
(m Im')J = 0 holds, then S (m,m') = 0 holds as well, and also 
using the property (CI) of J, we see that Vm,m' EM 

S (Jom, Jom') = S ((PI - P2)m'(PI - P2)m') 

= S(Plm, Plm') + S(P2m, P2m') 

= S((PI + P1 )m, (P, + P2)m') = S(m,m') , 

i.e., Jo satisfies the condition (CI). Observing now that J 
commutes with PI andP2 becauseM; andM~ are complex 
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subspaces of M J
, it is very easy to show that Jo satisfies the 

condition (C2) since so does J. Finally, Jo satisfies the condi­
tion (C3) because so does J and because PI and P2 commute 
with T as M; and M i are invariant with respect to TJ. 
Thus, ± Jo are elements ofC(M,s,T). To examine now the 
unitary representation TJo in the (complex) Hilbert space 
M Jo, note that PI and P2 commute' also with Jo and therefore 
M; and M~ are (complex) subspaces also of the (complex) 
Hilbert space M J". We denote them by M;o and M ~o when 
we consider them endowed with the (complex) Hilbert space 
structure of M J,,' Clearly, M;o and M ~o are invariant with 
respect to T J

" sinceM; andM ~ are invariant with respect to 
TJ. Also, M;o and M ~o are easily seen to be mutually ortho­
gonal (complex) subspaces of M J o, since the restrictions of J 
to M; and of Jo to M 1° coincide while the restriction of J to 
M ~ is the opposite of the restriction of Jo to M ~o. For the 
same reason, the component of T J

" relative to M;o is unitari­
ly equivalent (through the identity mapping on M f = M ;0) 
to T~ , while the component of TJo relative to M ~o is antiuni­
tarily equivalent (through the identity mapping on 
M ~ = M ~,,) to T~. Therefore both the components of T J

" 

are unitarily equivalent to T;, since T~ is antiunitarily equi­
valent to T;, and this proves what had to be proved for TJo

• 

The same holds for T - J", replacing T; and T~. 

To complete the proof, we now have only to show that if 
K is an element of C (M,S, T), then K is one of the operators 
Jla.f3.rl' ± Jo defined above. For such an operator K,[J,K] _ is 
a bounded operator on M that anticommutes with J, and 
therefore [J,K L A is a bounded operator on M that com­
mutes with J, i.e., a (complex) linear bounded operator on 
M J. Moreover, since [J,K] _A commutes with T J

, it must be 
a complex linear combination of PI and P2 because T J is a 
multiplicity free unitary representation. This means that 
there are complex numbers A1,A.2 such that 

namely 

[J,KL =A,B - IP2 -A 2BP,. 

A direct computation, where use is made of the properties 
(CI) and (C2) of J and K, shows that \:Jm E M J 

([J,K Lmlm)J = 0, 

and therefore 

o =X,(B -IP2mlm)J -X2(BP1mlm)J 

=X1(B -IP2mIP1m)J -X2(BPlm[P2m)J; 

this holds only if Vm l EM;, m 2 E M~ 

(XI - X2) (Bm llm2)J = 0, 

which implies ..1.1 = ,.1,2 since B is an antiunitary isomorphism 
from M; onto M ~. Therefore, there is a complex number A. 
such that 

Observe now that [J,K] + is a bounded operator on M that 
commutes with J, i.e., a bounded (complex) linear operator 
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on MJ; moreover it is self-adjoint because 

Im([J,K] +mlm)J = 0, 

as a direct computation shows; therefore, since [J,K] + com­
mutes with T J and this unitary representation is multiplicity 
free, there are two real numbers f-ll> f-l2 such that 

[J,K]+ =f-lIPI +f-l2P2' 

Summing the two equalities obtained above for the commu­
tator and the anticommutator of J and K, and using the 
property (C2) of J, we obtain 

-2K=.4J(B- IP2-BPI)+JI.J1IPI +f-l2P2); (R) 

squaring this equality and again using the property (C2) of J, 
we obtain 

- 41 = ( - f-li + (Af-ll - Af-l2)B - IA 12)P I 

+ ( - f-l~ + (Af-l2 - Af-l dB -I - IA 1

2)P2, 

whence - 4PI = ( - f-li - IA 1
2)PI + AI.J1I - f-l2)BPI 

and - 4P2 = (-f-l~ -IAI 2)P2 +A1.J12 -f-ldB -IP2• 

Since the range of BP I is M ~ and the range of B- 1 P2 is M ~ , 
these last two equalities imply 

4 = f-li + IA 12 = f-l~ + IA 12 and AI.J1I - f-l2) = 0. 

If A = 0, then either f-ll = f-l2 = + 2 or f-ll = - f-l2 = + 2 
and -as can be seen inserting these values in (R) above -
either K = ± J or K = ± Jo. If A =1= 0, then f-ll = f-l2' and -
settinga- - f-l /2,{3 =ImA /2, y - ReA. /2 and inserting 
these values in (R) above - we get 

K = aJ +{3A + yJA; 

the real numbers a,{3,y satisfy the relation 

a 2 +{32+ r =!l.J1i +IAI2)=1. 

This shows that if K is not either ± Jo, then it must be one of 

the complexification operators Jla.f3.rl . Thus the proof is con­
cluded. 

Observe that for the two anti unitarily equivalent com­
ponents into which T J decomposes in the statement of Re­
sult 3, to assume they are unitarily inequivalent (as in the 
statement of Result 3) is the same as to assume that neither of 
them is self-contragredient. Also, it is worth mentioning that 
the definition of Jo in Result 3 is unambiguous because the 
decomposition of T J into a (complex orthogonal) direct sum 
of irreducible components is unique, T J being multiplicity 
free; thus, PI and P2 are completely identified by their being 
the projections that decompose T J into irreducibles. 

Notice that T J
" (respectively, T - J o

) cannot be decom­
posed into a direct sum of irreducibles not both unitarily 
equivalent to the component of T J relative to PI (respective­
ly, P2), because the decomposition of T J

" (or T - J o
) is unique 

up to unitary isomorphisms, T J
• (or T - 10) being a factor 

representation. Therefore, for K E C (M,S,B ), the way T K de­
composes into irreducibles can be used as a criterion to dis­
tinguish between K = ± Jo and K being one of the operators 
Jla.f3.rl' Indeed, we have the following uniqueness condition 
for the complexification operators of (M,S, T), when for 
(M,S, T) the conditions of Result 3 hold: The operators ± Jo 
are the only complexification operators that turn T into a 
unitary representation whose irreducible components are 
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copies of the same unitary representation. 
Another uniqueness condition that determines the 

complexification operators to be just ± Jo is found if the 
"symmetry group" 

!T(g),gEG J 

of a one particle picture that satisfies the conditions of Result 
3 is suitably extended. Indeed, define the "gauge 
transformations" 

1 exp AJ,A E IR J 

[observe that exp AJ is a well defined orthogonal operator on 
M since J is a bounded linear operator on M and exp AJ is 
naturally a (complex) unitary operator on MJ] and the 
"charge conjugation" 

C-BPI +B -IP2 

(where B is as in the proof of Result 3), and consider the set 

i -1 T(g),gE G; expU,A E 1R; C I 
of orthogonal operators on M. Clearly C (M,S, i) is a subset of 
C (M,S, T), and since the latter is known it is just a matter of 
direct computation to show that C (M,S, i) contains the com­
plexification operators ± Jo and nothing else. This can be 
seen also on the basis of Result 1, since i defines in M J" a 
family of (complex) unitary operators that can be easily 
shown to be irreducible, not self-contragredient and self­
adjoint (and therefore Result 1, which depends on Schur's 
theorem, still applies). Observe that the Stone theorem self­
adjoint generator in M J" of the gauge transformations is the 
"charge" operator PI - P2, since 

expAJ = expAJo(P1 - P2 ). 

Since CPI = P2C and C 2 = 1, C interchanges the two eigen­
spaces of the charge, and this explains the terms used in 
inverted commas. 

We end this section proving a result concerning the uni­
tary inequivalence of the representations of the c.a.r. over 
(M,S) associated with different complexification operators. 
To this aim we first need another result. This appears here as 
a lemma, but its scope is wider, as it provides a simple crite­
rion for the unitary equivalence of the Segal representations 
ofthe c.a.r. that are associated with different complexifica­
tion operators of (M,S). Quite naturally, we call complexifi­
cation operators of (M,S ) the operators on M that satisfy (C 1 ) 
and (C2) and denote the set of them by C (M,S). Obviously 
C (M,S, T) is a subset ofC (M,S ) for any "symmetry group" T. 

Lemma 3: If J and J' are two complexification opera­
tors of C (M,S), the corresponding representations of the 
c.a.r. over (M,S) are unitarily equivalent if and only if 
J - J' E /2(M), the set ofthe Hilbert-Schmidt operators on 
the real Hilbert space M. 

Proof A first step consists in constructing a unitary op­
eratorfromM J ontoM J

·• For this purpose, take two orthon­
ormal bases 1 U a I and! up I in M J and M J', respectively; as 
(ua,Jua I and (u~,J'u~ I are two orthonormal bases for the 
same real Hilbert space M, we can take the same index set for 
both the bases. Define Vas the unitary operator from M J 

onto M l' such that 

Vu" = u~ and VJu" = J 'u;,. 
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Notice that in particular VJ = J' V. If R andR 'are the repre­
sentations of the c.a.r. corresponding to J and J', respective­
ly, a unitary operator r (V) exists from the Fock space over 
M J onto the Fock space over MJ" such that 't;/m EM 

r(V) R (m) r(V)-1 = (R 'oV) (m); 

therefore Rand R ' 0 Vare unitarily equivalent (recall that 
whenever Vis an orthogonal operator on M, R '0 Vis a repre­
sentation of the c.a.r. if R ' is). Thus Rand R ' are unitarily 
equivalent if and only if R ' and R '0 Vare. At this point use 
can be made of a criterion to be found in Ref. 7: Here, it 
amounts to saying that R ' and R '0 Vare unitarily equivalent 
if and only if VJ' - J'VE/2(M); as V-IJ'V = J, this is 
equivalent to J' - J E /2(M). This ends the proof of the 
lemma. 

As a side remark, notice that it also follows from the 
proof of the lemma that if R ' is a representation of the c.a.r. 
associated with a given complexification operator J I, then 
for any orthogonal operator Von M there is a complexifica­
tion operator J such that Ro Vis (unitarily equivalent to) the 
representation corresponding to J, and vice-versa. Indeed, 
J = V - IJ I V. In other words, the Fock space representations 
(if any) of the c.a.r. over (M,S) can be classified by the orthog­
onal operators on M. This result, as well as the idea underly­
ing the proof of Lemma 3, can also be found in Ref. 8. 

We can now prove the result on the inequivalence of the 
representations of the c.a.r. 

Result 4: In the situations described in Results 1,2, and 
3, under the obvious proviso that the space involved are all 
infinite dimensional, all the complexification operators con­
tained in C (M,S, T) give rise to unitarily inequivalent repre­
sentations of the c.a.r. over (M,S ,. 

Proof In view of Lemma 3, we just have to look at 
J - J'. To begin with,noticethatJand - Jareimmediately 
seen to be inequivalent. Moreover 

Jla.f3.rl - J(a'.f3'.}") = (a - a ' ) J + (j3 - {3 ')A + (y - y') JA 

is, up to the factor [(a - a ' )2 + If3 - {3 ')2 + (y - y')2] 1/2, an 
isometric operator on M in both the situations of Results 2 
and 3. Finally, J(a.f3.rl - Jo, in the situation described in Re­
sult 3, is not even a compact operator. This completes the 
proof. 

The last result shows that in the situations described in 
this paper, when the complexification operator is not unique, 
its non uniqueness is an essential one, since it leads to unitari­
ly inequivalent representations of the c.a.r. 

3. EXAMPLES 

In this section we use the results obtained in the pre­
vious one to discuss two very well known models. Also if 
these models are so simple that little really new can be said 
about them, some features of them that are usually over­
looked are pinpointed here. However, the real goal of this 
section is to show how the theory discussed in this paper 
should be used in the analysis of linear systems (e.g., linear 
quantum fields in an external field). 

The first application of the results proved in the pre­
vious section is to the one particle space defined by the free 
Schroedinger equation. Here, the one particle symmetries 
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are described by a complex irreducible unitary representa­
tion of a central extension of the Galilei group. In the Bose 
case the Segal quantization is shown to be unique by our 
result of Ref. 5, since the relevant representation is real irre­
ducible. 9 As for the Fermi case, either Result I or Result 2 of 
the present paper must apply, since the relevant representa­
tion is complex irreducible; as it is not self-contragredient, 10 

Result 1 applies and uniqueness (which here always means to 
within a sign) of the Segal quantization obtains. 

As a second example, we examine the one particle space 
whose quantization leads to the free relativistic Dirac field. 
On a suitable space of solutions of the Dirac equation an 
action of the proper orthochronous Poincare group P 1+ can 
be defined in a natural way; as is well known, this defines a 
representation of P 1+ that splits into two irreducible compo­
nents. To describe them, we refer to the structure one is like­
ly to consider at first, defining on the space of solutions an 
L 2_type Hilbert space structure, where mUltiplication by the 
imaginary unit is plainly defined pointwise. If we denote this 
complexification operator by J, the space of solutions by M, 
the real part of the L 2 -type inner product by S, and the "nat­
ural" action of P 1+ on M by T, we find ourselves exactly in 
the conditions of Result 3. Indeed, T turns with respect to J 
into the direct sum of the two continuous irreducible repre­
sentations of P 1+ determined by the pairs of Casimir opera­
tor eigenvalues (m, 1/2) and ( - m, 1/2). As this situation has 
been recognized unsatisfactory very soon, owing to the pres­
ence of negative mass states, various (equivalent) schemes 
have been contrived to have the space of the "antiparticle" 
states transform according to a "physical" representation of 
P 1+ • The way of getting round this difficulty we can make 
the most of to illustrate our results consists in redefining the 
structure of the one particle space (rather than redefining 
things after quantization); this is achieved by changing the 
sign of the multiplication by the imaginary unit on the sup­
port of the component ( - m, 1/2), which means changing J 
into Jo (see, e.g., the second of Bongaart's papers quoted in 
Ref. 1). In fact this turns Tinto the"physical"sum of(m,1/2) 
with itself. Notice that this is not a priori forbidden since 
the relevant representation is not irreducible and therefore 
Results 1 and 2 do not apply. One might reasonably ask 
whether this is the only possibility, i.e., how many complexi­
fication operators there are that give rise to a "physical" 
representation of P 1+ . Result 3 answers this question and 
shows that Jo is the only choice. 

A few more remarks on the free Dirac field. As we have 
just seen, if one constructs the "naive" complexification op­
erator J as a first step, then he is unambiguously led to con­
struct the "physical" Jo as a second step if he wants both 
particle and antiparticle states to transform according to 
physical representations of P 1+ • If Jo instead was adopted 
right at the outset, the uniqueness of Jo rather than its con­
struction from J would be the main point of interest. 

For this purpose, observe that J 0 is uniquely determined 
by the remarks that follow Result 3. Further, notice that 
another uniqueness condition for Jo can easily be derived 
from Weinless's uniqueness condition quoted in the Intro­
duction. Finally, it is worth mentioning that, as a conse-
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quence of Result 4, the representations of the c.a.r. over the 
free Dirac one particle space corresponding to the "naive" 
and the "physical" complexification operators are unitarily 
inequivalent. This makes it relevant to have criteria, such as 
those described above, to make a choice between them. 
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An axiomatization of the measuring process leads to a Jordan algebra structure on the 
observables. The novel features in this development include a proof of the existence of the sum of 
observables, a proof of the quadratic nature of the square of an observable, the lack of a finite 
dimensionality assumption, and the exploitation of the change in the measuring process due to a 
change in the counting observable. 
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1. INTRODUCTION 

In this paper we give a full exposition of previously an­
nounced results linking a Jordan algebra structure to the 
measuring process. 1 The first axiomatization of the measur­
ing process leading to Jordan algebras was done by Jordan2 

and Jordan, von Neumann, and Wigner. 3 They associated 
with each observable A another observable A n which returns 
the nth power of the value returned by A on each measure­
ment. Also, assumed was the existence of the sum A + B of 
observables A and B satisfying 

Ex(A + B) = Ex (A ) + Ex(B) 

for all states x, where Ex (A ) is the expected value of A on 
state x. With the assumption that A n is given by an algebra 
structure, i.e., that 

A.B = WA + B )2 - A 2 - B 2] 

is bilinear, one is led to a power associative algebra which is 
formally real (~A T = 0 implies Ai = 0). Finite dimensional 
formally real power associative algebras were shown to be 
Jordan; i.e., 

A 2.(B.A) = (A 2·B ).A. 

The physical grounds for the existence of the sum of 
observables and the quadratic nature of A 2 are not clear, 
while the finite dimensionality assumption severely limits 
the applications. Indeed, in the Jordan model, if A and Bare 
not "compatible," then A + B can take values not among 
sums of those of A and B. Thus, it is difficult to assign a 
physical meaning toA + B, whenA andB cannot be simulta­
neously measured. Also, the bilinearity of A·B is difficult to 
justify for noncompatible observables. 

In our axiomatization, we retain the concept of taking a 
function of an observable, technically represented in axiom 
(MS2) (see Sec. II). However, we do not assume the existence 
of A + B, the quadratic nature of A 2, nor finite dimensiona­
lity. The basic new element which we introduce is a change 
in the measurement process due to a change in the counting 
observable. This is merely an exploitation of the obvious re­
mark that the expected or average value of a collection of 
events depends on the total value and the count of the num­
ber of events. The changes from one counting observable to 
another are given by a group, reminiscent of the changes of 
observers in relativity theory. In our development, we show 

.) Supported in part by the National Science Foundation. 

the existence of A + B, roughly by changing the counting 
observable to make A and B compatible. Also, the quadratic 
nature of A 2 is an involved consequence of our axioms. 

In Sec. II, the foundational concepts and definitions are 
given, including the axioms of a measurement system. The 
algebraic properties of such a system are developed in Sec. 
III while the analytic properties are given in Sec. IV. In Sec. 
V, we give the main theorem stating that the observables 
form a formally real Jordan algebra and a normed linear 
space. 

11. MEASUREMENT SYSTEMS 

One can view the "classical" measuring process as a set 
fl of states and the set a of (bounded) functions on fl called 
observables. The value of the observable/in statep is simply 
/( pl. In a "statistical" measuring process the states are prob­
ability measures on a set fl which are absolutely continuous 
with respect to a fixed measure f-l with f-l(fl ) < 00. The obser­
vables are the functions in an = L ""(fl,f-l) and the expecta­
tion of the observable / in state v is En (J, v) = S n / dv. 

The following trivial observation will playa central role 
in the sequel. The intuitive meaning of the expectation is that 
it is the average value of/over a large ensemble of in de pen­
dent occurrences of the state v. Thus, if one thinks of/ as 
additive on such occurrences, the expectation is approximat­
ed by the total value of/on an ensemble divided by the 
number of occurrences in the ensemble. Clearly, if the total 
value of/remains the same but the count of the number of 
occurrences changes, then the expectation of/will change. 

To represent these changes in the statistical measuring 
process, we view av as an ensemble of a occurrences of the 
state v, where a> O. Thus, the set ~ II of ensembles is just the 
set of non-negative, nonzero, finite measures 1] on fl which 
are absolutely continuous with respect to f-l. Note 1] = av, 
with a = 1](fl ). Identifying the state v with the ray 
R+v = R+1]=7j and defining the value of/Ean on 1] to be 

(J, 1])n= L/d1], 

we obtain 

(1 ) 

(2) 

independent of the ensemble 1] in state 7j. Here we have used 
the constant observable 1 to get the count of ( 1, 1]) n = 1](fl ) 
occurrences of state 7j. If we use instead the observable h to 
count occurrences of 7j, we get 
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(3) 

If h > 0, we can defineh'17 by d (h'17) = h d17 andh.1j = (h·17). 
We now have 

(4) 

Thus,f-h - I f, 17-h'17 represents the change due to chang­
ing the counting observable from 1 to h. 

We shall need the following definitions. If a and '#f are 
sets we say (,): aX '#f -R is a nondegenerate pairing 
provided 

d 
(A, x) = (B, x) for all xE'#f implies A = B 

an 
(A, x) = (A, y) for all AEa implies x = y. 

If(a', '#f', (,)') is another such triple and iffor 0: a-a' there 
exists ¢;: '#f'_'#f satisfying 

(0 (A ), x)' = (A, ¢; (x) for AEa, xE'#f', 

then we say 0 is a homomorphism. Since ¢; is uniquely deter­
mined by 0, we write¢; = 0 *. As an example, we note that for 
h, h - lEan, h > 0, Wh given by Wh (f) = hf, wt(17) = h'17 is an 
automorphism of (an' '#f n, (,) n ) corresponding to changing 
the counting observable from 1 to h - I. A homomorphism 0: 
an -a with 0 injective and 0 * surjective is a representation of 
(fl,,u) in (a, '#f, (,»).RepresentationsOi>i= 1,2, of(fli,,ui) in 
(a, '#f, (,») are equivalent if there is a measure space isomor­
phism a: fll-fl2 with 02(f) = 0l(f°a) for allfEan . A fam­
ily Y of representations 0: ane _a covers a provid~d 

a= u O(ae)' (5) 
(JE,Y-

We write ae = an, '#f e = '#f n ,and (,)e = (,)n . 
• 0 8 

A measurement system.At = (a, '#f, (,), 'lr, I, Xj' Y) 
consists of a set 0 of observables, a set '#f of ensembles, a 
nondegenerate pairing (,): a X '#f _R, a group 'lr of auto­
morphisms of (a, '#f, (,») called changes in counting, a fixed 
observable lEa called the counting observable, a fixed ensem­
ble xjE'#f called thefundamental ensemble, and a family <r 
of representations 0: ae-a covering a, satisfying 

(MS1) 0 (1) = I, 0 *(x j ) = ,ue, 

(MS2) If 0 1, 02EY, if OJf) = A for hEaei, and if u: 
R-R has UO fIEae" then UO f2Eae, and Ol(uo fd = 02(uo f2)' 
The common value is denoted uj(A). 

(MS3)GiveneEYandhEae , then 0 (h) = W(!)forsome 
WE'lrifand only if h -IEOe , h > O. In this case, there is iky­
with WO equivalent to ew h • 

(MS4) If WE'lr andj: R\ 10 j-R isj(t) = t - 1, then 
there is WE'lr withjj W = Wjj , wherejj is defined. 

III. ALGEBRAIC PROPERTIES 

Throughout the remainder of this paper let vii = (a, '#f, 
(,), 'lr, I, XI> "'1'-) be a measurement system. Let C(! be the 
orbit 'lr(!) of I under 'lr, and callAEC(! a counting observa­
ble. By (MS3), we see C(! = I O(h )IOEY; h, h -IEOe ; 
h >OJ = I e(h )IOEY-; h;>E>O for some €j = I O(h )leEY; 
(h, v)e;>€(1, v)e for some €> 0 for all VE'#f e j = IAEal (A, 
x) ;>€(I, x) for some €> 0, all xE'#f j. 

Lemma 1: 0 has the structure of a vector space over R so 
that 

1618 J. Math. Phys., Vol. 23, No.9, September 1982 

(a) for xE'#f, the mapA_(A,x) is a linear function on 
a, 

(b) 'lr acts linearly on a, 
(c) C(! spans 0, indeed a = Rl + C(!. 

Proof IfAiEaandaER, writeB = aA t and C =At +A2 
for B, CEa provided (B, x) = a(A I, x) and (C, x) = (AI' 
x) + (A 2' x) for all XE '#f . By the nondegeneracy of (,), Band 
C are unique, if they exist. It is also clear by uniqueness, that 
if Band C exist for all choices of Ai' a, then a is a vector space 
satisfying (a). Moreover, (W(A ),x) = (A, W*(x) shows (b). 
To show B exists, we use (5) to write A , = 0 (f) withfEae and 
note that for B = 0 (a f), we have (B, x) = (af, 0 *(x) e 
= a(f, 0 *(x)(i = a(A I, x). To show C exists first assume 

A,ERC(!, say A, = a W(I), aER, WE'lr. WriteA 2 = 0 (f) and 
setC = W(O (a1 + f)). We see (C,x) = (al + f, 0 *W*(x)o 
=a(1, O*W*(x)o + (f, O*W*(x)e =a(W(!),x) 
+ (A 2' x). In general, write A, = 0 (f) and choose m > 0 so 

that h = m 1 + 1> 1. Since h, h -IEOe with h > 0 we see 
ml + A I = 0 (h )EC(!, showing (c). Moreover, C = ( - m/) 
+ ((ml +A,) +A2) exists and C = A, + A2• 

Lemma 2: If AEC(! with A = WI!), then UA 
= WW-'E'lrandxA = W*-'xjE'#fdependonlyonA,and 
Ul = id, the identity of 71/. Moreover, XA = Xn , A, BEC(! 
implies A = B. 

Proof First assume A = I. If BEC(!, write B = 0 (h ). 
Since W - I (I) = I = 0 (1), we see by (MS3) there is OEY with 
W -10 equivalent to OWl = O. Thus, there is a measure space 
isomorphism a: flo-fle with W -10 (foa) = 0 (f) or 
o (foa) = WO(f)forfEae. SincejlWil(B)=jjWile(h) 
=jlWO(h -I) =jjO(h -lOa) 
= O((h -'oa)-I) = o (hoa) = WO(h) = W(B), we see W= W 

on C(! and hence on 0 by Lemma 1. Thus, Ul = id. Also, if 
B = o (f)EO, then W(!) = 0(1) gives OE.Yand a: flo-fle 
with WO(foa) = Owl(f) = o (f). Hence, (B, W*-I(X l ) 
= (W-I(B),x l ) = (W-'e(f),x l ) = (0 (foa), Xl) 
= (foa, O(Xj)e = (foa,,ue)li = (f,,ue)() = (B, Xj)' 

Thus W*-I(Xl ) = Xl' Now letAEo with W I (!) = W2(/) = A. 
If W = W,- , W2 so W2 = WI W with W (I) = I, and 

W2 =j"W2j j = WIW, then W2W 2-
1 = WIWW-'W,-, 

= W, W I-I and W! -1(Xl ) = (W*WT)-'(x l ) 
= WT -IW*-'(Xl ) = WT -'(Xj)' 

IfXA = XB with A = W,(/), B = W2(/), WiE7r, then 
W!WT -'Xl = Xj' Let W = W,-' W2 , so that W*-IXj 

/'0. 

= Xj' Now A = B will follow from W(!) = I. Let W(!) 
= 0 (h) and let OEY with we equivalent to OW h via a: no 
~fl(). If if(:f- foa, then WOia ~ OWh and wt -'i~ _ 
e* = O*W*-'. Thus,,ue = O*W*-'x j =wt-'i~O*(xj) 
= wt -- 'i~(Pe) = wt - ',uo or d,ue = h-'d,ue and h = 1. 

Thus, W(!) = I, so W = (Wj" = Wand W(!) = I. 
Lemma 3: If AEC(! and A = WI!), then vii w = (a, '#f, 

(,) A' 'lr, A, X A , :7 w) is a measurement system where 
(B, X)A = (U A-I(B),x) and <r w = lew = we 10EYj. 
.At w is uniquely determined by A up to equivalence of the 
representations Y w' Also, (.~ w)w' =.At w'w' 

Proof Clearly, (,) A is a nondegenerate pairing. If p: 
a' _0 is a homomorphism relative to (,), the ( p(B '), x) A 

= (UA-'p(B'),x) = (p(B'), U~-I(X) = (B', 
p*U~ -'(x)'. Thus,p is also a homomorphism relative to 
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(,) A with ¢ = p*U~ -I: 16"_16"'. Similarly, a homomor­
phismp: a-a' for (a, 16", (,») is also a homomorphism for (a, 

16", (,)A)with¢' = U~ p*: 16"'_16". In particular, Ow: ao-a 

is a representation of (no, j.lol in (a, 16", (,) A) ~ith 0 ~ 
= (OW)*U~-I = O*W*(WW-I)*-I = O*W*. Also, if 
VErf" then V is an isomorphism of (a, 16", (,») with (a, 16", 
(,) A) and hence an automorphism of (a, 16", (,) A) with V*A 
=U~V*U~-I. 

Clearly Y w covers a. If W (I) = A = I, then as in the 
proof of Lemma 2, for each OEY there is OEY with Ow 
= WOequivalenttoO. In general, weseethat if W (I) = W'(I) 

then Y w is equivalent to Y W" 

Since Ow(l) = WO (1) = A and 0 ~(XA) 
= O*W*W*-I(X/) = j.lo,(MS1)holdsforA" w·IfWOiEY w 
with WOi(J:) = Band ifuo fIEao" then 0i(/;) = W- 1(B) so 
UO f2EaO, and W01(UO /d = W02(uo f2) showing (MS2). Let 
uw(B) = Wu/ W-I(B) be the common value. If W'(I) = A, 
then WOI is equivalent to some W'O so there is a: no-no 
withB= WOI(/d= W'O(fIOa) and uw,(B) 
= W'O(U O floa) = WOI(u o /d = uw(B). Write uA(B) 
= uw(B) and note UW1I) = Wu/ W- I so 

WUAW-l=UWIAI forAE'G',WErf". (6) 

IfOwEY wand hEao, then Ow(h) = V(A) for some VErf"if 
andonlyifO(h) = W-IVW(I)ifandonlyifh -IEao,h >O.ln 
this case OWWh = WOwh is equivalent to 
W(W- I VW)O = VOw for some OwEY w' showing (MS3). 
To show (MS4), we let VErf", and computejA V 
= W.4W-IV = JJ'i/W-IVWW- I 

= WW-IVWW-IWj/W- I = (UA VU A-I)jA' 

Finally, if W, W'Erf" then B = W'(A) = (W'W)(I), 
(UA W'U A- I)*F'XA = W'*-I W*-IX/ = (W'W)"*-I(X/) 

= XB, W'Ow = (W'W)O, and U~ = W'(UA W'U A-I)-I 
= W'WW-IW'-IU A-I = UBU A-I so «(U~)-IC,X)A 
= (UA-IUAUiJIC,X) = (C,X)B' Thus (A"w)w' 

= A" W'W' 
We defines: R_Rbys(t) = t 2. SincefEao impliesf2Eao, 

setA) is defined for CECG', AEa. If BEa, set setA,B) 
= setA + B ) - setA) - setB ). 

Lemma 4: If A, B, CE'G', then 

(a)j~ = id, 

(b)jA(A) =A, 

(c) U~ =jBjA' 

(d)jAjBjA =hIBI' 

(e) uB(A ) = uA (B), for u: R'\ [OJ-+R, u(t) = tu(t -I), 

(f) sB(A ) = jA (B), 

(g) (A,xB)c = (B,xA)c, 

(h) (A,xA)c = (setA ),XC>C, 

(i) 2(A, x B) c = (setA,B), xC> c' 

0) (U~B,XB)C = (U~A,XA)C" 

Proof: Since by Lemma 2, replacing A" by A" n VErf" 
does not change any of the expressions, we may assume that 
anyone of A, B, C is I. For (a)-(e), let A = I and 
B = W(I) = 0 (h ). Now (a) and (b) are trivial. For (c), UB 

= WW- I = Wj/ W-Ij/ =jBj/ by (6). Also, 
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W(I) = j/ Wj/(I) = j/(B) impliesjjjiBlj/ = ~jiBI 
= WW- I = U iJ I =j/jB' yielding (d). For (e), let WObe 

equivalent to OWh via a: no-no. Now u/(B) 
= 0 (uoh ) = OWh (h -1(uoh )) 

= OWh ((u o j)oh) = Ow((uo j)ohoa) 
= (u o j)BOw(hoa). Letting u(t) = 1 so u(t) = t, we see 
1= u/(B) = jB(Ow(hoa)) or Ow(hoa) = jB(I). In general, we 
have u/(B) = (u o j)B jB(I) = uB(I)· SinceS = j, (f) follo~s 
from (~. For (g)-(j), let C = I and A = W(!). We note UA 

= (WW- I( = U A-I andj/(A) =i/jAA = U A-IW(I). 

Thus, (B, XjjiA I) = (B, (U A- I W( *-IX/) = (B, 

U~-IW*-IX/) = (UA-IB,xA) = (B,XA)A and (j/(A), 

x B) = (U A- lA, x B) = (A, XB) A' Replacing A by jAA ) 
shows (B, X A ) = (A, x B ) follows from (B, X A ) A 

= (A, X B ) A' Thus, for (g), we can assume A = C = I. Let 
r(t) = t 1/2 for t> 0, and note D = r/(B) exists. Also UD(I) 

= jD(I) = s/(D) = B. Thus, (I, x B) = (I, U1> -IX /) 

= (UD(I), x/) = (B, x/) showing (g). If D = rItA ), then 
UD(I) =jD(I) =A and UDA =jDj/jD(I) =jA(I) =s/(A). 
Thus (A, x A) = (A, U1> -IX/) = (UD(A), XI) = (s/(A), 
XI), yielding (h). For (i), we see (s/(A,B), XI) = (s/(A + B), 
XI) - (s/(A ),x/) - (s/(B),xI ) = (A +B,XA+B) - (A, 
x A) - (B,xB) = (A,XA+ B) + (B,XA+B) - (A,xA) 
- (B,xB) = (A +B,xA) + (A +B,xB) - (A,xA) - (B, 

x B) = 2(A, x B)· For 0), (UAB, x B) = (jA (j/ jB)B, x B) 

= (UBjAUiJIB,XB)B = (jUBIAIB,XB)B 

= (SB(UB A ), x B) B = (UBA, XUBA ) B = (A, XUBA ) 

= (UBA,xA)· 
Lemma 5: If CE'G', then setA,B ) is linear in A and in B. 
Proof: Let C = I. If A, BE'G', then A + BE'G' since 

(A + B, x) > (A, x) >E(I,X) for some E> O. Set UA.B 
= UA + B - UA - U B as endomorphisms of the vector 

spacea. Since (UAB,x) = (jAj/B,x) 

= (j/ jjjiA IB, x) = (B, x) j]iA I' we seefor DE'G', (UAB, x D) 

= (UAD, x B)· Also, (A, XB+ D) = (B, x A) + (D, xA) 
= (A, x B) + (A, x D). ReplacingBby B + D in (UAB, x B) 
= (UBA, x A) yields 2(UAB, x D) = (UB.DA, x A). Replac­

ing A by A + E, with EE'G' , gives 

(UA.EB,xD) = (UB.DA,xE)· 

Letting A = I and noting UB.DI = jB + DI - jBI - jDI 
= sI(B, D), we see 

(U/,EB,xD) = (sI(B,D),xE) forB,D,EE'G'. (7) 

IfA,BE'G' with (A,xE) = (B,xE) for all EE'G' then (E,xA) 
= (E, x B ), Since C(;' spans a, we see X A = x B and A = B by 

Lemma 2. Again since C(;' spans a, for QEa, (Q, x E) = 0 for 
all EEC(;' implies Q = O. Since the left side of(7) is linear in B, 
we see 

sI(B I + B 2, D) = sI(B I, D) + s/(B2, D) for B i , DE'G'. 

For arbitrary Q, P, REa, we have 
(8) 

SI(Q + P, R) = SI(Q + R, P) + SI(Q, R) - SI(Q, P), (9) 

as is easily checked from the definition. If Q = 0 (f), then 
SI(Q, mI) = O((f + m1)2) - 0(f2) - 0((m1f) = 0(2mf) 
= 2mQ. IfP = mIin(9), weseesI(Q + mI,R) = 2m(Q + R) 
+ s/(Q, R ) - 2mQ = SI(Q, R ) + 2mR. Letting 

B = Q + mI, D = R + nI, we see 
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(10) 

For Q;, REa, choose m;, n with B; = Q; + mIl, 
D = R + n/ECG' and let Q = QI + Q2' m = m l + m2. From 
(8) and (10), we getsl(QI + Q2' R) + SI(Q2' R). 

Since a > 0, BECG' implies aBECG', we have from (7) that 

sl(aB, D) = asl(B, D) for a > 0, B, DECG'. (11) 

From (10), we then have sl(aQ, R) = as/(Q, R ) for a > 0, Q, 
REa. If a = 0, it is trivial. For a < 0, it follows by additivity 
that s/(aQ, R) = - S/( - aQ, R) = as/(Q, R ). 

IV. ANALYTIC PROPERTIES 

If AEa, CECG', then by Lemmas 1 and 3, there is m > ° 
withmC±AECG'. Thus, m(C,x)c ± (A,x)c;;.Oand 

I (A, x)cl 
-'--------'- < m for all XE I&' . 
(C, x)c 

Thus, 

IIA Ilc = sup I(A,x)cl 
XEi!" (C, x)c 

is well defined 

Lemma 6: The following hold for AEa, B, CE'Tff: 
(a) 1IIIc is a norm on a, 
(b) IIA Ilc = 11/110' if 0 (f) =A, OEY w, C= W(!), 
(c) IIA Ilc<lljB(C)IIB IIA liB' 
(d) 1IIIc and II liB are equivalent norms, 
(e) IIUBA Ilc<IIA IlcilB II~, 
(t) UB is continuous. 

Proof Clearly, IlaA IIc = lalllA IIc· Also IIA Ilc = Oim­
plies (A, x) = ° for all xEI&' and A = 0. Since 
I(A I +A2,x)cl<I(A I,x)cl + I(A 2,x)cl,wehave 
IIAI + A211c<IIA Illc + IIA211c showing (a). Since 
0*(1&') = 1&'0' we see 

Ifn.ldvl 
IIA IIc = sup = 11/110' 

",g' • v(n /I) 

the (essential) supremum of III over no. For (c), let B = I 
and C = O(h), OEY. Set M = Ilj/(C)111 = Ilh -1110' so 
h >M -I. Thus, for all xEI&', (C, x);;.M -1(1, x) or 

0< (/,x) <M. 
(C,x) 

Now 

I(A,x)cl I(UcIA,x)1 IA,U~-lx)1 

(C, x)c (U C IC, x) (C, U~ - IX) 

I(A,U~-lx)1 (I,U~-IX) 

(I, U~ - IX) (C, U~ - IX) 

<MilA III = IljAC)II/IIA III' 

Clearly, (d) follows from (c). For (e), we let C = I, and 
compute 

IIU BIA III 

1620 

=sup I(UBIA,x)1 (U~,I:;X) <IIAIIBIIUBIBIlI 
XEg' (UBIB,x) 

<IIA 11/11j/(B )II~ 
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since U BIB = jl jB(B) = j/(B). Replacing B by JAB) and 
noting UJ-;B\ = (jl jB jl jl )-1 = UB yields (e). Finally, (t) fol­
lows from (e). 

Recall that if fr is an associative algebra with 1 and a 
normed linear space with Ilxyll <llxIIIIYII, then 
Ilx- III<llx- 111 21Ixll so Ilxll-I<llx-lll. Thus, Ilxll-1 = IIx-111 
and 11111 = 1. Now 1 = 111 +x -xll<lIl +xll + IIxll so 
11(1 +x)-111<2ifllxll<!· If 
z = (1 + x) - I - (1 - x + x 2) = - (1 + x) - I x 3

, we see 
limx--o([lzll/lIxI12) = 0. Hence, 

(1+x)-I=I-x+x2+z, withlimK=O. (12) 
x--o IIxl1 2 

Lemma 7: If AEa, B, C,ECG' then 

(a)j/(C +A) =j/(C) - UclA + U c Isc!A) + Z, 

where 

lim Elk = 0, 
A-+O IIA II~ 

(b) UB.IC = UG,lB = s/(B, C). 

Proof First let C = I and A = o (f). By (12) for ao' we 
have (1 + 1)-1 = 1 -1+ 12 + g with limf--o([lgllo/II/II~) 
= 0. Applying 0, we get 

j/(/+A)=I-A+s/(A)+Z, where lim IIZIII =0.(13) 
A--o IIA II~ 

Replacing Iby Cin (13) and applying U C I =jljc = UJ~C) 

gives (a), since limA--o(IIZ 11c/IIA II~) = ° implies 
limA--o(11 ~/.C)Z II/IIA II;) = ° by Lemma 6(d) and 6(e). 

For (b), let t> ° and let C = I, A = t (B + C) in (a) to 
obtain 

j/(1 + tb + tC) = I - t (B + C) - t 2S/ (B + C) + Z" 

where lim,--o+ t -2Z, = ° since lim,--o+ lit -2Z, II 
= lim,--o+ (liZ, 111/lltB + tC limB + C II; = 0. Let 

C = 1+ tB, A = tC in (a) to obtain 

jl(1 + tB + tC) 

(14) 

= jl(1 + tB) - U 1-+\B(tC) + U I-+\BSI + ,B(tC) + W" 
(15) 

where lim,--o+ t - 2 W, = 0. Also, C = I, A = tB in (a) gives 

jl(1 + tB) =1 - tB + t 2sl (B) + Y" (16) 

where lim,--o+ t -2y, = 0. Note UBC = jBjl(C) = sjj{c)(B) 

and UB,DC = sjj{c)(B, D), so 

U'B =t 2UB, U,B,D =tUB,D fort>O, B,DECG' (17) 

by (11), withj/(C) replacing I. 
Since the continuous maps from a to itselfform an alge­

bra with norm 

IITII = sup IIT(A Jill 
IIA 11/<1 

satisfying II TS II <II TilliS II, (17) and (12) yield 

U I-+\B = id - t (UI.B + tUB) + V" (18) 

where lim,--+o+ t -I VI = 0, since liml--+o+ t -III VIII 
= liml--o+ [II V, II/lit (UI.B + tUB JlI] II UI,B + tUB II = 0. 

Also, SI+IB(C) =jc!1 + tB) =jdlj/(I + tB) =jc!I) 
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+ R" where lim,--->o+ t - 2 R, = 0 by the proof of (13). Hence 

s[+ ,B(tC) = t 2s[(C) + Q" (19) 

where lim,--.o+ t -2Q, = O. Combining (15), (16), (18), and (19) 
yieldsj[(I + tB + tC) = 1- tB + t 2s[(B) + Y, 
= (id - tU[,B - t 2UB + V,)tC + (id - tU[,B - t 2UB + V,) 

(t 2s[(C) + Q,) + W, or 

j[(I + tB + tC) 

=1 - t(B + C) + t2(s[(B) +sAC) + U[,BC) +R" 
(20) 

where lim,--.o' t -2R, = O. Using (14) and (20 to compute 
lim,--->o+ t -2 [j[(I + tB + tC) - (I - tB - tC)] yields (b). 

V. RELATION TO JORDAN ALGEBRAS 

We are now in a position to show that the space a of 
observables form a Jordan algebra. It will be convenient to 
use a special case of the McCrimmon4 formulation of qua­
dratic Jordan algebras which is equivalent, for the fields con­
sidered, to the classical definition. Thus, a vector space f¥' 
over a field of characteristic zero, a quadratic map U: 
f¥' _End( f¥'), and unit cef¥' form a quadratic Jordan alge­
bra provided for x, y, zef¥', 

(QJ1) U
C 

= id, 

(QJ2) UX Uy Ux = U UxY' 

(QJ3) UX Uy,zx = U Uxy,xZ, 

where Uy,z = Uy+ z - Uy - Uz. 
Theorem: If JI is a measurement system, then the set a 

of observables has the structure of a quadratic Jordan alge­
bra and a normed linear space over R so that 

(a) I is the unit of a, 

(b) UA = jA j[ for Ae'G', 

(c) UAB is continuous inA, Bea, 

(d) IIA 211 = IIA 11 2, Aea, 

(e) k4 ~ = 0 implies Aj = O. 

Proof We say a vector valued function I on 'G' is 'G' -
linear if 

I (A + B) = I (A ) + I (B), A, Be'G', 

l(aA) = al(A), a >0, Ae'G'. 

(21) 

(22) 

In this case, I has a unique extension to a linear function ion 
a. Indeed, i is unique if it exists, since 'G' spans a by Lemma 1. 
Also, i will exist if I.ajAj = 0, ajeR, Aje'G' implies I.aJ (Aj) 
= O. The condition I.ajAj = 0 can be rewritten as I.bjBj 
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= I.CkCk with bj , Ck >0, Bl , CkeC(f. But I.bj/(Bj ) 
= I.ckl (Ck) follows from (21) and (22). If b: 'G' X C(f _'r is 
'G' -bilinear, thenbA (C) = b (A,C),A,Ce'G' extends to a linear 
map b A : a_ 'G'. Since for A, BeC(f, a > 0, b A + b B = b A + B 
and ab A = b A by uniqueness, we see f A_b A extends to a 
linear map/ a_End(a, 'r). Now b (A, B) f(A )(B) 
= b (A,B )forA,BeC(f, so'bisabilinearmapextendingb. By 

induction, we see any 'G' -multilinear map has a unique ex­
tension to a multilinear map on a. In particular, since UA,B C 
= Sj]<C) (A, B) for A, B, Ce'G' we see, by Lemma lib) and 
LemmaS, thatA XB XC-UA BC extends to a unique trilin­
ear mapA XB XC-UA,BC o~ a. Define UA = ~UA,A and 
note for Ae'G', UA = !( Uu - 2UA) = UA. We now simply 
write UA and UA,B for UA and UA,B,A,Bea. Clearly,A-UA 

is a quadratic map U: a_End(a). Also, U[ = idby Lemma 2, 
so (QJ1) holds. If A, Be'G', then UA UBUA =jA j[jBj[jA j[ 
=jjAj]<B)j[ = UUA(B) by Lemma 4(d), so (QJ2) holds for A, 

Be'G'. Replacing A by I.tjA;. tj > 0, AjeC(f and B by :IsjBj , Sj 
> 0, Bje'G' and picking out the coefficient of tlt2t3t4SIS2' we 
see the full linearization of (QJ2) holds for 'G'. By linearity, 
the linearization and (QJ2) itself hold for a. Similarly, it suf­
fices to show (QJ3) for 'G'. IfA,B, C,DeC(f, then UDUB,cUDI 
= UUnB,UDCI =s[(UDB, UDC)= UUnB,[UDC by (QJ2) 
and Lemma7(b). IfE=j[(D), then U! =jAjE =jAj[jDj[ 
= UA UD • Hence, we have 

U7U~cI= U E 
E C. (23) 

, UIB,[ 

ReplacinglbyA andEby lin (23) gives (QJ3) for 'G'. Thus, a 
is a Jordan algebra. 

Since A 2 = UAI = s[(A), we see for A = (J(/), 
IIA 211 = Ils[(A III[ = 11/2110 = II/II~ = IIA 11 2, showing (d), 
For A·B = ¥[(A, B), we see IIA.B II <!{ilA + B 112 
+ IIA 112 + liB 112)<IIA 112 + liB 112 + IIA II liB II 
= IIA II liB 11(1 + IIA II/IIB II + liB II/IIA II). ReplacingA by tA, 

where t = liB II/IIA II, we see IIA.B II = t -11I(tA )·B II 
<311A II liB II· HenceA·B is continuous inA andB. Since for 
any Jordan algebra, UAB = 2A.(A.B) -A 2.B, (c) holds. Fin­
ally, I.A ~ = o and (A ~,x»Oimplies (A ~,x) = OsoA ~ = 0 
andA j = O. 

'J. R. Faulkner, "An apology for Jordan algebras in quantum theory," 
Contemporary Math. (to appear). 

2p. Jordan, Z. Phys. 80, 285 (1933). 
3P. Jordan, J. von Neumann, and E. Wigner, Ann Math. 35, 29 (1934). 
4K. McCrimmon, Pree. Nat!. Acad. Sci. U.S.A. 56, !O72 (1966). 
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In recent years it has been shown that the use of hyper spherical coordinate representation of the 
Schrodinger equation for electrically charged particles necessitates the evaluation of certain kinds 
of hyper angular interaction integrals. The analytic evaluation of rather simple cases has also been 
accomplished. On the other hand certain numerical devices have been utilized and the 
complications that have arisen have been discussed for their computation. We have attempted in 
this work to find upper and lower bounds for all types of zeroth order hyperangular interaction 
integrals having Coulombic potentials. A nesting procedure has been developed for obtaining 
close bounds which can possibly be used to evaluate the desired value of integrals under 
consideration. In this context a theorem has been established for the evaluation of a similar type of 
integral and possible ways towards the generalization of the theorem have also been discussed. 
For three particle systems some applications have also been presented. 

PACS numbers: 03.6S.Ge 

I. INTRODUCTION 

To determine the energy val ues of a system of electrical­
ly charged particles, one can write the Schrodinger equation 
in hyperspherical coordinates. We then see that almost all of 
the mathematical complications are encountered in the eval­
uation of certain hyperangular interaction integrals. I 
Among these integrals the simplest one having only two po­
tential interactions was analytically evaluated.2 For the gen­
eral case a computational scheme has also been proposed. 3 

There we have also discussed the convergence of the offered 
scheme and pointed out that in certain cases the speed of 
convergence is quite slow. Although various techniques can 
be adopted to accelerate the convergence, determination of 
upper and lower bounds for these entities gains importance 
at least in checking numerically obtained values. Besides, the 
establishment of a nesting procedure gives the possibility of 
evaluating those integrals within any desired precision. A 
slow convergence might show up. This, however, is beyond 
the scope of the present work. In this context we shall only be 
interested in searching for upper and lower bounds and in 
making the difference between them narrower with the aid 
of nesting procedure. 

II. PRESENTATION OF THE SCHEME TO FIND THE 
UPPER AND LOWER BOUNDS 

Consider the following hyperangular interaction 
integral: 

mi.· .. u l ... · 

Xp( 
... m" ... U p , J 

_ ( e~(5"7AI5")-1/2ym'(5"TA:t)-1/2 
Js, 

where m I, ... ,mp represent some positive integers and 5" is a 
3N-dimensional unit vector. The integration is performed 
over the domain of hyperangles. The effect of the operator 
<51' on any arbitrary function ffJ which is in the space spanned 
by the hyperspherical harmonics is given as below, 

00 d, I i 
Y'P = - I I e ~) e ~ I' ffJdS, 

k ~ I I ~ I k (k + 2a) s 
(2.2) 

where e ~ 1 denotes a k th order hyperspherical harmonic 
with an upper index I showing its position among the dk , k th 
order hyperspherical harmonics. In other words d k repre­
sents the degeneracy. The star appearing as a superscript of 
e ~I' implies the complex conjugate ofe ~I. For a system hav­
ing N + I particles the parameter a is given by the 
relationship 

a = (3N - 2)/2. 

The Aj's are certain idempotent matrices which can be 
derived from some unit 3N-dimensional vectors uj's and 
three dimensional unit matrix 13 with the aid of direct prod­
uct operation as follows: 

T' I Aj = UjUj ®/3, J = I, ... ,p + . 
After certain intermediate steps presented in a previous 

work/ the effect of the m consecutive applications of Y on 
the function cp can be expressed as 

T(a+l) m-I r(2m-J-I)(-1)J i (1_(_I)Jx 2n [ I_X2 ] 
<51'; = - (m _ 1)!21T" + lif:o J!(m _ J _ 1)!(2afm -J - I s"Jo x (1 _ 2(5" 7r,)X + x2)a + I - I 

(2.3) 
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The utilization of this formula in Eq. (2.1) yields 

m, .... u"... r(a+l) +lm~1 m~ln r(2ml -JI -l)(-I(,+1 a J'.··· u, .... 

Xp( I )=( +1 Y' L'" L 2m,-J,-1 Ap( J I ), 
... mp .... up., 21T" J,=O Jp=O/= 1 JI!(ml -JI - 1)!(2a) ... p . Up> , 

(2.4) 

where A: is defined as follows: 

(2.5) 

(2.6) 

where (3 i. (al's denote the integrals over Xq 's. In a previous work2 an analytic formula was given for these integrals. 

(3 J( )_ 1 {d
J

[2
2k
r(k+a+t)r(k-t) DkO]( a)}_o ka--- + t+--. 

2J dt J r(2k+a+l) • t(t+a) 2 t 

(2.7) 

The integrals 'I k, ... k, ( the dependence on a and u's of which are not shown explicitly for the sake of simplicity) on the other 
hand carry mathematical complications, since they characterize all potential interactions on unit hypersphere. Their explicit 
representation is 

'Ik, .. kp = I
p
• , ... I)~r:(s ;AqSq)-1/2

q

Q.1 (SqSq+ I )2k<{( dSq. (2.8) 

It can easily be shown that for all non-negative integer J values and physically meaningful a values (a = 0.5, 2,3.5,5, ... ) 
(3 ~ is negative. For all other k, however, (3 {(a) is positive. In constructing inequalities, this type of sign distinction creates 

certain difficulties. To get rid of this complication one can employ the following entity instead of A :e~j~ I ~'~~ + I)' 

( J" ...... uP") 00 00 n[(a+l) (a+2) /(1) ] fl: I = I ... I 'Ik, ... kp -- kq -- - kq!(3~:(a). 
... Jp u,... k,=1 kp=1 q=1 2 2 kq 2 kq 

(2.9) 

The negativity of f3~ can be dealt with after constructing inequalities for this entity fl;. 
To find bounds for 'Ik,.k

p 
one can take into consideration the following identity given in a previous publication. 2 

A careful look at the integrand above reveals the following 
inequalities: 

(I - t 2)k, < (I - ~t 2)k, < I 

and these in turn imply that 

41T"r(kl +!) r(kl + 1) f (S iE2fk, dS 

r(kl+a+~)mk, <)s, v(s;A 1s1 ) I 

(2.12) 

< 41T"r(kl + ~) . (2.13) 
r(k l + a +!) 

The consecutive use of these inequalities in Eq. (2.8) leads to 

(
41T"+1/2)P+lfI mk(l)k 

q q <'I 
r(a +!) q= I (a + !)k Wk k, ... kq 

q q 

(2.14) 
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Now let us define the following entities: 

UJ(a) = f [(a+ I) (a+2) «a+~)kk!](3{(a), 
k=1 2 k 2 j' 

(2.15) 

LJ(a) = f [(a + I) (a + 2) I(a + ~)d~)k ](3{(a). 
k=1 2 k 2 k 

(2.16) 

One can express UJ(a) in terms of a Gaussian hypergeome­
tric function having unit argument and write the following 
closed form. 

UJ(a) = ~{~ (t + a12) r(a + t)F( - t) 
2J dt J r(a + I) 
x[ r(a+!)rm -I]} r (! - t) r (a + ! + t) t = o· (2.17) 

The analytic evaluation of Lj(a), however, needs a little bit 
more effort. In this case a generalized hypergeometric func­
tion 3F2 with unit argument shows up. Using certain trans­
formations for this kind offunction with unit argumentS one 
can obtain the following result. 
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LJ(a) = ~{~ (t + a/2) r(a + ~)r(~) 
2J dt J r(a+ I) (t+!)(a+t-!) 

(2.18) 
(2.19) 

III. A NESTING PROCEDURE TO EVALUATE TIGHTER UPPER AND LOWER BOUNDS 

The gap between upper and lower bounds given by Eq. (2.19) may be narrowed, with the aid of a nesting procedure. To 
this end let us rewrite Eq. (2.9) in the following manner where all k 's are positive integers, 

q 

n a = ~ ~7 IT [(~) (a + 2) ~(l) k '](3Jq(a) 
p k~ofk, ..... kpq~1 2 kq 2 kq/'2 kq q. kq 

+ f I 7k, .. kp IT [(a +2 I) (a +2 2) !(!)kqkq'](3~:(a). (3.1) 
k ~ n -1- I k q ~ I kq kq / \ 

Starred summation is to be performed in such a way that all indexed quantities are summed for all values of the indices k I , ... ,kp 

which fulfil the condition kl + ... + kp = k + p. Inserting the inequality (2.14) into Eq. (3.1) one can after some algebra 
conclude 

Btl<n;(JPI"P' ')<B';';I, 
J,..... u 1 ..... 

(3.2) 

where dependence of Btl andB I;,) on a, JI, ... ,Jp ' U 1'''''Up -1- I is not shown explicitly for the sake of simplicity. The boundsB ';';1 
and B tl may be defined by the following recursive relations: 

(3.3) 

( 
41T" -1- 1/2 )P -1- I IT BIOI- U (a) 

U - r( I) J q a+ 2 q~1 
(3.4) 

Blnl=Bln-II+2:*[7. _(41T"-1-112)P-1-1 IT (!)kq(l)kq lIT [(a+ I) (a+2) / (A) k '](3Jq(a), 
L L '1 k, .... kp r ( I) (I) (3) 2. 2 . - kq q kq a + 2 q ~ I a + 2 kq 2 kq q ~ I kq kq 

(3.5) 

(
4 ,,+ 1/2 r IT Br l = 1T I +1 LJq(a). 
r(a + 2) q~ I 

(3.6) 

A careful look at these relations immediately shows 
that the following inequalities are correct: 

Brl <B~I < ... <B tl <n ;C,~I'I"~,P' ') <B I~I 
< , .. B I~I < B 121 (3.7) 

and the sequences of Bini's and Bini's converge to n a L U p' 

Bin/ = Bini = n ,,( .... ,Jp I···· u
" , '). 

n.oc L n -oc U p (3.8) 
Jl"" up .... 

Therefore by using this nesting procedure (nth bounds are 
nested by n - 1 th bounds) one can evaluate n p 's in any de­
sired precision. Of course the speed of convergence for the 
sequences of Btl's and B I~I'S will determine the amount of 
effort needed to obtain a given accuracy. This subject is be­
yond the scope of this work. 

IV. EVALUATION OF THE BOUNDS 

To evaluate B tl and B ';';1 one needs the values of (3 f (a) 
and 7 k , .. k

p
' One can recall that (3 f (a) was analytically evalu­

ated. The structure of 7 k, ... k. is, however, more complicated. 
An efficient technique is to diagonalize the quadratic form 
S ;AqSq into S ;fSq (all elements of fare zero except for the 
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j 
first three diagonal elements which equal unity). The inte-
graI7k ,.kl' can be finitely eXI;!essed in terms ofuj vectors, 
since the quadratic form S ;ISq can be reduced to the prod­
uct of sine squares of hyperangles corresponding to Sq' This 
structure essentially reduces the integrals over Sq 's to certain 
polynomials of the elements of orthonormal matrices which 
diagonalize the quadratic forms involved in the integrand of 
7k,kp' In the case of smaller p and n values this evaluation 
can be handled fairly easily. Larger values of p, however, 
enlarge the dimensions of the matter. Even for small values 
of kl ... ,kp evaluation of 7k,kp may end up being inconve­
nient for hand calculations. We find it appropriate to start 
with the simplest case where all k 's are unity and gradually 
extend to other cases with some extra effort. As a start we 
need the following theorem. 

Theorem 4.1: If we define the following operator, 

. "k(a,A,S)((s) = 1 ~7~~k f(1])dS", 
S" 1] 1]) 

k=I,2,3, ... (4.1) 

where f is an integrable function of hyperangles, (a) 
'/·k (a,A,s) transforms any homogeneous polynomial of S 
into a k th order homogeneous multinomial; (b) the following 
relation holds between the kernel matrices of the quadratic 
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forms S TBS and S TCS, the latter of which is obtained from 
the former one by the operator ffl(a,A,s), 

where Tr and Q stand for trace and the orthonormal matrix 
which diagonalizes the matrix A. 

S TCs = <1/I(a,A,s)s TBS' (4.2) 
Proof Since part (a) can be proved directly expanding 

the integrand in terms of Sj'S we can start with Eqs. (4.2) and 
(4.1) to prove part (b). After a diagonalization procedure one 
can explicitly write 

'" '" '" C = [ rf' + I12/(a + ~)l Q I(TrB)l + 2B -!(Tr1Bl)1 -!(TrB)l 

-i(IB + BI) + !(TrIBI)1 + ~IBIJQ T, (4.3) 

ffl(a,A,s)s TBS = I (Q TBQ )jdQ TSS TQ )/m f 1/;"1k 1/~1/m 2 dSTf' 
j,k,l,m ~ I Js" V(1/1 + 1/2 + 1/3) 

(4.4) 

where an indexed parenthesis shows the corresponding element of the matrix products shown inside the parenthesis. The use 
of hyper angular coordinates (1/3N = COS(}3N _ I' 1/3N _ I = sin(}3N _ I COS(}3N _ 2"") verifies 

i 1/j1/k 1/11/m {i 1/J1/~ 
2 2 2 dSTf = DjkDlm V( 2 2 2) dSTf + (DjlDkm + DjmDkl ) 

SV(1/1 + 1/2 + 1/3) S,' 1/1 + 1/2 + 1/3 

i 1/J1/~ dS f 1/)4 } 
X - 2DjkDklDlm dSTf 

s(1/i +1/~ +1/~)1/2 (1/i +1/~ +1/~)1/2 

(Djk = Kronecker's symbols). (4.5) 

Due to the fact that any orthonormal transformation which affects only 1/4,1/5"'" 1/3N or 1/1,1/2,1/3 does not alter the values of 
integrals above but changes the indices appearing in the integrands, after some intermediate steps one can summarize 

1'}4 ! 5s:(a+ ::) , j = 1,2,3 
f '/) dS- 2 

Js v(1/i + 1/~ + 1/~) - 3rf' + 112 , (4.6) 
j= 4,5, ... ,3N 

F(a +~) 

8rf' + 112 

15r(a +~)' 

2rf' + 112 

3r(a + ~)' 
rf' + 1/2 

r(a+~)' 

j,k = 1,2,3, 

j = 1,2,3 k = 4,5, ... 3N (or vice versa). 

j,k = 4,5, ... ,3N, 

These equations can be condensed into the following single one by virtue of Kronecker's symbols, 

i 1/J1/~ dS = __ rf'_+_11_2_ 

sV(1/i +1/~ +1/~) Tf r(a+~) 
11 -!(Djl + Dj2 + Dj3 + Dk1 + Dk2 + Dk)) 

(4.7) 

+ (2 - m Djl + Dj2 + Dj3 ])Djk + !(Djl + D;2. + Dj3 )(Dk1 + Dk2 + Dk)) J. (4.8) 

The utilization of this equality together with Eq. (4.5) in Eq. (4.4) completes the proof. 
Corollary 1: The evaluation of T I 1. .. 11 can be accomplished by means of the following recursive relation: 

Bq = [rf'+ 1/2/r(a + ~)l Qq !(TrBq_ l )l + 2Bq_ 1 - i(TrlBq _11)1 

-!(TrBq_.J1 + i(IBq_ 1 + Bq_.I) + !(TrIBq_ .1)1+ ilBq_ .IIQ;, q = 2,3,4, ... ,p. (4.9) 

The initial value B I of this recursion can be found from 

(4.10) 

with the aid of the following equation which can be derived 
in a similar but easier manner from the evaluation of the 
integral given by Eq. (4.5), 

f 1/j1/k(1/i + 1/~ + 1/~)-1/2dSTf 
Js~ 

2rf' + 112 
= [ 1 - i(Djl + Dj2 + Dj3 )jDjk . (4.11) 

(a+~) 
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I 
One can write 

(4.12) 

and after some intermediate manipulations 

2rf' + 112 '" T A 

TIl II = Tr!Bp -1fQ p+ IBpQp+ II J. ... rIa +~) J 

(4.13) 

In the preceeding formulas Qq stands for the orthonormal 
matrix which diagonalizes A q • 

M. Demiralp and N. A. Baykara 1625 



                                                                                                                                    

Corollary 2: The form of Aj given by Eq. (2.2) implies 

Qj = Qj ®I3, (4.14) 

where 13 and Qj are three-dimensional unit and N-dimen­
sional orthonormal matrices, respectively, the latter which 
diagonalize the idempotent matrix UjU[' This allows us to 
write 

41fZ + 112 _ 

B = )qB ®I 
q r(a+~) q 3 

(4.15) 

and 

(4.16) 

where e l is an N-dimensional unit Cartesian vector, namely 

ei= [1,0, ... 0]. 

These and the identity 

IBqI = (TrIBqljI 

lead to the following equations after some algebra: 

(4.17) 

(4.18) 

BI = [1/(2a + I)]QI(IN - !I)Qi; IN:N-dimension-
al unit matrix (4.19) 

~ = [1/(2a + 1)(2a + 3)]Qq p(Tr~ _I )IN + 2~_ I 

- (TrI~ _ I I)IN -(Tr~_ 1)1 + (TrI~ _ 11)1 

-1(I~_1 + ~ __ II)lQ:', (4.20) 

(
417"' + 1/2 )P + I 

7 11...11= [1!(2a+I)] 
T(a +~) 

X [3Tr~ - U;+ I~Up+ I]' (4.21) 

the last of which has a more compact form than Eq. (4.13). 
Corollary 3: In the case of adjacent unit indices, i.e., 

7k, ... k
j
l 1...1 Ik

J 
, ,kp' where k j i= I, k j + I i= I, part (a) guarantees 

that the integrals corresponding to the indices 
kp ... ,kj , kj+ I , ... ,kp can be expressed in quadratic forms; 
then the consecutive use ofEq. (4.3) finalizes the problem as 
to the evaluation of an integral over hyperangles, the inter­
grand of which is a product of two quadratic forms and the 
reciprocal of the square root of another quadratic form. Al­
though the corresponding 7 looks hard to evaluate, this last 
integral does not have a complicated structure for evaluation 
and can be tackled by making use of the aforementioned 
approaches. 

V. CERTAIN APPLICATIONS AND CONCLUSION 

It is because of the fact that three-particle systems are 
the most realistic ones among those characterized by sym­
metric wavefunctions that we make our applications in this 
section fora = 2. For this case (2J IJ!)UJ(2) and (2J IJ!)LJ(2) 
values required for the determination of bounds to n ~ are 
calculated. The related sets of values for roughest upper and 
lower bounds are (1.333333, 2.245179, 2.029793, 2.240185) 
and (0.547935, 1.086775, 1.231266, 1.417371)forJ=0, 1,2, 
3, respectively. A quick glance at Eq. (2.4) will show that 
recombination of n ~ with (2J IJ!) appearing in the coeffi­
cient of A ; will lead us to a healthier analysis, especially in a 
numerical sense. Although the structure of UJ (2) and L J (2) 
can be given analytically, the algebraic effort to take the J th 
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derivatives will become extremely tedious for higher values 
of J. One does need to use more explicit expressions for UJ (2) 
and L J (2). To this end the serial expansion of the products 
r(l + t )F(1 - t) andr(! + t )T(~ - t) into the powers oft 
can be made by virtue of Bernoulli numbers4 or better still 
Riemann's Zeta4 function with non-negative integer-valued 
arguments (excluding the singular point 1). After some inter­
mediate algebra we can conclude 

UJ(2)=(J!!2J)(fi'J __ l +2§J+.£0J + I ), (5.1) 

where 

9 J = ~ ± ( - I)k 2 k (1 _ 3 - k - I) 1 + ( - I)J - k t (J _ k ) 
2 k _ O 2 

+ 1 + (2- W(1 - 2 -J+ l)t(J), § _1=0, (5.2) 

L J(2) = (J!!2J)(WJ ... ] +4WJ __ 2 +5IfJ_ 1 +2WJ 

(5.3) 

where 

J 
W J = 2 I ( - I)k 2k (1 - 3 - k - 1)( I _ 2 - J+ k + 1) 

k~O 

I+(_I)J-k _ 
X t(J - k), WJ=O,J <0, (5.4) 

2 

Y J = - i1T{ - I)J2J(1 - 3- J- 1
), ,r _1=0. (5.5) 

These types of expressions are not restricted to the case 
where a = 2. Similar but more complicated formulas can be 
derived for integer a values. These are beyond the scope of 
this work. On the other hand half-integer a values seem to 
create some trouble due to the existence of products like 
r (! - t )r (t ). In these cases one can, however, expand these 
types of products in the powers of t, but the expansion coeffi­
cients seem not to be expressible in terms of easily calculable 
quantities. 

For higher values of J one can derive an asymptotic 
form for fJ i 's from its integral representation,2 

fJi = f [1- (_I)Jx 2a](1 ~x2)(2x)2k- I 

(5.6) 

Indeed, serial expansion of the last factor in the inte­
grand above into the powers of x, and term by term integra-

TABLE I. Nested bounds to the simplest n ~ (J lu "u 2)· (a) r = u{ u2• (2) 
values are to be multiplied by (16~/3)2. 

J 0 3 

r 0.0 0.5 1.0 0.0 0.5 1.0 

B ~J 1.2533 1.2667 1.2800 1.4034 1.4495 1.4958 

Bt 1.1598 1.1849 \.2132 1.3278 1.3837 1.4420 

B' 1.1039 1.1344 1.1710 1.3108 1.3683 1.4291 
u 

n~ 0.7225 0.7474 0.8161 1.2915 1.3500 1.4132 

B' L 0.6606 0.6908 0.7274 1.2878 1.3451 1.4059 

B' L 0.6431 0.6680 0.6963 1.2824 1.3381 1.3963 

B' I. 0.6013 0.6146 0.6279 1.2475 1.2936 1.3398 
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tion yields the following equation after certain elementary 
steps: 

((2J /J!lPi)J~oo = 28k!' (5.7) 

The use of this fact in the definition of U;(2) and L J (2) gives 
the limit values 2.4 and 1.6, respectively. As a matter of fact 
given sets of four values tend to these limits. 

To obtain tighter bounds we use this last discussion and 
the findings of the previous sections to build Table I. There, 
the comparison of the nested bounds with the actual values 
of n ~ has been given for the first few n values and J = 0, 
J = 3 in the simplest case. A careful look at Table I reveals 
that the rate of the convergence of the nesting procedure 
increases as J increases. This implies that the nesting proce­
dure can be effectively used for the evaluation of n ~ for 
higher J values. 

To evaluate first nested bounds to the general case of 
n; we need the value of 711...11 • As can be recalled from the 
aforementioned theorem and its corollaries a recursion for­
mula can be made use of for this purpose. For the sake of 
computational simplicity we can reorganize the elements of 
iiq in a vectorial form, making use of its symmetry. This, 
after some elementary matrix algebra, yields for the most 
realistic case of a = 2, 

(16r)p + I 7' 
71\ .. 1\ = -3- 31iJp+ ,c~pjlp_,···,/1I21iJ" (5.8) 

where 

T - I[ I I 2e I l' 2e I . eel IiJq - '\ - 3COS q' - 3sm q' - 3sm qCOS q , 
q=l,p+1 (5.9) 

and 

3 q 

[

I + Icos2e 

.~ q = is I + !sin2eq 

!sine q cose q 

1 + ~sin2eq -iSineqcoseq] 

1 + ~COS2eq isineqcoseq , 

- ~sineqcoseq ~(coS2eq - sin2eq) 

q = 2,3, ... ,p, (5.10) 

where eq is originated from the following representation of 
the vector uq appearing in the definition of the potential ma-
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trixAq 

u; = [coseq, sineq,] q = I, ... ,p + 1. (5.11) 

For other positive integer values of a the sample ap­
proach can be used but higher-dimensional matrices and 
vectors appear. 

For the equipotential case further simplifications can be 
made making use of the fact that all e q'S are equivalent and 
can be chosen to be zero. This produces the following com­
pact form: 

_ (16r)p+ 13-T // P - I 
71\ \I - -- IiJ c~ 1iJ, .. 3 (5.12) 

where 

(jjT = I[ 2 II 
5 3' (5.13) 

and 

- 2 [1 ~=-
35 I 

(5.14) 

By employing the theory of matrices one can arrive at more 
explicit results which it is unnecessary to give here. 

Therefore in the light of these applications we can say 
that upper and lower bounds to n ;'s may be effective in 
their actual evaluation for certain cases. However, to in­
crease the precision required other types of 7 integrals must 
be evaluated. But this necessitates dealing with tensors. We 
have left this subject out of this work. This may be the subject 
of a future work. 

1M. Demiralp, J. Chern. Phys. 72, 3828-3826 (1980). 
2M. Demiralp and N. A. Baykara, "Analytic Evaluation of Certain Zeroth 
Order Coulombic Hyperangular Interaction Integrals," J. Math. Phys. 22, 
2427 (19811-

'N. A. Baykara and M. Demiralp, "Numerical Evaluation of the Zeroth 
Order Coulombic Hyperangular Interaction Integrals" (submitted for 
publication to J. Chern. Phys.) 

4W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems/or 
the Special Functions 0/ Mathematical Physics (Springer, Berlin, 1966). 

'Y. L. Luke, The Special Functions and Their Approximations, Vol. 1 (Aca­
demic, New York, 1969). 
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Mass dependence of SchrOdinger wavefunctions for an exponential potential 
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It is shown that the condition G (r»O for r>O, where G (r) = (a/am )S~ (u(rlf dr, does not hold in 
the case of exponential type potentials. 

PACS numbers: 03.6S.Ge, 03.6S.Nk, 14.40. - n 

I. INTRODUCTION 

Recently Leung and Rosner' studied mass dependence 
of wave funtions in the nonrelativistic case for some types of 
potentials. This study is useful in the investigation of the 
spectrum of bound states like the if;/ J or r particles. 2 They 
showed that for a power law potential of the type 
V (r) = r(€ > 0) and also for logarithmic potentials the 
condition 

G (r»O for r>O, 

where 

G(r) = - !u(r)j2dr a ir 

am 0 

is satisfied. Here u(r) denotes normalized SchrOdinger wave­
functions. It is not very difficult to obtain the mass depen­
dence of the Schrodinger wavefunctions and energies3 for a 
power law potential if one uses the simple scaling arguments. 
However, for a potential which is a transcendental function 
of r, scaling arguments cannot be used to obtain meaningful 
results. Hence, mass dependence of wave functions for some 
well known monotonic potentials like e - ria (exponential 
type), (l/r)e - kr (Yukawan), or A /cosh2ar(modified Posch­
teller) cannot be determined in a trivial manner. In this note 
we show that the condition mentioned above fails to hold in 
the case of exponential type potentials. Our investigation 
was limited to the case of s wave Schrodinger wavefunctions. 

II. SOLUTION OF SCHRODINGER EQUATION 

The exact s-wave solutions of the Schrodinger equation 
for an exponential potential are very well known. However, 
for the sake of completeness, we present here the essential 
steps. As usual we write the radial part of the s-wave Schro­
dinger wavefunction if;(r) as 

if;(r) = u(r)/r, (1 ) 

where the radial wavefunction u(r) satisfies the differential 
equation (taking fz = 1) 

u" + 21-l(E - V(r))u = O. (2) 

If we consider the equation for a bound state, then I-l is the 
reduced mass and I-l = m/2, where m is the mass of any of 
the constituent particles assumed to be of equal masses. Ifwe 
take 

VIr) =Ae- kr (A <0) 

then (2) can be written as 

v"(z) + (4m/k 2)(E - Ae2z)u(z) = 0, 

(3) 

(4) 

whereu(r) = v(z)andz = - kr/2. The solution of(4) is given 
by 

u(r) = aolv(Ae - krI2), 

where 

v2= -4mE/k2, A2= -4Am/k2 

(5) 

(6) 

and ao is a normalization constant to be determined from the 
relation 

1" (u(r))2 dr = 1. (7) 

Eigenvalues are obtained from the boundary condition 

J,,(A) = O. (8) 

Now 

Ie< Jv(Ae- kr12)J,,(Ae - kr/2) dr 

2 11 = - J" (At )Jv\At )t - I dt. 
k 0 

(9) 

The right hand side of (9) can be evaluated by using the ex­
plicit expressions for integrals like4 

r z-IJ
" 

(AZ)Jv(AZ) dz. 

After some straightforward calculation, we see that the right­
hand side of (9) is equal to zero if I-l =I- v and for I-l = v 

II 2 -I A ( aJv(A)) (Jv(At)) t dt = - J,_+ 1-- , 

o 2v av 
(10) 

(
JJv(A) JJv(Z)) I ' 

Jv Jv z ~- A 

where we have also used the result (8). 
Hence, orthonormal eigenfunctions for an exponential 

potential are given by 

Un = an (v)Jv (Ae kr12), (11) 

where v n is the value of v corresponding to the nth zero of 
J,,(A ) for fixed A;an is given by 

_(kV)1/2( JJv (A))-I!2 
Gn(v)- - J,'+I(A) a 

A v 

III. CALCULATION OF THE MASS DEPENDENCE OF 
WAVEFUNCTIONS 

Let us now calculate P (r) defined by 

P (r) = f (u(r))2 dr. 

(12) 

(13) 
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Using (5) we have 

P(r)= ~ t a~(Jv(A.tf)t-ldt 
k Je -0,/2 

= ~ t a~(Jv(A.t )2)t -I dt 
k Jo 

- -a~ 2 le-
k 0 

Using (10) and (12) 

P (r) = 1 - I(m,r), 

where 

k .. /1 

I(m,r) = [e - krl2{Jv + I (A.e - krll) ~: (A.e - krll) 

_Jv(A.e- kr12 ) aJ;: I (A.e- kr12 )} 

(Jv(A.e-krll)1] ( aJv(A.)) 
+ A. ) -;- Jv+ dA.) ---av- . 

(14) 

(15) 

(16) 

(17) 

If ap (r)1 am >0 then P (r) is monotonically increasing with 
respect to m and hence/(m,r) must be a monotonically de­
creasing function of m. We show by counterexample that 
this cannot be true. In calculating v for given m, one should 
note that 

avl 

->0 
am ' 

i.e., v is a strictly monotonically increasing function of m5. 

This can be shown in the following way. From (6) 

v2 = _ 4mE Ik 2. (18) 

Hence 

av 4 [ aE] - E+m-. 
am k 2 am 

But 

aE (T) 
= 

am m 
(from the Feynman-Hellmann theorem) 

av 4 
.'. am = - k 2 (V) > O. 

Also, v is determined from the equation 

J,,(A.) = o. 
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(19) 

(20) 

(21) 

Now, for our counterexample, we take 

-kr.,ll _ jl,l _'1 k2/4A <m e - -, m l - - iLl . 1 

jLl 
= - j~.lk 2/4A, (22) 

wherejv.n is the nth zero of J,,(z) 

Hencev i = 1,vl = 2. Using these values, the right-hand 
side of(17) can be calculated numerically.6 aJ,,(z)lav are cal­
culated by using the formula 7 

n!(z/2) - n n~1 (z/2)kJdz) 
+ £.. . 

2 k = 0 (n - k )k ! 
(23) 

It is found that 

I(ml,r) = 0.773 < l(m 2,r) = 0.880. 

Hence,f(m I,r) < l(m 2,r) for m I < ml and the condition that 
I(m,r) is monotonically decreasing fails to hold. 

IV. CONCLUSIONS 

As pointed out by Leung and Rosner, I the condition 
G (r»O,O<r < ()() is a quantitative statement of the condition 
that a bound particle falls deeper into the well as f.L increases. 
We have shown by a counterexample that this condition is 
not satisfied for the case of exponential type potentials. In 
fact, numerous counterexamples can be found to show that 
I(m,r) is not a monotonic function. 

'c. N. Leung and J. Rosner, I. Math. Phys, 20,1435 (1979). 
2A brief but excellent review is given by C. Quigg, in Lectures on Charmed 
Particles, Fermi Lab. Conf. 78/1 37THY (1978) (unpublished). 

'G. Cocconi, Commun. Nucl. Particle Phys. VII 6,117 (1978). 
4L. Y. Luke, Integrals of Bessel Functions (McGraw-Hill, New York, 1962), 

pp.254-5. 
'I am grateful to Mr. C. N. Leung of the University of Minnesota for point­
ing this out and also for some helpful comments. 

"Numerical values of Bessel functions of the first kind for arguments up to 
three places of decimals are taken from The Annals of the Computation 
Laboratory of Harvard University (Harvard, Boston, MA, 1947), Vols. III 
and IV (unpublished). Values of Bessel functions of the second kind are 
taken from E. A. Chistova, Tables of Bessel Functions (Pergamon, New 
York,1959). 

7M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions 
(Dover, New York, 1970), p. 362. 
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We consider a neutrino field in interaction with a space-time admitting an isometry group and we 
attempt to derive the symmetries imposed on the neutrino flux-vector and on the neutrino field for 
solutions of the Einstein-Weyl field equations. It is proved that if one of the following two 
constraints is Imposed, (i) the neutrino field is of class E" (ii) the neutrino flux-vector is collinear 
with one of the principal null directions of the Weyl tensor, so that IPo = 0, then 

YnS A = - (l/2)SSA and Yn//' = 0, 

where S A is the neutrino field, I/' is the neutrino flux-vector, nil is a Killing vector field, and s is a 
real constant. However, in the cases of a pure-radiation field with diverging rays and a pure­
radiation field with nondiverging rays and IP3 = ° the above formulas become 

YnS A = ~(p - is)SA and Ynl/, = p[l', 

where now p and s are in general real functions of the coordinates. 

PACS numbers: 04.20.Cv 

I. INTRODUCTION 

To solve the Einstein field equations with a nonvanish­
ing source, very often we have to find approximation meth­
ods or at best make restrictive hypotheses on the form of the 
space-time metric. These hypotheses generally consist in ad­
mitting that space-time possesses a certain group of isome­
tries. Aside from these restrictions, in practice it is often 
convenient to assume that the source of the gravitational 
field (i.e., a scalar field, an electromagnetic field, etc.) inherits 
the symmetries of the space-time metric. Naturally a ques­
tion will arise as to whether this assumption really consti­
tutes a restriction or is just a consequence, through the Ein­
stein field equations, of the hypotheses of symmetry made on 
the metric. Concerning the scalar field, the electromagnetic 
field, and the perfect fluid, recently several authors have ex­
amined this question. I Here, we have the same problem in 
view but for a spinor field, that of the neutrino. 

To proceed, we adopt the 2-spinor formalism which in 
general seems to be more adequate than the 4-spinor formal­
ism for the treatment of the neutrino field in a curved space­
time. The important advantage of this formalism is the possi­
bility of introducing directly from the neutrino field in each 
point of the space-time a null tetrad in terms of which the 
Weyl equation and the neutrino energy-momentum tensor 
take a very convenient form. For the reader's convenience 
and in order to fix our notation we give in Sec. II a number of 
preliminary results; however, a familiarity with the spin co­
efficient formalism of Newman and Penrose2 is assumed. 

II. THE 2-COMPONENT NEUTRINO FIELD IN A CURVED 
SPACE-TIME 

The interaction of a neutrino field and a gravitational 
field is described in general relativity by the Einstein-Weyl 
coupled equations 

R/,v = - T/,v' 
~.d~, =0, 

(11.1) 
(11.2) 

where 

is the neutrino energy-momentum tensor. The spin or 
[Throughout this article we adopt the notations of Pirani:1 

Thus, small Greek indices are tensor indices (values 0,1,2,3) 
while capital Latin indices are spinor indices (values 1,2). 
The signature of the space-time is taken to be 
- , - , - , + .] S A is the neutrino field and the quantities 
~x are the generalized Pauli matrices satisfying the follow­
ing anticommutation relations: 

(1104) 

Following Griffiths and Newing4 we introduce the 2-spinor 
~ in a way that (s A, ~ ) form a dyad or spinor frame; that is, 

SAXB - SBXA = CAB' 

We then construct the null tetrad or null frame: 

[I' = d"AxsAfx, 

K'-' = d" AX~'?' 
miL = d" AXS A,?, 

mil = d"AxxAfX. 

(11.5) 

(II.6a) 

(IL6b) 

(II.6c) 

(Il.6d) 

The vector / /' is interpreted as the neutrino flux-vector. The 
completeness relation which arises from (11.5) is 

II'Kv + Iv K/, - ml'mv - mv m /, = g/,v' (11.7) 

For a given S A the most general transformation on X A which 
preserves (II.S) may be written in the form 

SA = S'A, 
X A =X,A + IPS'A, 

(IL8a) 
(1I.8b) 

where IP is an arbitrary complex function of the coordinates. 
This transformation generates the following transformation 
for the corresponding null tetrad, called a "null rotation 
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about ["": 

[" = I''', 
IC" = K'" + IJIm'" + .pm'" + 1JI.p[ ''', 
m" = m'" + .pI '''. 

(1I.9a) 
(1I.9b) 
(1I.9c) 

In terms of the spin coefficients a, p, y, E, p, K, U, 'T associated 
with the null tetrad (see Appendix A), the Weyl equation and 
the neutrino energy-momentum tensor assume the equiv­
alent tetrad forms 

p=E, 
P = 'T, 

T"v 

(II. lOa) 
(II. lOb) 

- !{AI" Iv + 2tu[g"v - 4/("Kv)]+ 2i[(a - 27)/("mv) 

- (a - 2'T)/("mv) + KK("mv) - KK(" my) 

+ am"m v - um"m"Jl ' 
where 

A = 2i(r- r), 
lU = (i/2)(o - Pl· 

(11.11) 

(11.12) 
(11.13) 

The round brackets on the indices in Eq. (11.11) mean sym­
metrization. The energy density of a field as measured by an 
observer with future-pointing velocity u" is 

E(u) = T"vu"uv. 

The expression (11.11) for the neutrino energy-momentum 
tensor can be simplified essentially by the adoption for the 
neutrino field of the following physically relevant condition: 

E(u)#O 

for all the observers at every point in which T"v #0. 
In the terminology ofWainwright6 we say that these neu­
trino fields satisfy the weak energy condition E I or equiv­
alently that they are neutrino fields of class E \. If this condi­
tion is fulfilled we can prove6 the existence of a null tetrad 
with respect to which the energy-momentum tensor (11.11) 
reduces to the form 

T"v = - ![Al".lv + 2tug"v - 4cu(/"Kv + ivK,,) 

+ 2ium"mv - 2ium"m,,], (11.14) 

with the following restrictions on the spin coefficients: 

K=O, 
a - 27=0. 

(11.15) 
(11.16) 

Here, lU and u are proportional, respectively, to the twist and 
the shear of the neutrino principal null congruence and they 
fulfill the relation 

(11.17) 

If in particular uu - 4cu2 < 0 then the null tetrad is deter­
mined uniquely with respect to the null rotations about I" 
and if uu - 402 = 0 then there exists a freedom in the choice 
of the null tetrad with the restriction that 

(11.18) 

So, in this second case we can perform the null rotation 
(1I.9a)-(1I.9c) and give any value to the real part of IJI. 

1631 J. Math. Phys., Vol. 23, No.9, September 1982 

III. LIE DERIVATIVES OF THE NULL TETRAD OVER A 
KILLING VECTOR FIELD 

Let us consider a null tetrad (I", IC'" m", m") and a real 
Killing vector field n". Because the vectors I", K", m" are 
null, it is obvious that their Lie derivatives with respect to n" 
are given in general by 

.!£ nil' = pi" - qm" - qm", 

.!£ IC" = file" - rm" - rm" n , 

.!£ nm" = el" + gK" + hm", 

(1I1.1a) 
(111.1 b) 
(111.1 c) 

wherep,fare real and q, r, e,g, h complex. By Lie differenti­
ation with respect to n" of the completeness relation (11.7) 
and the help of (III. 1a)-(1I1. 1c) we obtain 

f + p = g + q = e + r = h + h = O. (IU.2) 

Conversely, if (111.2) are valid it is clear that n" is a Killing 
vector field. So, we have the following theorem. 

Theorem A 
A vector field niL is a Killing vector field if and only if the 

Lie derivatives with respect to n" of the null tetrad vectors 
I", K", m" are expressed by the formulas 

.!£ n[" = p[" - qml' - qm", 

.!£ K" = - pIC" - rml' - rml' n , 

.!£ nm" = - rl" - qK" - ism", 

where p, s are real and q, r complex. 

(III.3a) 
(lII.3b) 
(1II.3c) 

Let us now define the Lie derivative of a spinor S A with 
respect to a vector field nit so as to satisfy the following 
properties 7 

: 

(i) If SA is a 2-spinor, then 51' "SA is also a 2-spinor. 
(ii) .!£ n ~x = 0 if and only if nit is a Killing vector field. 

Thus using (1I.6a)-(III.6d) the spinor equivalents of (1II.3a)­
(1II.3c) are given by 

.!£ nS A =!(p - is)SA - q~, 

.!£n~ = - rsA -!(p - is)~. 
(11I.4a) 
(1I1.4b) 

If the 2-spinor S A is the neutrino field, then from (III.3a) and 
(1I1.4a) we observe that the symmetry properties of the neu­
trino flux-vector and of the neutrino field depend critically 
on whether or not the quantity q vanishes. However, under a 
null rotation about I" the quantities q,p, s, r are transformed 
as follows: 

q' =q, 
p' = p - qlJl- q.p, 
is' = is + qlJl- q.p, 
r' = r + (p - is)lJI- qlJl 1 + .!£" IJI. 

(III. Sa) 
(1II.5b) 
(Hl.5c) 
(Hl.5d) 

From (UI.Sa) q cannot be put to zero in general. Ifit happens 
to vanish, then p and s become invariant with respect to 
(1I.9a)-(1I.9c). 

It is well knowns that the Lie derivatives of the Weyl 
tensor Cltvpu and of the Ricci tensor Rltv with respect to a 
Killing vector field are zero: 

.Y n C"vpa = 0, 

.!£ nR"v = 0, 

or equivalently, 

.!£ n IJIABCD = 0, 

.!£ n <P ABicY = 0, 

Charalampos A. Kolassis 
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where I/IABeD and cf>ABXY are the spinor equivalents of the 
Weyl tensor and of the Ricci tensor, respectively. 

Considering the dyad components of the Weyl spinor 
[see Appendix A, Eqs. (A5)] after a straightforward calcula­
tion and with the help of (III.4a) and (III.4b) and (III.6) we 
obtain 

2" n 1/10 = 2(P - is) 1/10 - ~I/II' 
2" n 1/11 = - rl/lo + (p - is) 1/11 - 3q1/l2' 
2" n 1/12 = - 2rl/ll - 2q1/l3' 
2" n 1/13 = - 3rl/l2 - (p - is)1/I3 - q1/l4' 
2" n 1/14 = - 4rl/l3 - 2(P - is) 1/14' 

(III. Sa) 
(lII.8b) 
(lII.8c) 
(lII.8d) 
(lII.8e) 

Let us now consider the dyad components cf>ij of the Ricci 
spinor [see Appendix A, Eqs. (A6)]. By a straightforward 
calculation and with the help of (III.4a)-(III.4b) and (111.7) 
we obtain 

2" n cf>oo = 2(pcf>oo - qcf>ol - qij)ol)' (III.9a) 
2" n cf>11 = - qcf>12 - qij)12 - rcf>ol - r~lI' (III.9b) 
2" n cf>ol = (p - is)cf>ol - 2qcf>11 - qcf>o2 - rcf>oo, (III.9c) 
2" n cf>12 = - (p + is)cf>12 - rcf>o2 - qcf>n - 2rcf>11' 

2" n cf>o2 = - 2(rcf>o1 + qcf>12 + iScf>02)' 
2" n cf>22 = - 2(Pcf>22 + rcf>12 + rij)12)' 

(III.9d) 
(III.ge) 
(III. 9t) 

From the Einstein field.equations (11.1) and the expres­
sion (11.11) for the neutrino energy-momentum tensor we 
derive the following equations which can be considered as 
the dyad components of the Einstein field equations. 

cf>oo = 0, (III. lOa) 
cf>01 = (i/S)K, (III. lOb) 
cf>o2 = (i/4)a, (III.lOc) 
cf>11 = aW, (II1.10d) 
cf>12 = - (i/S)(a - 21"), (III.lOe) 
cf>22 = - 0, (II 1.1 Ot) 

By substitution of (III. lOa)-(III. lOt) into (III. 9a)-(III. 9t) we 
obtain 

qK - q K = 0, (II1.1la) 
2"nw = (i/2)[q(a - 21") - q(a - 27) + rK - rK], 

(II1.1lb) 
2" nK = (p - is)K + 2i(2wq + iaq), (III.llc) 

2" n (a - 21") = - (p + is)(a - 21") - 2i(2wr + iar - 0q), 
(III.lld) 

2" na = if(ii - 21") - rK - 2isa, (III. 1 Ie) 
2" nA = - 2pA + 2iRa - 27) - 2ir(ii - 21"). (III. 1 It) 

It must be noted that equations (III.llaHIII.llt) can also be 
considered as the intergrability conditions 
2" n Rl'v = - 2" n Tl'v of the Einstein field equations. 

For the neutrino fields of class E I , we must introduce in 
the equations (III.lla)-(II1.ll t) the restrictions (II.15) and 
(11.16). We obtain thus, 

2"nw = 0, 
2wq + iaq = 0, 
2wr + iar - 0if = 0, 
2" na = - 2isa, 
2"nA = - 2pA. 

(III.12a) 
(II1.12b) 
(II1.12c) 
(III.12d) 
(III.12e) 

In the next sections, in order to exploit the above equa­
tions we will use extensively and often without explicit refer-
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ence the various restrictions satisfied by the spin coefficients 
[e.g. Eqs. (II. lOa) and (II. lOb), (11.15), (II. 16), etc.] and the 
Einstein equations (III. lOa)-(III. lOt). Also, we will refer to 
some of the Ricci and Bianchi identities. For these, we will 
adopt a special reference notation; e.g., by (R.2) [Respective­
ly, (B.2)] we will mean the second Ricci identity (respective­
ly, second Bianchi identity) in the listing given by Pirani9 or 
by Flaherty. 10 However, for the reader's convenience all the 
Ricci and Bianchi identities which are used in this paper 
together with the commutation relations of the D, Ll, 8, and b 
differential operators are displayed in Appendix A. 

IV. THE EFFECT OF SPACE· TIME ISOMETRIES ON THE 
NEUTRINO FIELDS OF CLASS £1 

Because of Eqs. (III.12b), (III.12c), and the restriction 
(11.17) satisfied by the neutrino fields of class E" we must 
separately consider the two cases 4w2 - aiJ> ° and 
4w2 

- aiJ = 0. The pure radiation field (w = ° and a = 0) 
will be considered as the third case. Finally, the results of the 
three cases may be resumed in Theorem B given below. 

Case 1 

We consider the case where 

4w2 
- aiJ>O. 

So, from (III.12b) and (III.12c) follows that 

q=O, 
r=O. 

(IV.l.l ) 

(IV. 1.2) 
(IV.l.3) 

In order to exploit Eqs. (III. 12a), (III. 12d), and (III.12e) we 
must apply a theorem which states that the Lie derivative 
with respect to a Killing vector field commutes with the co­
variant derivative. 8 Here, and in the remainder of the paper 
this theorem in conjunction with Eqs. (III.3a)-(IIl.3c) will be 
used extensively without explicit reference. 

First, let us consider Eq. (III. 12a). This can be written in 
the form 

,:./' n [(/I';V -[";,, )ml',nv] = 0. 

Inserting (III.3a) and (IIl.3c) together with (IV. 1.2) and 
(IV. 1.3) into the above expression yields 

pw=O. 

Since w = ° is excluded from (IV. 1 ,1), we obtain 

p=O. (IV. 1.4) 

Now Eq. (III. 12d) becomes an identity and we must consider 
Eq. (III.12e). This, with a similar procedure as previously 
and with the help of (IV. 1.2), (IV.l.3), and (IV. 1.4), yields 

Lls = 0. (IV.l.S) 

Further restrictions ons can be obtained from the Lie deriva­
tives with respect to n" of the Weyl equation and the help of 
(IV.1.2), (IV.l.3), and (IV. 1.4). Thus, from 2" nC =:f n p we 
obtain 

Ds=O, 

and from .Y JJ = 2" n 1" we obtain 

&=0. 

(IV. 1.6) 

(IV. 1.7) 

[For the definition of the Ll, D, and 8 operators, see Appen-

Charalampos A. Kolassis 1632 



                                                                                                                                    

dix A, Eqs. (A2)]. Equations (IV. I.S), (IV.I.6), and (IV.I.7) 
imply that s is constant. Now, by virtue of (IV.I.2), (IV. 1.3), 
(IV.I.4), and (IV. I. 7) the equations.? n K = 0 and· 
.? n (a - 27) = 0 become an identity and therefore we can­
not derive further restrictions on s. 

Case 2 

with 

We consider the case where 

4<u 2 
- aii = 0, (IV.2.l) 

(IV.2.2) 

To prove that q vanishes we will proceed by contradiction. 
So, let us assume that 

q#O. (IV.2.3) 

By virtue of (IV.2.l) and (IV.2.3) Eq. (III.12c) splits into the 
equations 

2UJr + iar = 0, 
y=y. 

(IV.2.4) 
(IV.2.S) 

From (IV.2.l) it follows that we can perform the null rota­
tion (1I.9a)-(1I.9c) subject to the restriction (11.18). Under 
such a transformation and by virtue of (III. 12b), (1II.l2d), 
and (IV.2.4) we may observe that the quantities w, a, y - y, 
q, s, and argr are invariant [see Appendix A, Eqs. (A4a)­
(A4e)]. However, by virtue of(IV.2.3) we can always choose 
the real part of 1/1 so that 

p = O. (IV.2.6) 

Now, let us consider Eqs. (III.12a), (111.12d) and the integra­
bility conditions 
.? n E = .? nP' .? n/3 = .? n 7, .? n K = .? n (a - 27) = O. 
From these, if we take into account (III.12b), (IV.2.4), 
(IV.2.S), and (IV.2.6) we can derive the following equations: 

8q = 3q7 - Hq(ii' + 7) + ij(1T + 7)], (IV.2.7) 
8q = 3qr, (IV.2.8) 
3.aq = 4qy - qji - ij)." (IV.2.9) 
Dq = q(2j5 + pl. (IV.2.1O) 

From (Rl) follows 

Dw = 2(P + jijw. (IV.2.ll) 

By virture of (IV.2.1O), (R2), (IV.2.3), and (IV.2.11) the D 
differentiation of (1II.l2b) gives 

1/10 = 2iwa. (IV.2.12) 

By substituting (IV.2.l2) into (III.8a) and (1II.8b) and using 
(III.12a), (III. 12d), (IV.2.3), (IV.2.6), and (III. 12b) we obtain 

1/11 = 0, 
.T, 4r 2 
Y' 2 = ---(j) • 

3ij 

(IV.2.13) 

(IV.2.l4) 

We can observe that from (III. 12b), (IV.2.4), and (IV.2.l4) 
follows 

1/12 = W2• 

From (R3), (R.4), (R.5), and (RII) we derive 

8w = - 2UJ(1T + 7) + iii(ii + 7) + 4<ur, 
8a=4ar. 
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(IV.2.IS) 

(IV.2.16) 
(IV.2.17) 

With the help of (IV.2. 12), (IV.2.16), and (IV.2.l7) Eq. (Bl) 
yields 

2UJ(ii + 7) + ia(1T + 7) - wii = O. (IV.2.18) 

On the other hand by 8 differentiation of (III.12b) and the 
help of (IV.2.7), (IV.2.8), (IV.2.16), and (IV.2.17) we obtain 

IOw(ii + 7) + 3ia(1T + 7) = O. (IV.2.19) 

By virtue of (IV.2.1) Eqs. (IV.2.18) and (IV.2.19) yield 

7 = 0, (IV.2.20) 
1T = O. (IV.2.21) 

By Lie differentiation with respect to nil- of(IV.2.20) and with 
the help of (IV.2.4) we obtain 

.aij = 2ify + rp. (IV.2.22) 

By Lie differentiation with respect to nil- of(IV.2.21) and with 
the help of (IV.2.S), (IV.2.9), and (IV.2.22) we obtain 

Dr = q(ji - f.-l + 2y) + rp. (IV.2.23) 

With the help of(III.12b), (R.2), (IV.2.5), (IV.2.11), (IV.2.12), 
and (IV.2.23) the D differentiation of (IV.2.4) yields 

rip - jij = q(p, - ji). (IV.2.24) 

Now, by virtue of (IV.2.24), Eq. (IV.2.l4) can be written in 
the form 

(IV.2.25) 

Acting on q with the commutator of the 8- and 8-differenti­

al operators and taking into account Eqs. (IV.2.7), (IV.2.8), 
(IV.2.1O), (IV.2.20), (IV.2.21), (IV.2.22), and (IV.2.24) we 
obtain 

y(p - jij = (p + jij(ji - f.-l). (IV.2.26) 

With the help of (IV.2.S), (IV.2.IS), and (IV.2.20) the Ricci 
identities (R.6), (RI2), and (R17) yield 

y(p-ji) = pji - Pf.-l, 
).,a-lii=pf.-l-pji. 

These equations together with (IV.2.26) yield 

pf.-l=pf.-l, 
).,a = Iii. 

(IV.2.27) 
(IV.2.28) 

With the use of(IV.2.lS), (IV.2.2l), (IV.2.27), and (IV.2.28) 
we can derive from (R.8) 

D (p, - ji) = - (p + jij(p, - ji). (IV.2.29) 

Now with the help of(IV.2.ll) and (IV.2.29) and by D differ­
entiation of (IV.2.2S) we obtain 

DI/I2 = (p + jij1/l2' (IV.2.30) 

By virtueof(IV.2.ll), (IV.2.13), and (IV.2.15) the real part of 
(B. 3) becomes 

2DI/I2 = 3(p + jijl/l2 + 2(P + jij<1>II' 

Comparing this with (IV.2.30), we obtain 

(p + jij( 1/12 + 2<1> I tl = O. 

Now, if P + P = 0, then by virtue of (Rl) and (IV.2.l) fol­
lowsp = w = 0, which contradicts (IV.2.2). On the other 
hand, if 1/12 + 2<1>11 = 0, then by D differentiation of this 
equation and the help of(IV.2.11) and (IV.2.30) we arrive 
again at the contradiction <1>\\ = w = o. So we must con-
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clude that 

q=O. 

Now by similar calculations as in Case I we may derive from 
(III.12a) that 

p=O, 

and from (1I1.12e) and the Lie derivative with respect to nil- of 
the Weyl equation (II. lOa) and (II. lOb) that 

s = constant. 

Case 3 

We consider the case where 

(j) = 0, 
(7= 0, 

(IV.3.1) 
(IV.3.2) 

i.e., the neutrino field is a pure radiation field. Because of 
this, Eqs. (III.12a), (III.12b), and (1I1.12d) become identities 
and from (III.12c) follows 

q = 0. (IV.3.3) 

Otherwise the neutrino field would be a ghost field. These 
fields, because they do not interact with space-time, are ex­
cluded from our discussion. 

From Eq. (III.12e) and the integrability conditions 
!/' "E = l' "p, !/',,(J = !/' ,,7, !.I' n (a - 21') = 0, we obtain 

Ds=O, 
&=0, 
Dp=O, 
op =0, 
Lls = y,A. 

(IV.3.4) 
(IV.3.S) 
(IV.3.6) 
(IV.3.7) 
(IV.3.8) 

The condition!/' "K = ° is irrelevant and therefore Eqs. 
(IV.3.4)-(IV.3.8) constitute all the restrictions which we can 
formulate on sand p. The investigation of these equations in 
conjunction with the commutation relations of the D, Ll, 0, 
and;5 differential operators shows that they are compatible 
both with the cases of a pure radiation neutrino field with 
diverging rays (i.e.,p:;;60) and with a pure radiation neutrino 
field with nondiverging rays (i.e., p:;;60) and 1/13 = ° without 
any further restriciton on p and s. Thus, in these cases we 
have 

. Y,,11l- = pIll-, 

!.I' "SA = ~(p - is)SA, 

where p and s are in general real functions of the coordinates. 
In fact, as is shown in Appendix B, this agrees with the re­
sults of Collinson and Morris. 1 1 

Let us now consider the case which is characterized by 
the equations 

p=o, 
1/13 :;;60. 

(IV.3.9) 
(IV.3.lO) 

It is well known that pure radiation neutrino fields can exist 
only in space-times with algebraically specialized Weyl ten-

12 . sors, I.e., 

(IV.3.11) 

With the help of(IV.3.2), (IV.3.9), (IV.3.11), and the other 
restrictions satisfied by the spin coefficients, Eqs. (R.12), 
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(R.16), (R.17), and (B.4) yield 

1/12 = 0, 
7=0. 

(IV.3.12) 
(IV.3.13) 

Here it must be noted that because of(IV.3.11) and (IV.3.12) 
the condition (IV.3.lO) is preserved under the null rotation 
(II.9a)-(II.9c) [see Appendix A, Eqs. (A7)). By virtue 
of(IV.3.2), (IV.3.9), and (IV.3.13) Eqs. (R.IS) and (R.18) take 
the form 

oy=o, 
09= ;Pl' 

(IV.3.14) 
(IV.3.IS) 

Now, acting on s with the commutator of the 0 and Ll differ­
ential operators and using (IV.3.4), (IV.3.S), (IV.3.7), 
(IV.3.8), (IV.3.13), (IV.3.14) and (IV.3.IS) we obtain 

pl/l3 = 0, 

and thus, because of (IV.3.lO), 

p=O. 

From this last equation and Eqs. (IV.3.4), (IV.3.S), and 
(IV.3.8) follows that 

s = constant. 

The results of the three cases can be recapitulated in the 
following theorem. 

Theorem B 

If a neutrino field of class E 1 interacts according to the 
Einstein-Weyl coupled equations with a gravitational field 
which admits a Killing vector field nil-, then 

.Y'"SA = - (i/2)SSA, 
2'" I,l = 0, 

where S A is the neutrino field, 1 Il- is the neutrino flux-vector, 
and s is a real constant. However, in the cases of a pure­
radiation neutrino field with diverging rays (,0:;;60) and a 
pure-radiation neutrino field with nondiverging rays (,0 = 0) 
and 1/13 = ° and only in these cases, we have 

!.I' "SA = ~(p - is)SA, 
!.I'"lll- =pl'l, 

where now p and s are in general real functions of the 
coordinates . 

v. THE EFFECT OF SPACE-TIME ISOMETRIES ON THE 
NEUTRINO FIELDS WITH 'Po = 0 

In this section the general neutrino field is considered in 
interaction with a space-time admitting a Killing vector field 
nil- and subject to the restriction that the neutrino flux-vector 
be collinear with one principal null direction of the Weyl 
tensor; that is, 

(V.I) 

Of course, this restriction is preserved under the null rota­
tion (II.9a)-(II.9c) [see Appendix A, Eqs. (A 7)]. From (V.l) 
and (III.8a)-(III.8c) it is easily seen that unless the space­
time is flat, 

q=o. (V.2) 

Considering the integrability conditions 
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5t' n E = 5t' nP' 5t' nf3 = 5t' n 7 of the Weyl equation and tak­
ing into account Eq. (V.2) we derived by a straightforward 
calculation 

Dp=O, 
Ds=O, 
Dp - iDs = 0. 

(V.3) 
(V.4) 
(V.S) 

Also, with a direct calculation and with the help of (V.2), we 
obtain 

5t' n (a - 2r) = ~D(P + is) - isla - 2r) - 2i(2wr + iCfr), 
Y nA = - 2L1s - pA + 2iRa - 27) - 2ir(a - 27), 
5t' nK = (2p - is)K, 
5t' nlJ) = p{j) + (i/2)(rK - rK), 
Y nCf = pCf - rK - 2isCf. 

The comparison of the above equations with Eqs. (111.11 a)­
(111.11 f1 and the use of (V. 2) yield 

Dp + iDs = - 2p(a - 27), 
Lis = Y'A, 
PK=O, 
p{j) = 0, 
pCf= O. 

If P = 0 then from (V.4), (V.S), and (V.7) follows that 

s = const 

(V.6) 
(V.7) 
(V.8) 
(V.9) 

(V. 10) 

and therefore a theorem similar to Theorem B is established. 
There remains to investigate the possibility 

p=l=O. (V.Il) 

We will show below that this assumption leads to a 
contradiction. 

At first, from (V.8)-(V.Il) follows 

K=O, 
(j) = 0, 
Cf= o. 

(V.12) 
(V.13) 
(V.I4) 

These equations imply that the quantity a - 2f remains in­
variant under the null rotation (II.9a)-(II.9c). Furthermore, 
if a - 2f = 0, then the neutrino field would be a pure radi­
ation field which is considered in the preceding section. So, 
we must assume that 

a-2f=l=O. (V.IS) 

Equations (V.I2) and (V.14) together with (R.3), (R.S), and 
(R.II) imply that 

'PI = O. (V.16) 

Taking into account Eqs. (V.2) and (V.I6) Eq. (III.8c) can be 
written in the form 

(V.I7) 

Acting on s with the commutator of the D and L1 differential 
operators and using Eqs. (V.3), (V.4), (V.S), (V.6), (V.7), 
(V.II), (V.I2), and (V.I3) we obtain 

(V.I8) 

As by virtue of (V. 12) the spin coefficientp is invariant under 
the null rotation (II.9a)-(II.9c) [see Appendix A, Eq. (A4f1] it 
seems useful for our proof to distinguish the two cases p =1= 0 
and p = ° (i.e., neutrino fields with diverging rays and neu­
trino fields with nondiverging rays, respectively). Equations 
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(V. 1), (V. 13), (V.14), (V.16), and (V.18) will be used in what 
follows without explicit reference. 

Case 1 

Let us assume that 

p=l=O. (V. 1.19) 

Then, using the null rotation (II.9a)-(II.9c), we make 

r = 0, (V. 1.20) 

and consequently (V. 15) is reduced to 

a =1=0. (V.1.2l) 

By virtue of(V.2), (V. 14), and (V. 1.20) the Lie derivative with 
respect to nJl. of (V. 1.20) yields 

r=O. (V. 1.22) 

From (R.17), (V.1.19), and (V. 1.20) follows 

f-l = f-l. (V. 1.23) 

With the help of (V.S), (V.6), (V. 11), (V. 1.20), (V. 1.23), and 
(R.l2) the action on s ofthe commutator ofthe t5 and;5 differ­
ential operators yields 

'P2 = pf-l - aa. (V. 1.24) 

With a direct calculation and the help of (V.2) and (V. 1.22) 
we derive 

5t'nP =PP, 
5t' nf-l = - pf-l· 

Also, from (III.Ild) and (V. 1.20) follows 

5t'na = (is - pIa. 

Thus the Lie derivative with respect to nJl. of (V. 1.24) can be 
written 

5t' n 'P2 = 2paa, (V. 1.25) 

which by virtue of (V.I7) is reduced to 

paa=O. 

But this last equation contradicts (V.Il) and (V.1.2l). 

Case 2 

Let us assume that 

p=O. (V.2.l9) 

Acting on s with the commutator of the {) and ;5 differential 
operators and using (V.4), (V.S), (V.6), (V. 1 1), (V.2.l9), 
(R.I2), and (R.17) we obtain 

2'P2 = - (a - 27)(a - 27) - rf. (V.2.20) 

By a direct calculation using (V.2) and (V.2.l9) we can derive 

5t' n 7 = - iS7. 

Also, by virtue of (V.2) Eq. (III.IId) reduces to 

5t' n (ii - 27) = - (p + is)(ii - 2r). 

Thus the Lie derivative with respect to nJl. of (V.2.20) can be 
written 

2" n 'P2 = pta - 27)(a - 27), 

which by virtue of (V.17) reduces to 

pta - 27)(5 - 27) = O. 
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But this last equation contradicts (V. I I ) and (V. IS). 
So we have proven the following theorem. 

Theorem C 
If a neutrino field interacts according to the Einstein­

Weyl coupled equations with a gravitational field which ad­
mits a Killing vector field nl' and if the neutrino flux-vector is 
collinear with one principal null direction of the Weyl ten­
sor, so that tJlo = 0, then 

.2?nS A= -(i/2)sSA 

and 

:f nlll = 0, 

where S A is the neutrino field, II' is the neutrino flux-vector, 
and s is a real constant. However, in the cases of a pure­
radiation neutrino field with diverging rays (p:;60) and a 
pure-radiation neutrino field with nondiverging rays (p = 0), 
and tJI] = ° and only in these cases, we have 

:f nS A = ~(p - is)SA, 
:f nil' = pi'l, 

where now p and s are in general real functions of the 
coordinates. 

VI. CONCLUSION 

With a method closely related to the spin coefficient 
formalism we have considered the effect of space-time iso­
metries on the neutrino field. For a space-time admitting a 
Killing vector field nl' and in a coordinate system adapted to 
this vector field (i.e., such that nl' = Dfv)) the main results of 
this paper are 
(i) the neutrino flux-vector is independent of the coordinate 
xl', 

(ii) the neutrino field S A has the plane-wave form 

where qJA is a 2-spinor independent of the coordinate XV and 
where the "frequency" s is a real constant. 

It is worthwhile remarking that these results fail to hold 
for the pure-radiation neutrino fields. This must be related to 
the fact that pure-radiation fields are not uniquely deter­
mined from the space-time metric. Furthermore, we do not 
know if the above results are valid for neutrino fields not 
belonging to the energy class EI and such that tJlo:;60. This 
case will be investigated in a future work. 

Recent experiments 13 seem to indicate that neutrinos 
are not massless. If that is the case, Weyl's equation will be 
an approximation for the description of their behavior and 
therefore we should consider the Dirac equation. However, 
it must be noted that the method used here for the study of 
the effect of space-time isometries on the zero rest-mass neu­
trino field can be applied also in the case of a nonzero rest­
mass neutrino field for which only the restriction on the heli­
city is retained (i.e., the neutrino field is described by a 2-
spinor). For this it is necessary to formulate the Dirac equa­
tion and the energy-momentum tensor of the Dirac field in 
the 2-spinorial formalism and in particular in terms of spin 
coefficients. This and the energy conditions for the Dirac 
field are examined by Griffiths 14 and Radford and Klotz. 15 
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We intend to investigate this question in a future paper. Fi­
nally we would like to remark that, as was pointed out by 
Henneaux, 16 the above results (i) and (ii) must be valid at least 
under some restrictions (unknown for the moment) and for 
the general Dirac field. 

APPENDIX A 

For convenience, we list the definitions of the spin coef­
ficients and of the D, .d, 0, ;5 differential operators with re­
spect to the null tetrad (II' ,it' ,ml' ,ml') as defined by Newman 
and Penrose. 17 

K = II'; v mI'l V, 1T' = ml';vit'lv, € = ~(ll';vit' + ml';vml')lV, 
p = I,,;vml'mv, A = ml';vit'mv, a = ~(ll';vit'·+ ml';vml')mV, 

(AI) 
0' = ll';vml'm v, f-l = ml';vit'mv, /3 = !(ll';vit' + ml';vml')mV, 
7 = 'l';vmI'Kv, V = ml';vit'Kv, r = ~(/I';vit' + ml';vml')Kv. 
D=II"'ilI" .d=it'VI" o=mI'VI" 8=m1'VI" (A2) 

where V I' means covariant differentiation. 
With the help of the Weyl equation in its tetrad form 

(lI.lOa)-(II.lOb) the commutation equations of the D,.d, 0, 
and ;5 operators acting on scalars are written in the form ls 

.dD - D.d = (r + j/)D + (p +,D).J - (7 + if)8 - (1' + 1T')0, 
oD - Do = (a + 7 - if)D + K.d - 0'8 - po, 

(A3) 
M -.do = -;iD - a.d + AO + (f..l - r + no, 
80 - 08 = (ji - f-l)D + (jj - p).d - (a - 7)8 - (1' - a)o. 

Using the tetrad form (II. lOa)-(If. lOb) of the Weyl 
equation [which clearly is preserved under the null rotation 
(1I.9a)-(1I.9c)] we find that the quantities K, cu, 0', a - 21', 
r - y, p, and 7 are transformed under (1I.9a) - (1I.9c) as 
follows: 

K=K', 

cu = cu' + (i/2)(K'tJI- K'tJi), 

0' = 0" + K'tJi, 

a - 21' = a' - 2T + K'tJl 2 
- 2K'tJltJi 

(A4a) 

(A4b) 

(A4c) 

- 2i(2UJ' tJI- iiI'tJi), (A4d) 

r - r = r' - Y' + tJi(a' - 2T) - tJI(a' - 27') 

+ tJltJi (tJlK' - tJiK') - itJI (2 tJicu' + iO" tJI) 

- itJi(2cu'tJI- ie/if), 

p =p' + tJlK', 
7 = 7' + p'if + 0" tJI + K'tJltJi. 

(A4e) 

(A4f) 

(A4g) 

The components of the Weyl spinor tJlABCD and of the 
Ricci spinor cP ABKY with respect to the dyad (s A, ~ ) are 
defined by 19 

tJlo = tJlABCDS AS BS Cs D, 

tJll = tJlABCDS AS BS CXD, 

tJl2 = tJlABCDS AS BXCXD, 

tJl3 = tJlABCDS AXBXCXD, 

tJl4 = tJlABCD~XBXCXD. 

Charalampos A. Kolassis 
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Under the null rotation (II.9aHII.9c) the dyad compo­
nents of the Weyl spinor transform as 

'/10 = '/1'0' 
'/I. = '/I'. + '/1'/1'0' 
'/12 = '/1'2 + 2'/1'/1'. + '/1 2'/1'0' (A7) 
'/13 = '/1'3 + 3'/1'/1'2 + 3'/1 2'/1'. + '/13'/1'0' 
'/14 = '/1'4 + 4'/1'/1'3 + 6'/1 2'/1'2 + 4'/13'/1'. + '/1 4'/1'0' 

Using the Weyl equation (II.lOa)-(II.lOb) and the fact 
that the trace of the neutrino energy-momentum tensor van­
ishes, the Ricci and Bianchi identities used in this paper can 
be written in the form 

Dp - 8K = p2 + vij + Ip + ji)p - Kr - K(3a + T - 1T), (R.I) 

Dv - OK = 4pu - (4r - iT + a)K + '/10' (R.2) 

Dr -.1K = (r + iT)P + (T + 1T)U + 
Ip - Plr - (3y + fjK + '/I. + 4>0.' (R.3) 

Da - 8p = rp - p)a + ru - Tp - KA 

- KY + 2p1T + 4>.0' (R.4) 

Dr - op = (a + 1T)U - fJ.t + Y)K - (a - iT)P + '/I., (R.S) 

Dy -.1p = (r + iT)a + (T + 1T)r 

-Ip + Ply - (y + fJp + r1T - VK + '/12 + 4>.1> (R.6) 

Df.l - 01T = Au + 1TiT - pf.l - 1T(a - r) - VK + '/12' (R.S) 

op - 8u=p(a + r) - u(3a - 1') 

+ Ip - Plr + fJ.t - fi)K - '/I. + 4>0.' (R.ll) 

oa - 8r = pf.l - Au + aa + rT - 2ar 

+ yip - Pl + pfJ.t - fi) - '/12 + 4> •• , (R.12) 

oy - .1 r = 2f.l r - ay - uv - pv 

- r(y - fj + aX + 4>.2' (R.IS) 

Or - .1u = f.lu + Xp + (2r - a)r - (3y - y)u - KV + 4>02' 
(R.16) 

.1p - 8r = VK - pfi-AU - ar + (y + fJp - '/12' 

.1a - 8y = 2pV - 2rA + (i' - fila - '/13' 

8'/10 - D'/I. + D4>OI = (4a - 1T)'/Io - 6p'/l. 

+ 3K'/I2 + 2u4>10 - 2K4> •• - K4>02 + 21p + ji)4>0., 

3(8'/1. - D'/I2) + 2(D4> •• - 04>10) + 84>0. 

= 3A'/Io - 9p'/l2 + 6K'/I3 + 6(a - 1T)'/I. 

+ 2(a + 1T + 1')4>0. + 2(r - 2a + iT)4>1O 

+ 2(2p - p)4> •• + 2U4>20 - U4>02 

(R.17) 

(R.IS) 

(Bl) 

- 2K4>12 - 2K4>2.' (B3) 

3(..1'/1. - 6'/12) + 2(D4>.2 - 64> •• ) + 84>02 - .14>0. 

= 3v'/Io + 6(y - f.l)'/I. - 9r'/l2 + 6U'/l3 - v4>oo - U4>1O 

+ 21ji - f.l - y)4>o. + 2(r + 2iT)4> •• - 2(0 + Pl4>.2 

(B4) 
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APPENDIXB 

All space-time metrics admitting a pure-radiation neu­
trino field with diverging rays (i.e., p =1= 0) or a pure-radiation 
neutrino field with nondiverging rays (i.e.,p = 0) and '/13 = ° 
have been found explicitly by Collinson and Morris .• 1 So, 
considering the isometry groups of these metrics we may 
confirm our results of Sec. IV, Case 3 concerning these fields. 
For all the notations used here and for further details the 
reader is referred to the paper of the above authors. 

1. Neutrino pure radiation fields with diverging rays 

In a coordinate system (x· ,x2,X3,X
4) = (u,r,x,y) based 

on the neutrino principal null congruence,20 the space-time 
metric admitting these neutrino fields is written in the form 

° 
° 
° 

° 
° -r/2 

° 
° ) ° ° ' 

-r/2 

(B1.l) 

where the spin coefficient f.l is an arbitrary function of u 
alone. The neutrino flux-vector is 

II' = Ar- 28{, (B1.2) 

whereA A (u) is an arbitrary function of u. According to the 
form of the functionf.l(u) the investigation of the Killing 
equations yields the following results: 

(a) If f.l =1= lI(a - 2bu)3, where a and b are real constants, 
the metric (B 1.1) admits a 3-parameter group of isometries 
with Killing vector fields 

n~~, = (O,O,y, - x), nt, = 8{, n~1 = 8.;. (B1.3) 

By straightforward calculation we find that the Lie deriva­
tives of I I' with respect to these Killing vector fields vanish: 

2' n(iJI' = 0, i = 2, 3, 4. (B1.4) 

(b) Iff.l = lI(a - 2bu)3, b =1=0, the metric (BLl) admits a 
4-parameter group of isometries with Killing vector fields 

nftl = (alb - 2u, 2r, - 2x, - 2y), njzl = (0, 0, y, - x), 
ntl = 8}, n~1 = 8;. (B1.S) 

Now the Lie derivative of I I' with respect to nft I is nonzero in 
general: 

I' [( a ) 1 dA ] 2'n(.,1 = b - 2u Ad;; - 6 [I'. (B1.6) 

It must be noted that if f.l = constant (i.e., b = 0) then the 
neutrino field reduces to a ghost field. 

2. Neutrino pure-radiation fields with nondiverging rays 
and '/13 = 0 

In the same coordinate system as previously the space­
time metric admitting these fields is written in the form 

_ ( - m(x
2 
+ y;) - F(u,x,y) ° ~ ° ) 

g," - ~ ~ ~ 1 ~ 1 ' 

(B2.l) 

where m=m(u) is an arbitrary function of u and F(u,x,y) is 
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any function of u,x,y satisfying Laplace's equation 
(a 2/ ax2 + a 2/ ay2)F = 0. This metric represents the well 
known plane-fronted wave. The neutrino flux-vector is 

II' =A&t, (B2.2) 

where A ==A (u) is an arbitrary function ofu. 
In the case where 

m = positive constant, F(u,x,y) = F(u), (B2.3) 

this metric admits a 7-parameter group ofisometries with 
Killing vector fields 

n01 = (1, !F(u), 0, 0), n~1 = &t, 
n01 = (0, 0, - 2y, 2x), 

nt.1 =/(0, (2m) 1/2e -1V2mlux, - 2e -IVTnilu,O), 

n01 = (0, - (2m)1/2elV2mlux, - 2eIVZm1u ,Of, 
n«'1 = (0, (2m)1/2e-IV2mly, 0, - 2e- IV2mIU), 

n(7) = (0, - (2m)1/2eIVlmIUy, 0, - 2eIVZmIU). 

(B2.4) 

The Lie derivatives of II-' with respect to these Killing vector 
fields are 

2" nll,lI' = 0, i = 2,3,4,5,6,7, 

2" II'-~ dA II-' 
nlll - A du . 

If with (B2.3) we set 

A(u) = 1, 

(B2.5) 

(B2.6) 

the neutrino field reduces to the "restricted neutrino field" 
ofInomata and McKinley.21 The Lie derivatives with re­
spect to nt, of their plane-wave-like solution 

(B2.7) 

where S ~ is a covariantly constant 2-spinor and E is a real 
constant, are given by 

2" nlllS
A = iEsA, 2" nl31S

A = isA, 
2" nll,SA = 0, i = 2, 4,5,6,7. (B2.8) 

Also, it must be noted that by virtue of (B 2.6) the neutrino 
flux-vector is equal to n~1 and therefore constitutes a motion 
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of the neutrino energy-momentum tensor in accordance 
with the results of Audretsch and Graf. 12 

I The main results are included in the following papers: H. Michalski and 1. 
Wainwright, Gen. Relativ. Gravit. 6,289-31711975); 1. R. Ray and E. L. 
Thompson, 1. Math. Phys. 16, 345-34611975); 1. Wainwright and P. E. A. 
Yaremovicz, Gen. Relativ. Gravit. 7, 345-35911976); B. Coli, C. R. Acad. 
Sci. Paris 280A, /773-177611975); M. L. Woolley, 1. Phys. A 10, 2107-
211411977); C. Hoenselaers, Prog. Theor. Phys. 59,1518-152111978); Z. 
A. Shteingrad, SOy. Phys. Ookl. 23, 912-9/411978). 

2E. Newman and R. Penrose, 1. Math. Phys. 3, 566-57811962). 
3F. A. E. Pirani, in Lectures on General Relativity, 1964 Brandeis Summer 
Institute, Vol. I, edited by S. Oeser and K. Ford jPrentice Hall, Englewood 
Cliffs, N. 1.,1965). 

41. B. Griffiths and R. A. Newing, 1. Phys. A3, 269-273 11970). 
'1. B. Griffiths and R. A. Newing, 1. Phys. A4, 208-21311971). 
61. Wainwright, 1. Math. Phys. 12, 828-83511971). 
7 A Lie derivative of S A with respect to the vector field n~ satisfying the 
properties Ii) and Iii) is given by 
l' nS A 

= n~sA,~ + !In~,v - nv;" )(7VAXo'i,xs B. For a review about Lie dif­
ferentiation ofspinors one can consult the following papers: Y. Kosmann, 
Ann. Math. Pura Appl. XCI, 317-39511972); P. Spindel, C. Schomblond, 
and M. Henneaux, Bull. CI. Sci. Acad. R. Belg. LXIII, 179-18611977); V. 
Ihangianni, Found. Phys. 8, 445-462 (1978); 8, 593-60111978). 

"K. Yano, The Theory 0/ Lie-Derivatives and Its Applications INorth-Hol­
land, Amsterdam, 1955). 

OSee Ref. 3, pp. 350-351. 
IDE. Flaherty, "Hermitian and Kalherian Geometry in Relativity," in Lec­

ture Notes in Physics, edited by 1. Ehlers et al.ISpringer, New York, 19761, 
pp. 128 - 132. 

IIC. O. Collinson and P. B. Morris, Int. 1. Theor. Phys. 5, 293-30111972). 
121. Audretsch and W. Graf, Commun. Math. Phys. 19, 315-32611970). 
"V. A. Lubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, and V. S. 

Kosik, Phys. Lett. B94, 266-268 11980). 
141. B. Griffiths, 1. Phys. A12, 2429-2435 119791. 
"C. 1. Radford and A. H. Klotz, 1. Phys. A12 1205-/214 (1979); 12, 1215-

122111979). 
16M. Henneaux, Gen. Relativ. Gravit. 12,137-14711980). 
l7See Ref. 2, Eqs. 14.1a) and (2.12). 
'"See Ref. 2, Eqs. 14.4). Also see Ref. 10, Eqs. IVII-23), pp. 132-133. 
IOSee Ref. 3, p. 348, Eqs. 14.29) and (4.30). 
2"The neutrino flux-vector is proportional to the gradient of u and r is a 

parameter along the null geodesics to which the neutrino flux-vector is 
tangent. The two coordinates x andy label the null geodesics on each 
hypersurface u = constant. 

21A. Inomataand W. A. McKinley, Phys. Rev. 140, B1467-1473 11965). 
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The Melnick-Tabensky solutions have high symmetry 
w. B. Bonnor 
Department of Mathematics. Queen Elizabeth College. University of London. Campden Hill Road. London 
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M. A. H. MacCallum 
Department of Applied Mathematics. Queen Mary Col/ege. University of London. Mile End Road. London 
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(Received 31 March 1981; accepted for publication 26 June 1981) 

Melnick and Tabensky recently gave a class of static perfect fluid solutions of Einstein's equations 
in which the metric (in comoving coordinates) takes the conformastat form. In this paper we 
point out that all these solutions have spherical or plane or pseudospherical symmetry. 

PACS numbers: 04.20.Cv, 04.20.Jb 

Melnick and Tabenskyl gave a class of static solutions 
of Einstein's equations for perfect fluid in which the metric 
takes the conformastat form 

ds2 = e2<1>dt 2 _ e2t/J(dx2 + dy2 + dz2), (1) 

where t/> and rf; are functions of x, y, z. As they remark, their 
method requires no assumption about symmetry, and indeed 
their solutions, though evidently possessing axial symmetry, 
have no other obvious spatial symmetries. Moreover, there 
are special members of the class which apply to isolated bo­
dies, i.e., have a closed boundary at zero pressure. Thus Mel­
nick and Tabensky's solutions seem to offer the intriguing 
possibility of static bodies of perfect fluid which are not 
spherically symmetric. However, in this paper we shall show 
that the solutions have spherical symmetry (SS), or plane 
symmetry (PS), or pseudospherical symmetry (PSS). 

The class may be written 

t/> =t/> (u), u = (z + m)-I(x2 + y2 + Z2 - q), 
(2) 

e-t/J =e"'(z+m)a(u), 

where m, q are constants, and a and t/> are related by 

d
2

a =2a( dt/> )2. (3) 
du2 du 

The pressure p and density p can be obtained from the 
expressions 

Kp = je - 2t/J(2V2rf; + (Vrf;)2 + 2V2t/> + 2(Vt/> )2 + 2Vt/>·Vrf;), (4) 

Kp = - e - 2t/J(2V2rf; + (Vrf;)2), (5) 

where K is the gravitational constant in Einstein's equations 
(81T in the units of Ref. I). Equations (4) and (5) correct (3) 
and (4) of Ref. 1. Bothp andp are functions ofu only, so they 
satisfy an equation of state of the formp = lip). The 4-veloc­
ity of the fluid is 

showing that it is at rest in the coordinate system of (1). As 
the motion is shear-free and irrotational the solutions are 
among those discussed by Barnes. 2 

Given any two functions of u, a and t/>, not necessarily 
satisfying (3), a metric (I) subject to (2) has at least the four 
Killing vectors 

(I) 

Xi = b\y - b~x, 

(~ . 
Xi = 8; (y2 + Z2 - x 2 + 2mz + q) - 28~xy 

- 28~x(z + m), 
(3) 

Xi = - 28\ xy + 8~ (x2 + Z2 - y2 + 2mz + q) 

- 28~y(z + m), 

ill) 

where (Xl, x 2, x 3, X4)_(X, y, Z, t). Since the Xi (;.t = 1,2,3) 

span a two-plane at each point, the space-time must be local­
ly SS or PS or PSS. One can distinguish the different cases by 

Ii') 
considering the commutators of the Xi, but in order to facili-

tate identification of the solutions we shall exhibit explicitly 
a suitable coordinate transformation of (I). 

First write 

x = 0' cos /3, y = 0' sin /3, 
and define 1] by 

1] = 0' + 0'- I(Z2 + 2mz + q). 

Introducing now the differential du from (2) we can bring (I), 
subject to (2), to the form 

ds2 = e2<1>dt 2 _ e - 2"'a- 2X- 1 

where 

X: = (u + 2m)2 + 4(q - m2
), 

Y: = 1]2 + 4(m 2 
- q). 

In what follows we shall have to treat separately the 
three cases 

(6) 

and to save writing we shall denote these by (A), (B), and (C), 
respectively. 

Define e by 

{

2(m 2 - q)1/2cot e (A), 

1] - e -I (B), 

2(q_m 2
) 1I2coth e (C), 

which reduces (6) to 
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ds2 = e2"'dt 2 _ e - 2"'a- 2X- 1 

where 

and 

X [du2 + K -IX2(de 2 + I(e )d/3 2)], 

(A), (C), 

(B), 

(7) 

1= { Si~22 e ~~;: (8) 

sinh2 e (C). 

It is obvious from (7) and (8) that the metric has SS, PS, and 
PSS in cases (A), (B), and (C), respectively. 

We can put (7) into a spatially isotropic form if we intro­
duce a different radial coordinate r by 

dr _ _ (K) 1/2 du 

r (u + 2m)2 + 4(q - m2) 

which gives 

{

(K ) 1/2 coth(ln r) (A), 

u + 2m = (In r)-I (B), 

(K) 1/2 cot(lnr) (C). 

By this means we arrive finally at the metric 

ds2 = e2"'dt 2 _ e - 2<ha -2r-2g -2[dr + rIde 2 + I d/3 2)], (9) 

where 
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{

Sinh(ln r) (A), 

g = In r (B), 

sin(ln r) (C). 

Equation (3), which is the only restriction imposed by the 
field equations on ¢ and a, becomes, in the new coordinates, 

a" - 2a¢ ,2 + a'(2g'g-1 + r- I ) = 0, (10) 

where' means d /dr. 
The class of solutions of Melnick and Tabensky is there­

fore equivalent to a known class of static perfect fluid space­
times admitting a four-parameter group of motions, and in­
cluded in Barnes. 2 The PS and SS cases in this class are dis­
cussed in Sees. 13.6 and 14.1 of Ref. 3. [Note that Eq. (14.15) 
of Ref. 3, which is equivalent to (10), should say 

L d
2
G = 2G d

2
L 

dx2 dx2 

where for (9), x = r, L = grae4> and G = Le4>.J The vacuum 
solution given by Melnick and Tabenskyl is similarly equiva­
lent to the well-known plane symmetric vacuum solution of 
Taub [Ref. 3, Eq. (13.30)]. 

'J. Melnick and R. Tabensky, J. Math. Phys. 16,958 (1975). 
'A. Barnes, Gen. Relativ. Gravit. 4,105 (1973). 
'D. Kramer, H. Stephani, M. MacCaIIl!m, and E. Herlt, Exact solutions of 
Einstein'sfield equations (Deutscher Verlag d. W. Berlin and Cambridge 
V.P., Cambridge, 1980). 
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Manifestly covariant equations of motion for a particle in an external field 
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A relativistic variational principle for a particle in an external field is developed both in fiat 
spacetime and in curved spacetime. In fiat spacetime Kalman's equations follow from the 
variational principle, and their relationship to four-dimensional Euler-Lagrange equations is 
clarified. It is shown that Kalman's equations are uniquely defined and that they may be recast 
into a generalized Hamiltonian formalism. The equations of motion arising from the curved­
spacetime variational principle are shown to be uniquely defined. 

PACS numbers: 04.20.Fy, 03.50. - z 

I. INTRODUCTION 

In 1961, Kalman I presented a set of manifestly covar­
iant equations of motion for a particle in an external field in 
fiat spacetime. The equations were derived from a relativistic 
generalization of Hamilton's variational principle. Al­
though the procedure parallels the Lagrangian formalism, 
the resulting equations of motion do not have the form of the 
covariant Euler-Lagrange equations in which the usual time 
parameter is replaced by particle proper time. Kalman also 
showed that the equations of motion cannot be recast into a 
covariant form exactly analogous to Hamilton's equations. 
In this work, the above properties of Kalman's equations are 
examined further and the variational principle is extended to 
curved spacetime. The relationship between Kalman's equa­
tions and four-dimensional Euler-Lagrange equations is 
clarified, and it is shown that the former may be recast into a 
generalized Hamiltonian form using Dirac's constraint 
formalism. 2 • .1 

It is to be noted that Kalman's equations are oflimited 
applicability; they describe a particle interacting with an ex­
ternal field (i.e., a field independent of the particle position) 
and hence cannot describe a system of interacting particles. 
An extension of the formalism to include interacting parti­
cles would have to conform with the no-interaction theorem 
of Currie, Jordan, and Sudarshan4-8: A relativistically invar­
iant theory of interacting particles cannot simultaneously be 
a Hamiltonian theory and allow an invariant description of 
particle world lines. Although the problem of extending the 
formalism is not considered here, it is anticipated that Kal­
man's equations may form a suitable starting point for the 
construction of a relativistic theory of interacting particles.9 

In Sec. II, the action integral is parametrized in terms of 
an arbitrary function. One choice of parameter (particle 
proper time) leads of Kalman's equations whilst another 
choice leads to Euler-Lagrange equations. These two sets of 
equations are, of course, equivalent and this is demonstrated 
explicitly. It is shown, however, that the two choices ofpa­
rameter cannot be held simultaneously; hence the Euler­
Lagrange equations cannot be parametrized in particle prop­
er time. In Sec. III, it is shown that the latter equations (para­
metrized in particle proper time) are not even well defined: 
The source of ambiguity is the relativistic constraint on the 
particle 4-velocity components. Kalman's equations are 
shown to be unambiguously defined despite this constraint. 

In Sec. IV, the constraint is taken into account in the con­
struction of a generalized Hamiltonian formalism. Finally, 
the variational principle is developed for curved spacetime in 
Sec. V, and it is shown that the resulting equations of motion 
are uniquely defined. 

II. VARIATIONAL PRINCIPLE IN FLAT SPACETIME 

Consider a particle interacting with an external field in 
fiat spacetime. In Ref. 1, the particle trajectory is parame­
trized in particle proper time. In the following calculations, 
an arbitrary parametrization is considered. The scalar action 
functional for the particle-field interaction is taken to have a 
form analogous to that of nonrelativistic action 
functionals: 10 

S = ff(x,i) dJ.' , (1 ) 

where the integral is over the trajectory x(J. ). In (1), a and b 
are arbitrary points on the trajectory and i = dx/dJ.. The 
first variation in S is obtained II by comparing (1) with a simi­
lar integral over a curve x'(J. ') lying in the vicinity of the 
trajectory x(J. ). Thus, 

S+8S= ff(X',i')dJ.', (2) 

where 

x' = x + ox 

J.' =J. + oJ.; (3) 

the variations ox and oJ. are infinitesimal and the ox are arbi­
trary but vanish at the end points of integration. 12 From (3), 
the corresponding variation in i k satisfies 

':?'_',k 'k_ d(.:?k) 'k d (.:?,) uX=X -x - -uX -x -U/l. • 

dJ. dJ. 

Equations (1 )-( 4) yield the first variation in the action 13 

oS = J(Of) dJ. + Jfo(dJ.) 

= J( af OXk + af ~(8Xk)) dJ. 
axk aik dJ. 

+ J (t - i
k 
:;) d (oJ. ). 

(4) 

(5) 

The required equations of motion are obtained from (5) 
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by setting oS equal to zero. Evidently, the form of the equa­
tions depends on the choice of parameter A.. Below, two pos­
sible choices are considered. The first is to equate A. with 
particle proper time, and this leads (as in Ref. 1) to Kalman's 
equations of motion. Alternatively, A. may be defined in such 
a way that Euler-Lagrange equations follow from (5). 

Consider the choice that A. is the particle proper time, 
i.e., d,,1, = ds, where the line element takes the Minkowski 
form 14 

ds2 = 171m dx' dxm (6) 

in Lorentzian coordinates. Then, the action integral of (1) 
takes the form 

S = ff(X,U) ds, (7) 

wheref(x, U) is a scalar function and Uis the particle 4-veloc­
ity. From (6), 

~(8s) = Uk ~(OXk); (8) 
ds ds 

hence (5), after a partial integration, yields 

OS=f{ af - ~[~+ U(f- U I ~)]}OxkdS 
axk ds auk k \ aul 

+ [ ~+ U {f- VI ~)]oxklb (9) 
auk k\ aUI Q' 

Setting oS equal to zero then yields Kalman's manifestly 
covariant equations 15 of Ref. 1: 

af = ~[ af + U (f _ u l af )] (10) 
axk ds auk k\ au " 

In the Appendix, it is shown that the 4-vector in square 
brackets on the right side of (10) is minus the covariant 4-
momentum, and that (10) reduce to Lagrange's equations in 
a given coordinate system. 

In the second choice of parameter, A. is the analog of 
the time parameter in nonrelativistic action principles: The 
same A. parametrizes both the trajectory and its neighbor, 
hence A. = A. / and 0,,1, in (3) vanishes. Then, (1) takes the 
form II> 

S = fl (x,x) d"1,, (11) 

and (5) (with oS = 0) yields Euler-Lagrange equations in the 
parameter A.: 

al d (al ) 
axk = d,,1, axk . 

(12) 

It is sometimes claimed 17 that A. in (12) may be chosen to be 
particle proper time. In that case, (12) would reduce [after 
equating I and fin (11) and (7)] to the form of (10) without the 
term Uk (f - u l af /aU I), i.e., to Euler-Lagrange equa­
tions in the proper time. This claim is erroneous, however, 
since the condition Os = 0 is incompatible with (8). 

Equations (10) and (12), arising for the same action, 
must be equivalent. This may be shown explicitly by relating 
the integrands of (11) and (7): 

I (x,x) =f(x,U) ~, (13) 
d,,1, 
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where, from (6), 

ds _ ( '1 .m)1/2 
d,,1, - 171m X X . (14) 

Equations (13) and (14) imply that the differentiated expres­
sion on the right side of (12) is 

.!!... = af + U (/_ U I af ) (15) 
axk auk k\ aul . 

Finally, (13)-(15) reduce (12) to the form of(IO). 
In conclusion, Kalman's equations (10) are equivalent 

to (12), but the parameter in the latter cannot be the particle 
proper time. Indeed, A. in (12) may be chosen to be non scalar , 
but then (12) would not be manifestly covariant. These re­
sults may prove useful in the construction of a theory of 
interacting particles which aims to avoid the world line con­
dition in the above-mentioned no-interaction theorem. 

III. UNIQUENESS OF KALMAN'S EQUATIONS 

The action integral (7) yields Kalman's equations (10), 
not the Euler-Lagrange equations in particle proper time 
[which, as noted above, take the form of (10) without the 
term Udf - u'af /aU I). The latter equations could be re­
jected solely from inspection of their form: From (6), the 
components of the 4-velocity are related to one another by 
the constraint 

(16) 

hence the partial derivations (af /aU k) are not well defined. 
At first sight, it appears that (10) suffer from this defect 

since they also contain partial derivatives of the form 
(af /aU k). The constraint (16) could generate ambiguities in 
(10) in two distinct ways: First, givenf(x, U), the derivatives 
(af / au k ) are ambiguous because one may choose arbitrarily 
which of the components of U is the dependent variable. 
Second, (16) allows some arbitrariness in the actual function­
al dependence offon U. In the discussion below, these possi­
ble sources o~ ambiguity of Eqs. (10) are examined in turn, 
and it is shown that Kalman's equations are uniquely de­
fined despite the constraint (16).IH 

From (16), one may express any particular 4-velocity 
component UP in terms of the other three components Uoint­
ly labelled uq): 

UP = UP(uq), q=/=p. (17) 

The functionf(x,U) may then be written as a function inde­
pendent of UP: 

( 18) 

(The prime indicates a differing dependence on uP,uq.) 
Thus, the constraint (16) induces the identity transformation 
f-+J' of (18). Under this transformation, the partial deriva­
tions (aJ'/aU k) satisfy 

(£)=0, 
aup 

( aJ') (Jf) Uq ( Jf) 
Juq = Juq - Up JUP' 

(19) 

where (16) is used to evaluate (JUP /Juq). Equations (18) and 
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(19) then yield the invariance of the 4-momentum in (10) 
under the transformationf-I': 

af + u (f- Ul af ) auk k aul 

= al' + u (I' _ u I al'). 
auk k aul (20) 

Thus, (10) are invariant under the transformation of (18), 
even though the individual partial derivatives (af laUk) 
[which transform according to (19)] are not uniquely 
defined. 

The remaining possible source of ambiguity in (10) is the 
freedom in functional dependence off on U allowed by an­
other identity transformationf-]' where 

fIx, U) = J(x, u,s ), 
s = 111m ulu m = 1. (21) 

From (21), the derivatives (aJ laUk) satisfy 

( aJ )=(..!L)+2U (dJ ) auk auk k ds . (22) 

Equations (16), (21), and (22) show that the 4-momentum in 
(10) is invariant under the transformationf-J Thus, (10) 
themselves are invariant under this transformation. 

The two possible sources of ambiguity in (10) are repre­
sented by the identity transformations (18) and (21). Kal­
man's equations (10) are uniquely defined since they are in­
variant under each of these transformations. The Euler­
Lagrange equations in proper time are ambiguously defined 
since, from (19) and (22), they are not invariant under either 
of the transformations. This ambiguity reflects the impossi­
bility of equating the parameter A in (12) with particle proper 
time. 

Although the Euler-Lagrange equations in particle 
proper time are incorrect, they can be used in certain cases 17 

to yield equations of motion identical with Kalman's equa­
tions. Consider, for example, a free particle of mass m. Then, 

f= -m (23) 

in (7) and Eqs. ( 10) yield the constancy of 4-momentum m U. 
This result may also be obtained from the Euler-Lagrange 
equations in proper time after an appropriate identity trans­
formation of the type (21). In case of a particle of charge e in 
an electromagnetic field,fin (7) takes the form 

f = - m - eAdx)U k
• (24) 

Since the particle-field interaction term inf does not contrib­
ute to Uk(f - ulaf laU I

) in (10), it follows that the Euler­
Lagrange equations in proper time may, after a suitable 
transformation of the type (21), yield the correct equations of 
motion. 

IV. GENERALIZED HAMILTONIAN FORMALISM 

The particle-field 4-momentum P arising from the ac­
tion integral (7) and appearing on the right-hand side of (10) 
satisfies 

(25) 
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Pis therefore a function of the coordinates x and the 4-veloc­
ity U: 

Pk = Pdx,U). (26) 

The components Pk are not independent of each other, and 
this may be shown as follows. First, suppose that the rela­
tions (26) are invertible for U, i.e., the components Uk may be 
expressed 

Uk = Udx,P). 

The constraint (16) then yields the scalar equation 

¢J (x,P) = 0, 

(27) 

(28) 

hence the components of P are interdependent. If, however, 
the components of U cannot be expressed as in (27), then the 
functions Pk in (26) are linearly dependent and this implies3 

that one or more scalar equations of the form (28) hold. 
In Ref. 1, Kalman showed that one cannot consistently 

recast Eqs. (10) into a covariant form exactly analogous to 
Hamilton's equations, i.e., the equations 

aH dPm af? 
--, 

axm ds axm 

aH = urn 
aPm ' 

H-H(x,P), (29) 

are not self-consistent. This result is not surprising since the 
components of P are interdependent and hence the second of 
(29) are ambiguously defined. 

If the requirement of an exact analog is dropped, (10) 
can be recast into a generalized Hamiltonian form2

•
3 which 

takes into account the constraints on P. As noted above, 
these constraints are expressed by one or more scalar equa­
tions of the form (28). For simplicity, it is taken here that 
there is only one such constraining equation (the generaliza­
tion to several equations is trivial). From (10), (25), and (16), 
an infinitesimal variation inf(x,U) satisfies 

8f= (30) 

Equations (30) and (28), with a suitable scalar multiplier 11, 
then yield the manifestly con variant generalized Hamilton­
ian equations 

(31) 

[The vanishing ofG in the last of(31) follows from (25) and 
( 16).] These equations may be shown to be well defined, de­
spite the constraint (28) on components of P, by an argument 
similar to that in Sec. III above. 

Equations (31) are designated "generalized Hamilton­
ian equations" for the following reasons: First, they do not 
have a form exactly analogous to Hamilton's equations; in­
deed, the latter, i.e., Eqs. (29), are not self-consistent. Second, 
Gin (31) should not be confused with the Hamiltonian H; the 
function G is a scalar while H is given by the time compo-
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nent of the 4-momentum P of Eqs. (25) [see Eqs. (AlO)]. 
To illustrate the formalism, consider the following sim­

ple examples. First, the functionJfor a charged particle in an 
electromagnetic field satisfies (24), and (25) yields 

Pk = m Uk + eA k. 

Since this equation is invertible for U, there is only one con­
straint equation of the form of (28): 

¢(x,P)=pkPk +e2AkAk -2ep kA k _m2 =0. 

The second of (31) then shows that J.L = (2m) - 1 and this re­
sult in the first of (31) yields the equations of motion (a com­
ma below denotes partial derivatives) 

dPk I 
--=eA kUl' 

ds . 

[The latter, of course, also follow directly from (lO), (24) and 
(25).] Consider now the case of a scalar interaction 

J= 1/'(x). 

Equations (25) and (10) then yield 

Pk = - 1/'Uk , 

d 
1/' k = -(1/'Uk ), 

. ds 

(32) 

respectively. The latter equations of motion may also be ob­
tained from (31), for which 

¢ (x,P) = 1/'2 - pkPk = 0, 

andJ.L = (21/')-1. 

V. VARIATIONAL PRINCIPLE IN CURVED SPACETIME 

In this section, the variational principle is developed in 
a covariant form for the action integral (7) in curved space­
time. Suppose the particle interacts with a single tensorial 
field B (x) (the generalization of the following analysis to in­
teraction with several fields is trivial). Then, the action inte­
gral takes the form 

s= fJ(B(X),U)dS, 

where the line element satisfies 

(33) 

ds2 =glm dx'dx m
, (34) 

and the glm are components of the symmetric metric tensor. 
As in Sec. II, the coordinates x of the trajectory are 

related to those of a neighboring curve by the first of (3). 
Note, however, that the differential expression 

dx' =dx +dox (35) 

shows that dox is not a vector, since the vectors dx and dx' 
are located at different points in curved spacetime. One may 
define 8dx to be the vector difference between dx' at x + 8x 
and the vector dx + Oil dx, which is the parallel transport of 
dx from x to x + 8x: 

8 dx=dx' - (dx + Oil dx). (36) 

Equations (35) and (36) yield 

(j dxm = d8xm + r;:, dx'8xn
, (37) 

where the r;:, are the affine connection coefficients. The 
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notation of (36) may be extended to any tensor Q; denoting 
quantities measured at x + 8x with a prime, the variation 

(38) 

has the same tensorial character as does Q itself. (In the case 
that Q is a scalar, 8Q reduces to the fiat spacetime variation.) 
This notation is now employed in the development of the 
general-relativistic variational principle. 

From (33), the first variation in the action is 

8S = f(8/) ds + f.tO ds. (39) 

Consider the form of the integrands in (39). The first of these 
satisfies 19 

8/= a/ (B III - BlJl ) + aim (U' m - um). (40) 
aBlJl au 

Although 8/is a scalar, the right side of (40) is not manifestly 
scalar since each of the contributions in parenthesis is the 
difference between a quantity measured on the neighboring 
curve and its counterpart measured on the trajectory. Clear­
ly, it is necessary to recast (4O) into a manifestly scalar form 
in order to obtain manifestly covariant equations of motion 
from (39). To accomplish this, note that since/is scalar, its 
parallel transport from x to x + 8x vanishes: 

a/ a/ m 8 11 / = - 8 11 BUl + --m 8 11 U = O. (41) 
aBU) au 

Equations (40) and (41) yield the manifestly scalar expression 

8/= ~B(~ + ~um. (42) 
aB

lJl 
1 aUm 

From (38), the term 8BIJl is related to the covariant deriva­
tives of the field BUl : 

8B(j) = BlJl:m 8xm. (43) 

The term 8U m in (42) is, from (38) and (37), 

Dum = !!...oxm _ um d8s + r7:, U'8x". 
ds ds 

(44) 

Equations (42)-(44) express the first integrand of (39) in a 
manifestly covariant form. In the remaining integrand, the 
term 8 ds is reduced by (34) and (38) t020 

I m£ k U d8x
k 

8ds = d8s = 10'Im k U U uX + k --. 
~ . ds (45) 

Equations (39) with (42)-(45) reduce, after a partial inte­
gration, to 

8S = fdS ( a/ BUJ:k + Pk:1 U
I \J\Xk _ Pk 8xk I b , 

aBlJl r a 

Pk = - [/tk + Uk(t- U
I ab')]' (46) 

Thus, the particle-field momentum components P k are given 
by the same expressions in fiat spacetime [Eqs. (25)] and in 
the presence of a gravitational field. The condition that 8S in 
(46) vanishes for the trajectory yields the manifestly covar­
iant equations of motion 

(47) 
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Equations (47), with the last of (46) for P k' are the generaliza­
tion of Kalman's equations (10) to curved spacetime for a 
particle-tensor field interaction. In the case thatf depends on 
several tensor fields B S(x) the first term in (47) is replaced by 
a summation over S of the corresponding contributions from 
each field: 

L a~ BtJ1;k +Pk;,U'=O. 
s aB IJ1 

(4S) 

In Sec. III above, it is shown that in flat spacetime, 
Kalman's equations are well defined despite the constraint 
(16) on the 4-velocity components. This result is now ex­
tended to curved spacetime, for which the constraint takes 
the form 

g'm U'U m 
= 1. (49) 

As in Sec. III, the constraint may possibly lead to ambigu­
ities in the equations of motion in two distinct ways. The first 
of these is represented by the identity transformationf-/' of 
(IS). Under this transformation, (19) and (20) remain valid 
and hence (4S) are invariant. The remaining possible source 
of ambiguity is represented by the identity transformation 
f-iwhere (21) is replaced by 

fIB S(x), U) = i(B S(x), u,s ), 
(50) 

Equation (22) remains valid, hence Pk in the second of(46) is 
invariant under the transformationf-l The equations of 
motion (4S) then remain invariant since the covariant deriva­
tive of the metric tensor is identically zero. 

It follows that both the 4-momentum P and the equa­
tions of motion (4S) are well defined despite the constraint 
(49). 

VI. CONCLUSION 

The action integral (7), for a particle in an external field, 
leads to Kalman's manifestly covariant equations of motion 
(10) in flat spacetime. It is shown in this work that (10) have 
the following properties: 

(i) They are equivalent to Euler-Lagrange equations, 
(12), in which the parameter A. cannot be particle proper 
time. 

(ii) They are well defined despite the relativistic con­
straint (16) on the particle 4-velocity. 

(iii) They can be recast into a generalized Hamiltonian 
formalism. 

The variational principle for the action integral (7) is 
readily generalized to curved spactime, and it leads to equa­
tions of motion (4S) for particle-tensor field interactions. 

In future work, the formalism could be extended in two 
directions. First, as noted in Sec. II above, Kalman's equa­
tions recast into the form of (12) with a nonscalar A. may form 
a starting point for the construction of a relativistic theory of 
interacting particles. Finally, it would be interesting to con­
struct a manifestly covariant Hamilton-Jacobi formalism 
based on Eqs. (31) above, and to study the transition from 
classical mechanics to quantum mechanics. In this way, it 
may be possible to deduce a covariant correspondence prin­
ciple for the transition. 
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APPENDIX: PARTICLE-FIELD 4-MOMENTUM 

The covariant component Pk of the particle-field 4-mo­
mentum corresponding to the action integral (7) is defined21 

(AI) 

where right side of (A I) is evaluated on the particle trajec­
tory. Thus, I (AI) and (9) yield 

Pk =-[ af +Uk(f- U' a
f

)]. (A2) 
auk au' 

To demonstrate that the Pk in (A2) constitute the 4-
momentum, consider the action integral (7) expressed in a 
specific Lorentzian coordinate system: 

(A3) 

where L is the Lagrangian. A comparison of the integrands 
of (7) and (A3) yields 

f= UOL; (A4) 

hence (A2) takes the form 

Pk = - U --- UkU -- -Lok. o( aL , aL ) C'O 

auk au' 
(AS) 

[Note that Sec. III shows that the right side of (AS) is well 
defined despite the constraint (16).] 

To evaluate (AS), it is convenient to define the 3-veloc­
ity components 

va = dx
a 

dt 
(A6) 

in the specific coordinate system. From (6), the components 
of U are related to the 3-velocity components 

UO = (I + 1Jap VaVP)-1/2, 

ua = vauO (A7) 

Thus, the partial derivatives (a if /aJlf3) satisfy 

auo = UPU o' 
avP , 

au
a 

= UO(~a + UaUP). 
avP P 

(AS) 

Equations (AS) and (6) yield the partial derivations of L with 
respect to the 3-velocity components 

aL = uo( aL _ U u' aL) 
avP auP P au" 

v P aL = _ UO ( aL _ u. u' aL ). (A9) 
avp auo 0 au' 

Finally, (A9) reduce (AS) to the form 

P aL Po= V ---L=H, 
avP 

aL P = a (A 10) -Pa' 
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where Hand Pa are the Hamiltonian and a component of 
the conjugate 3-momentum, respectivley. Thus, the Pk of 
(AS) are the covariant components of 4-momentum. 

In the specific Lorentzian coordinate system employed 
above, (A4) reduces Kalman's equations (10) to the form 

JL dPk 

Jxk= -dr' (All) 

Equations (A 10) show that (A 11) are Lagrange's equations of 
motion. 
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In parametrized field theories, spacelike hypersurfaces and fields which they carry are evolved by 
a Hamiltonian which is a linear combination of the super-Hamiltonian and supermomentum 
constraints. We say that a dynamical variable K generates a conditional symmetry of the 
Hamiltonian when it is linear both in the hypersurface and the field momenta and its Poisson 
bracket with the Hamiltonian vanishes by virtue of the constraints. Generators are classified by 
their dependence on the momenta: P-restricted generators depend only on the hypersurface 
momenta, 1T-restricted generators depend only on the field momenta, while mixed generators 
depend on both kinds of momenta. Conditional symmetries in a parametrized Hamiltonian 
theory are then linked either with ordinary symmetries (isometries, conformal motions, or 
homothetic motions) of the spacetime background, or with internal symmetries of the fields. In 
particular, we prove that a generic field with nonderivative gravitational coupling and a quadratic 
energy density has a P-restricted conditional symmetry if and only if the spacetime background 
has a Killing vector, while a field with a trace-free energy-momentum tensor has a P-restricted 
conditional symmetry if and only ifthe background has a conformal Killing vector. An algorithm 
allowing us to enumerate all possible mixed conditional symmetries in a given parametrized field 
theory is explained on an example of the Klein-Gordon field. These results complement our 
previous proofthat canonical geometrodynamics does not possess any conditional symmetry. 

PACS numbers: 04.20.Fy, 11.10.Ef 

1. MOTIVATION 

In general relativity, one often studies fields which 
evolve on a given spacetime background. The fields are de­
scribed by the canonical data if> A (x), 1TA (x), which are de­
fined on a spacelike hypersurface X a(x). As the hypersurface 
is deformed in the embedding spacetime, the dynamics of the 
data is generated by a field Hamiltonian. By a process known 
as parametrization, it is possible to treat the hypersurface 
variables X a(x) as canonical coordinates and to generate the 
deformation of the hypersurface by a Hamiltonian. The total 
Hamiltonian of the system is composed from the hypersur­
face part and the field part. 

The resulting formalism closely resembles Hamiltonian 
geometrodynamics. There, as in parametrized field theories, 
the total Hamiltonian is a linear combination of a super­
Hamiltonian and a supermomentum. The super-Hamilton­
ian and supermomentum are constrained to vanish. More­
over, their Poisson brackets close in a characteristic way, 
which is the same for all systems, be they matter fields or 
geometry. The main difference between geometrodynamics 
and parametrized field theories is in the role played by hy­
persurface variables. In geometrodynamics, these variables 
are inextricably mixed with the dynamical data. In parame­
trized field theories, they are kept clearly separated from the 
field variables. This difference is reflected in the structure of 
the constraints. The geometrodynamical super-Hamiltonian 
is a hyperbolic function of the momenta, while the super­
Hamiltonian of a parametrized field theory is parabolic in 
the momenta, being linear in the hypersurface momenta and 
quadratic in the field momenta. The separation of hyper sur­
face variables makes parametrized theories much easier to 
interpret than geometrodynamics. They are thus an ideal 
testing ground for concepts proposed in geometrodynamics. 

The concept we want to discuss in this paper is that of a 
symmetry of dynamical evolution. For unconstrained dyna­
mical systems, the definition of symmetry is straightfor­
ward. We say that a dynamical variable K generates a sym­
metry if it is linear in the canonical momenta and has a 
vanishing Poisson bracket with the Hamiltonian H of the 
system. However, the presence of constraints creates com­
plications. Symmetry may be conditioned by constraints, be­
cause the Poisson bracket [K, H) may vanish only for such 
values of the canonical variables which satisfy the con­
straints. A constrained system may have a conditional sym­
metry even ifit does not have any unconditional symmetry. 

In parametrized theories and in geometrodynamics, all 
the dynamics is reducible to constraints. The Hamiltonian 
which generates the evolution of the system is itself a linear 
combination of the constraints. We shall study conditional 
symmetry in this extreme context. 

We have already concluded that geometrodynamics 
does not have any conditional symmetry. I It is rather diffi­
cult to see what this negative result means from a spacetime 
viewpoint. In geometrodynamics, the presence or absence of 
a conditional symmetry is a property of superspace, not a 
property of spacetimes generated by the evolution of a spa­
tial geometry in superspace. The situation is quite different 
when viewed within the framework of parametrized field 
theories. First, these theories may have conditional symme­
tries. Second, such symmetries are easily linked either with 
ordinary symmetries of the spacetime background or with 
internal symmetries of the fields. Our aim is to clarify the 
meaning and significance of conditional symmetries by 
spelling out such links in detail. 

The study of conditional symmetry is important for ca-
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nonical quantization. The hyperbolic super-Hamiltonian in 
geometrodynamics leads to a Klein-Gordon type equation 
for the state functional. The lack of a conditional symmetry 
means that superspace equipped by DeWitt's metric does 
not have a conformal Killing vector which would scale the 
scalar curvature potential in a prescribed way. The absence 
of such a vector has serious repercussions. The standard 
complexification of the space of solutions of a Klein-Gor­
don equation and the construction of a positive definite inner 
product fails and a one-system interpretation of quantum 
geometrodynamics is hard to maintain. In parametrized 
field theories, the situation is less serious. A parabolic super­
Hamiltonian leads to a Schrodinger type equation for quan­
tum fields propagating in a curved spacetime. A positive 
definite inner product can thus be formally defined even if 
the theory does not have a conditional symmetry. Still, the 
symmetry of the background is needed to select a privileged 
observer and escape thus the well-known ambiguities of an 
"observer-dependent" quantum field theory. The links 
between a symmetry of the background and a conditional 
symmetry of the super-Hamiltonian provide a framework 
for fixing the observer in the canonical formalism. 

2. PARAMETRIZED FIELD THEORIES 

We shall briefly explain the basic scheme of para me­
trized field theories. We state relevant results without proofs 
and refer to our earlier papers2 for details. We quote the 
sections and equations from these papers by prefixing them 
by the Roman numerals I to IV. A general theory of parame­
trized fields is rather cumbersome. We thus prefer to restrict 
ourselves to fields with nonderivative gravitational coupling. 

A. Lapse-shift decomposition 

We start by cutting the spacetime by an arbitrary space­
like hypersurface X U = X U(xa). The Latin indices always 
run through the values 1,2,3 and the Greek indices through 
the values 0, 1 ,2,3. At each point of the hypersurface, we have 
the basis consisting of the three tangent vectors X ~ X u.a to 
the hypersurface and of the unit normal vector nU

, 

gu/3 X~ n/3 = 0, gu/3 nUn/3 = - 1. (2.1) 

To describe a continuous deformation of the hypersurface in 
the embedding spacetime, we incorporate it into a one-pa­
rameter family of hyper surfaces xa = XU(xa, t). We intro­
duce the deformation vector 

(2.2) 

connecting the points with the same label x a on two neigh­
boring hypersurfaces. The components Nand Na of the de­
formation vector with respect to the basis [n U

, X ~], 

N U = NnU + Nax~, 
(2.3) 

N= -Nunu ' Na=Nux~, 

are called the lapse function and the shift vector. 

B. Field projections 

To follow the dynamics of an arbitrary tensor field, we 
project that field perpendicular and parallel to the hypersur-
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face and observe how these projections change when the hy­
persurface is deformed through spacetime. The projections 
of a vector field follow the pattern (2.3), 

ifJ U = ifJ 1 nU + ifJ a X ~, (2.4) 

ifJ l(X)[X 1 = - ifJ U(X (x))nu (x)[X ], 
(2.5) 

r(x)[X 1 = ifJ U(X (x))X ~ (x). 

They are considered as functions (x) of the labelsxa and func­
tionals [X] of the embedding X U(xa

). As a rule, we suppress 
the indices in arguments of functions and functionals. 

The projection formulas (2.4)-(2.5) are easily general­
ized to tensors of an arbitrary rank. Thus, for a second rank 
tensor ifJ a/3, 

ifJ u/3 = ifJ Hnan/3 + ifJ alx ~ n/3 

+ ifJ 1bnax~ + rbX~ X~, (2.6) 

ifJ 11 = ( - 1)2ifJ a/3nan/3' ifJ al = ( - l)ifJ u/3X~ n/3' 
(2.7) 

ifJ lb = ( - l)ifJ a/3na X%, ifJ ab d. ifJ a/3X~ X%. 

We shall label by capital Latin indices all possible pro­

jections of a tensor field ifJ lal=ifJ a, ... aN(X) or of a collection 
of such fields. Thus, ifJ A may mean 
ifJ A = ! ifJ \ifJ a;ifJ 11,ifJ al,ifJ 1b,ifJ ab ]. 

C. Normal and tangential changes 

The rate of change J,ifJ A of ifJ A with the label time t can 
be decomposed into the normal change DNifJ A and the tan­
gential change DN ifJ A: 

(p A =J,ifJ A (x) = DNifJ A (x) + DNifJ A (x), (2.8) 

DNifJA(X) = Jd 3x' N(x')na'(x') DifJ A (X) , (2.9) 
Dxa'(X') 

DNifJ A (X) = Jd 3x' Na'(x')Xa:(x') DifJA,(X) =L A,A(X). 
a Dxa(X') N'I' 

(2.10) 

The tangential change is always equal to the Lie derivative 
LN of the spatial tensor ifJ A (x) along the shift vector N a. 

There are four different projections of the spacetime 
covariant derivative ifJ a;/3 of a spacetime vector field ifJ a(x). 
Two of these3 refer only to a single spacelike hypersurface, 

ifJ l;b = ifJ l.b - K ~ifJ c, 
(2.11) 

ifJa;b = ifJalb _ KabifJ 1. 

Here, the vertical stroke denotes the spatial covariant deri­
vative with respect to the induced metric gab' and Kab is the 
extrinsic curvature of the hypersurface. The remaining two 
projections,4 

NifJ1;1 = - DNifJ l - ifJaN.a, 
(2.12) 

NifJa;l = - DNifJ a + K~ifJbN - ifJ W,a, 

can be used to calculate the change of the field off the hyper­
surface. Similar formulas can be written for tensor fields of 
an arbitrary rank. 5 In particular, we get 

DN gab = - 2NKab , DN gIl2 = - Ng Il2K (2.13) 

for the metric tensor. 6 Equations (2.13) help us to pass freely 
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between the covariant and contravariant and tensor and ten­
sor density forms of the projected equations. 

D. Reconstruction theorem 

We say that the deformation N a = Nna is a hypersur­
face tilt at a point x if N (x) = O. The tilts leave the spacetime 
point X a = X a(x) fixed. 7 The projections ¢ 1,¢ a at x change 
under hypersurface tilts according to the rules 

tJN¢l=rN.a' tJN¢a= _¢IN·a. (2.14) 

Our strategy was to start from a given spacetime field 
[say, ¢ a(x)] and project it 1 and II to a hypersurface [Eqs. 
(2.5)]. We shall ask now an inverse question, namely, under 
what conditions can some given functionals ¢ l(X)[X] and 
¢ a(x) [X] of X a(x) be interpreted as the 1 and II projections 
(2.5) ofa single spacetime vector field ¢ a(x) restricted to the 
hypersurface X a = X a(x). The answer to this question is 
given by Eqs. (2.10) and (2.14): The functionals ¢ l(X)[X] 
and ¢ a(x)[X] can be reassembled into a spacetime vector 
field (2.4) if and only if they behave properly under hypersur­
face shifts [Eq. (2.10)] and hypersurface tilts [Eq. (2.14)]. We 
shall call this statement the reconstruction theorem. Its gen­
eralization to arbitrary tensor fields is obvious. 

E. Killing fields 

Besides dynamical fields ¢ I a J, the Killing vector fields 
k a(x) playa prominent role in any study of symmetry. 
Equations (2.11) and (2.12) help us to project the Killing 
tensor k(a;/3)=k a;/3 + kP;a, 

k (a;b) = k (alb) - 2K abk 1, 

Nk(a;l) = -tJNka+k1.aN_k1N·a, 

Nk (1;1) = _ 2tJNk 1 - 2k aN,a' 

(2,15) 

(2,16) 

(2,17) 

They also help us to obtain a projected version of other dif­
ferential operators. When dealing with conserved currents, 
we shall need to project the divergence equations: 

14glKa;a =tJN(gl/ZK 1) + (Ng1/ZKa).a' (2.18) 

F. Hamiltonian field theories 

The dynamics of tensor fields follows from the field ac-
tion 

(2.19) 

The field Lagrangian L is a scalar density constructed from 
the field ¢ I a J, its first derivatives ¢ I a I, P' and the metric ten­
sor gaP' For fields with nonderivative gravitational coupling, 
the derivatives of the metric tensor do not enter the Lagran­
gian. The field ¢ I a I (X) is varied to yield the field equations 
while the metric gaP (X ) is kept as a prescribed function of 
X a. By varying the metric, we obtain the energy-momen­
tum tensor of the field9 

(2.20) 

The Hamiltonian form of the action is derived by the 
projection process followed by the Legendre dual transfor-
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mation. First, the Lagrangian is expressed as a function of 
the projected variables N, Na, gab' ¢ A and of the derivatives 
~ A along a given one-parameter family X a = X a(xa, t ) of 
spacelike hypersurfaces. \0 Differentiating the hypersurface 
Lagrangian with respect to ~ A, we obtain the hypersurface 
momenta 1T A' The action is then cast into a Hamiltonian 
form ll 

S [¢A, 1TA ] = f dt f d3X(1TA~A - NH'" - NaH:). (2.21) 

Here, the lapse and the shift functions are treated as given 
functions of x a and t, and the metric gab (X) [ X, ] as a given 
functional of X a(x, t), 

gab(X)[X,] =gap(X)X~xtlx~x(x,,)· (2.22) 

The field Hamiltonian 

Ht + H~ = f d 3x(N(x)H"'(x) + Na(x)H:(x)) (2.23) 

is a linear combination of the field energy density H"'(x) and 
the field momentum density H:(x), 

(2.24) 

Both densities are measured by an observer moving 1 to the 
hypersurface. The field energy is constructed from the varia­
bles ¢ A' ~, and gab (X), the field momentum only from the 
canonical variables ¢A and~. Neither of these expressions 
contains Nand Na. The field Hamiltonian (2.23) is obtained 
by smearing H"'(x) by N(x) and H:(x) by Na(x). 

The energy density H'" contains all the information 
about the stress tensor Tab (Ref. 12): 

gl/ZTab = _ 2 JH"'. (2.25) 
Jgab 

This equation follows from Eq. (2.20); notice that the only 
term in the action (2.21) which depends on gab is H "'. 

The field evolves according to the Hamilton equations 

~A(X) = [¢A(x),HN +HN ], 
(2.26) 

1TA(X) = [1TA(X),HN +HN ]· 

Recalling Eqs. (2.9) and (2.23), we can split Eqs. (2.26) into 
the lapse and the shift parts, 

tJN¢A(X) = [¢A(x),HN ], tJN1TA(X) = [1TA(X),HN], (2.27) 

and 

tJN¢A(X) = [¢A(x),HN ], tJN1TA(X) = [1TA(X),HN ]. (2.28) 

Because the left-hand sides ofEqs. (2.28) must reproduce the 
spatial Lie derivatives of the canonical variables, Eqs. (2.28) 
determine the field momentum: 

HN = f d 3x1TA(X)LN¢A(X) 

[ = - f d 3x¢A(X)LN1TA(X)]. (2.29) 

As an example, we write the field momentum of a scalar field 
and a vector field 13: 

H: = 1T¢.a' 

H: = r¢l.a + 1Tb¢b,a + (1Ta¢bl.b' 
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G. Model field theories 

We shall give now a few typical examples offield theor­
ies with nonderivative gravitational coupling. First, study a 
scalar field with the Lagrangian 

L = 14gll/2( - !U(¢) gaf3¢,a¢,f3 - W(¢ j), (2.32) 

where U #0 and Ware two arbitrary functions of ¢. The 
expression (2.32) is the most general scalar density which can 
be formed from the variables gaf3' ¢, and ¢.a so that it is at 
most quadratic in ¢.a· From the Lagrangian (2.32), we get 

H"'=l U-1g-1/2ff2+1 (fJgl/2gabA. A. + 112w 
2 2 'I'.a'l'.b g . 

(2.33) 

For a Klein-Gordon field, U = 1 and W = !m2. Equation 
(2.33) then reduces to 

H'" =! g-I/2ff2 + V, 

V =! gl 12( ~b¢,a¢.b + m2¢ 2). (2.34) 

From Eq. (2.25) we obtain the stress tensor of the Klein­
Gordon field, 

g l/2T =gI/2A. A. + (lg-l/2ff2_ V)g 
ab 'I'.a'l'.b 2 abo (2.35) 

For a complex Klein-Gordon field, the field Lagran­
gian has the form 

(2.36) 

here, ¢ and ¢ * are varied as independent variables. We get 

H'" = g-I121T*1T + g1/2( gab¢ *.a¢.b + m 2¢ *¢). (2.37) 

Unlike the real field, the complex field has a conserved cur­
rent 

(2.38) 

Its projection can be expressed in terms of the canonical 
variables. In particular, 

gl/2K 1 = !i(¢1T - ¢ *1T*). (2.39) 

As our next example, take a massive vector field with 
the Lagrangian 14 

L = -14gI1/2!!gargf3<5¢[a.f3 ]¢[r.o] + !m2gaf3¢.a¢./3)' (2.40) 

This leads to the hypersurface action 

S[¢a'~] = J dt J d3x(~~a -NH"'-NaH~), (2.41) 

H'" = !g-1/2gab~1Tb + !m-2g-1/2(~,a)2 

+! gI/2~Cgbd¢[a.b 1¢[c.d ] + !m2g1/2~b¢a¢b' (2.42) 

H~ = - ¢a~.b - ¢[a.b ]~. (2.43) 

Note that the projections ¢1>tr were eliminated from the 
action (2.41) by using the relation 

(2.44) 

For m = 0, the Lagrangian (2.40) describes Maxwell's 
electrodynamics. Here, Eq. (2.44) reduces to a supplemen­
tary constraint 

(2.45) 

and the scalar potential ¢ 1 can no longer be eliminated from 
the Hamiltonian. We have 
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H<P = ¢i ~.a + !g-1/2gab~1Tb 

+ 1 1/2"ac bdA. A. 
4 g 6 g 'I'[a.b ]'I'[c.d I (2.46) 

and ¢ 1 enters the action as a Lagrange multiplier. The mo­
mentum ~ has the meaning of the electric field strength 
measured by an observer moving perpendicular to the 
hypersurface. 

H. Parametrized Hamiltonian field theories 

Weare going now to treat the hypersurface variables as 
canonical coordinates. The deformation vector N a is de­
fined by Eq. (2.2). We can reproduce this definition from the 
action 

S [xa, P", NO.] = J dt J d 3x(Pa Xa - Napa)' (2.47) 

Varying S with respect to the momen tum Po., we recover Eq. 
(2.2). Varying it with respect to the multiplier N a and the 
hypersurface variable X a we obtain the equations 

(2.48) 

which tell us that the hypersurface momentum is trivial and 
remains trivial in the dynamical evolution. 

Instead of varying the deformation vector N ", we can 
replace it by the lapse function N and the shift vector N a 

from Eq, (2.3). The action (2.47) then assumes the form 

S[Xa,pu;N,N a] = J dt J d3x(Po.xa-NP-NaPa)' 

(2.49) 

where P and Pa are given by the expressions 

P = - Pi = nU[X lPu' Pa = X~ Po.. (2.50) 

They are to be considered as functionals of X a and P a' The 
variation of Pu in the action (2.49) yields directly the lapse­
shift decomposition (2.3). 

In the field action (2.21), the lapse and shift functions 
are externally prescribed and are not to be varied. When we 
develop the canonical data by Hamilton's equations (2.26), 
we should remember as an independent fact that X a changes 
by Eqs. (2.2) and (2.3), inducing thus a change of the spatial 
metric (2.22). By adjoining the hypersurface action (2.49) to 
the field action (2.21), these changes are accounted for within 
a canonical formalism. This process is known as parametri­
zation of the field theory. The parametrized action has the 
form 

S [ ¢ A, 1T A ; X a, Po.; N, N a] 

= f dt f d3X(Paxa+1TA~A_NH-NaHa), (2.51) 

where 

(2.52) 

are called the super-Hamiltonian and supermomentum of 
the parametrized theory. The metric gab in H '" is to be consi­
dered as a functional of X a(x) in accordance with Eq. (2.22). 
The variation of Po. still gives us the lapse-shift decomposi­
tion. The variation of the field variables ¢ A and 1T A leads to 
the old field equations (2.26). The hypersurface momentum 
Po., however, ceases to be trivial. By varying the multipliers 
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N, N a
, we get the constraints 

H=O=Ha· (2.53) 

The constraints can easily be solved with respect to the 
hypersurface momentum Pa , 

Pa = -Pna +Pa X~, 

P= -H"', Pa = -Ha. (2.54) 

We see that - P is to be interpreted as the energy density 
and - Pa as the momentum density of the field. The remain­
ing Hamilton equations, obtained by varying X a, tell us how 
these densities change from one hypersurface to another. 

The change of an arbitrary dynamical variable K con­
structed from the canonical variables ¢' A, 1T A' X a, Pais giv­
en by its Poisson bracket with the Hamiltonian 

HN + HN = J d 3x(N(x)H(x) + Na(x)Ha(x)). (2.55) 

In brief, 

(2.56) 

Equation (2.56) summarizes the content of Hamilton's equa­
tions ofthe parametrized theory. 

If the Poisson bracket (2.56) vanishes for all Nand N, 
K has the same value on every spacelike hypersurface, i.e., it 
is conserved. In fact, for K to be conserved, [K, H N + H N ] 

does not need to vanish identically in the canonical variables 
X a, P a' ¢' A, ~, but only for such values of the variables 
which satisfy the constraints (2.53). If a dynamical variable F 
vanishes only modulo the constraints, we say with Dirac 15 

that it vanishes weakly, and write F::::: O. On the other hand, if 
a dynamical variable F vanishes identically in the canonical 
variables, we say that it vanishes strongly, and write F = O. 
The weakly vanishing Poisson bracket (2.56) is a basic ingre­
dient in our definition of a conditional symmetry. 

I. Closure relations 

The constraints (2.53) must be preserved in time, which 
means that the Poisson bracket 

(2.57) 

must weakly vanish for arbitrary smearing functions M, M 
and N, N. This is ensured by the closure relations l6 

[HM,HN ] =H(M.N)' 

[HM, HN] = H M.3N , 

[HM,HN ] =H[M.Nj, 

where 

(M, Nja_MN·a - NM·a, 

M·aN _MaN.a, 

[M·N) =LM N 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

define a composition of the smearing functions. When some 
of these functions are themselves dynamical variables, e.g., 
when M(x) = M(x)[X, P,¢',1T] and Ma(x) = Ma(x) 
X [X, P,¢',1T], Eqs. (2.58)-(2.60) acquire additional terms: 
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[HM,HN ] =H[M.HNl +H(M.N)' 

[HM,HN ] =HM.3N +H[M.HN1' 
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(2.64) 

(2.65) 

(2.66) 

[NM,HN ] =H -N.3M +H[M,HNJ' (2.67) 

The right-hand sides of Eqs. (2.58)-(2.60) or Eqs. (2.64)­
(2.66) are linear combinations of the constraints, which en­
sures that the Poisson bracket (2.57) weakly vanishes. The 
corresponding conserved quantities are of course trivial. 
They coincide with the constraints and therefore weakly 
vanish. 

In an extreme case, there is no field to propagate on the 
spacetime background. The constraint functions (2.52) then 
reduce to the expressions (2.50). These expressions, P and Pa , 

thus satisfy the same closure relations (2.58)-(2.67) as the 
original functions Hand Ha' 

The closure relations (2.58)-(2.67) in parametrized field 
theories are exactly the same as the corresponding relations 
in Hamiltonian geometrodynamics. I This makes parame­
trized field theories so suitable as models for geometrodyna­
mics. 

3. CONDITIONAL SYMMETRIES IN PARAMETRIZED 
FIELD THEORIES 

We say that a dynamical variableK [X a,¢, A; Pa ,1TA ] 

generates a conditional symmetry in a parametrized field 
theory if it is linear in the canonical momenta, 

K = K(k) + K(h) = J d 3x (ka(x)[X,¢' )Pa(X) 

+ h A (x) [X,¢, )1TA (x)) 

= J d 3x (kl(X)[X,¢' ]P(X) + ka(x)[X,¢' )Pa(X) 

+ h A (X)[X,¢' ]1TA (x)), (3.1) 

and its Poisson bracket with the Hamiltonian HN + HN 
vanishes for such values of the canonical variables 
X a,¢, A, Pa ,1TA which satisfy the constraints: 

(3.2) 

Because the lapse function and the shift vector are arbitrary, 
Eq. (3.2) means that the variable K is conserved under an 
arbitrary deformation of the hypersurface. Taking into ac­
count this arbitrariness, we can replace Eq. (3.2) by an infi­
nite set of equations, 

[K,H(x)):::::O (3.3) 

and 

[K, Ha(x)] :::::0, (3.4) 

four equations for each point of the hypersurface. 
There are two kinds of constraints we can encounter in 

a parametrized field theory. First, there are always the su­
per-Hamiltonian and supermomentum constraints which 
are introduced by the process of parametrization. Second, if 
we are dealing with gauge theories, there are still supplemen­
tary constraints, linear in the field momenta. Our main moti­
vation for studying parametrized field theories is to draw 
parallels to geometrodynamics. There are no supplementary 
constraints in vacuum geometrodynamics. To concentrate 
on the essentials, we shall limit our further discussion to 
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parametrized theories without supplementary constraints. 

Broadly speaking, we want to find all generators (3.1) 
which satisfy the weak equations (3.3) and (3.4). For this 
purpose, it is advantageous to replace the weak equations by 
an equivalent set of strong equations. One way of doing this 
is to adjoin the constraints (2.51)-(2.52) to the equations by 
means of Lagrange multipliers. This is the only practical 
method of analyzing the weak equations if the constraints 
cannot be explicitly solved, as it is the case in geometrodyna­
mics. However, in parametrized theories the constraints can 
be solved with respect to the hypersurface momenta P a' This 
suggests an alternative way of replacing the weak equations 
(3.3) and (3.4) by strong equations: After evaluating the Pois­
son brackets as function(al)s of the canonical variables, we 
replace the hypersurface momenta by their expressions 
(2.54) in terms of the remaining canonical variables ¢ A, 1TA , 

and X a. For theories without supplementary constraints, 
these data are completely arbitrary and the Poisson brackets 
must thus strongly vanish in these variables. This method 
makes the analysis of conditional symmetries in parame­
trized field theories considerably simpler than in geometro­
dynamics. 

The clear separation of the hypersurface momenta Pa 

from the field momenta 1T A also leads to a useful classifica­
tion of the generators. We say that a generator K is P-res­
tricted if it does not depend on the field momenta 1TA , i.e., if 
h A = 0; we say that it is 1T-restricted ifit does not depend on 
the hypersurface momenta Pa , i.e., if k a = 0; and we call it 
mixed if both kinds of momenta are present in the expansion 
(3.1 ). We shall show that the P-restricted generators are asso­
ciated with symmetries of the spacetime background and the 
1T-restricted generators with internal symmetries of the field. 
A mixed generator can either be a sum of two separately 
conserved generators, one of which is P-restricted and the 
other one is 1T-restricted or, under circumstances which we 
shall explain later, they may again correspond to a spacetime 
symmetry. 

4.INVARIANCE OF GENERATORS UNDER SPATIAL 
DIFFEOMORPHISMS 

Any two dynamical variables K and K which coincide 
on the constraint surface, 

K;:::;K, (4.1) 

are for all physical purposes equivalent to each other. More­
over, by virtue of the closing relations (2.64)-(2.67), when K 
is conditionally conserved, K is also conditionally 
conserved, 

. ~ 

K;:::;O~K;:::;O. (4.2) 

When K is linear in the momenta and conditionally con­
served, we can adjoin to it the supermomentum constraint 
H a , 

(4.3) 

without disturbing either the linearity or the conservation. 
The generators of conditional symmetries thus fall into 
equivalence classes (4.3) modulo the supermomentum con­
straint. We can consider Eq. (4.3) as a gauge transformation 
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on the generators produced by the gauge functional 
,ua(xj[X,¢ ]. 

We can use the gauge transformation to eliminate the 
hypersurface momenta Pa from the generator (3.1). It suf­
fices to take,ua = - k a; then, 

k a =0 (4.4) 

and K reduces to 

(4.5) 

We can thus always represent the equivalence class (4.3) by 
that generator (4.5) which satisfies Eq. (4.4). 

More important, we can prove that the generator (4.5) 
must satisfy the strong equation 

(4.6) 

while the original generator satisfied only a weak equation 
(3.4). The Poisson bracket in Eq. (4.6) can be evaluated separ­
ately for the P part and the 1T part of the generator. The first 
Poisson bracket, 

[f d 3x k (x)P(x), HN] 

= f d 3x!k(x)[P(x),HN ] + [k(x),HN]P(X)j, (4.7) 

can be written as 

[f d 3X k (x)P (x), HN ] 

= f d 3x(-LN k(x)+ [k(x),HN])P(x) (4.8) 

once we realize that [P(x), H~ ] = 0 and apply the field­
free limit ofEq. (2.59) to the bracket [P (x), PN ]. The second 
Poisson bracket, 

[f d 3X li A (X)1TA (x), HN ] 

= f d 3x!li A(xl[1TA(x),HN ] + [li A(x),HN ]1TA(X)j, 

(4.9) 
allows a similar rearrangement. Because of Eq. (2.29) we can 
integrate by parts, 

f d 3xli A(x)[1TA(X),HN ] = f d 3xli A(x)LN 1TA(X) 

and write 

-f d 3X LN li a(X)'1TA (x), 

(4.10) 

[f d 3X li A (X)1TA (x), HN ] 

= f d 3X( - LNli A (x) + [li A (x), HN ] )1TA (x). (4.11) 

Start now from the weak form ofEq. (4.6), 

[K,HN] = f d 3x!(-LN k(x)+ [k(x),HN])P(x) 

+ (-LN liA(X) + [liA(x),HN ])1TA(X)J ;:::;0. 
(4.12) 
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Following the method explained in Sec. 3, we replace P (x) in 
Eq. (4.12) by - H~(X)[X,¢,1T J and require that the resulting 
expression vanish strongly in the remaining variables. Typi­
cally, H~ is a nondegenerate quadratic function of the field 
momenta 1TA(X) [cf. Eq. (8.3)). The coefficients of H~(x) and 
1TA (x) must therefore vanish separately, 

-LN k(x)+ [k(x),HN ] =0 (4.13) 

and 

(4.14) 

for our expression to vanish identically in the momentum 
variables 1TA • Substituting these equations back into the 
original expression (4.12), we conclude that the Poisson 
bracket [K, HN ] strongly vanishes, Eq. (4.6). 

Supermomentum constraints generate the transforma­
tion of dynamical variables under spatial diffeomorphisms, 
Eqs. (2.28H2.29). The weak equation (3.4) implies that K is 
invariant under spatial diffeomorphisms only for those val­
ues of the canonical variables which satisfy the constraints. 
On the other hand, the strong equation (4.6) means that K is 
an invariant throughout the whole phase space. The strong 
equation (4.13) then tells us that k (x) is a spatial scalar and 
the strong equation (4.14) tells us that Ii A is a spatial tensor of 
the same rank as 1T A • This conveniently simplifies our further 
considerations. 

It is worthwhile to note where the argument fails when 
we try to repeat it for the original form (3.1) of the generator. 
Starting from this form, we pick up an additional term 

[Pk,HN ] =PM, 

M(x) = - LN k(x) + [k(x), HN ] (4.15) 

in the Poisson bracket [K, HN ], so that our old equation 
(4.12) reads 

[K,HN] = J d 3x{{-LN k(x) + [k(x),HN])P(x) 

+ (- LN h A (x) + [hA(x), HN ])1TA(X) 

+ Ma(x)Pa(x)J zOo (4.16) 

The momentum Pa (x) can be eliminated from Eq. (4.16) by 
using the supermomentum constraint, 

J d 3x Ma(x)Pa(x)z - J d 3x Ma(x)H~(x) 

= J d 3xLM¢A(X)'1TA(X), (4.17) 

yielding a term linear in the field momentum. Repeating the 
reasoning which led us from Eq. (4.12) to Eqs. (4.13H4.14), 
we see that Eq. (4.13) still holds, but Eq. (4.14) gets replaced 
by 

-LM¢A+(-LNh A+ [hA,HN])=O. (4.18) 

From this equation we are unable to conclude that M and 
( - LN h A + [h A, HN ] ) vanish separately and so we cannot 
maintain that the Poisson bracket (4.16) strongly vanishes. 

Of course, k is not the only representative of the equiv­
alence class (4.3) which is a spatial invariant, Eq. (4.6). If 
k a(x) [X,¢ J is any spatial vector constructed from the ca-
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nonical coordinates X and ¢ and if we put 

K=K+Hk' (4.19) 

K is also a spatial invariant, 

[K,HN] = [Hk,HN ] =H_L"k+[k.H"I=O. (4.20) 

There are thus spatially invariant generators containing the 
hypersurface momentum Pa in their expansion (3.1). 

5. SYMMETRY OF THE BACKGROUND AS A 
CONDITIONAL SYMMETRY 

Take an arbitrary field that propagates in a spacetime 
with a Killing vector k a(x), 

k1a;PI = O. (5.1) 

The projection 

K a(X)=TaP(X)kp(X) (5.2) 

of the energy-momentum tensor TaP into the Killing vector 
k a satisfies the equation of continuity 

K a;a = O. (5.3) 

Similarly, when the field has a trace-free energy-momentum 
tensor, 

T~ =0, (5.4) 

and propagates in a spacetime which has a conformal Killing 
vector, 

(5.5) 

the vector field (5.2) again satisfies the equation of continuity 
(5.3). 

We project Eq. (5.3) along an arbitrary spacelike hyper­
surface, Eq. (2.18), and integrate it over d 3X . If the hypersur­
face is compact or the field vanishes sufficiently fast at infin­
ity, the spatial divergence drops out and the quantity 

(5.6) 

is conserved under normal deformations of the hypersur­
face: 

(5.7) 

Using Eq. (2.24) and the constraint (2.52), gl/2Kl can be ex­
pressed as a linear function of the hypersurface momenta, 

gl/2K
1 

- gl/2na TaPkp 

= (Tunp + T1b X%)k P 

= (H"'np - Ht X%)k P 

z( - Pnp + Pa X'P)k P = kPPp. 

This suggests that 

K= J d 3x Ka(X(x))Pa(x) 

(5.8) 

(5.9) 

generates a symmetry of the parametrized field theory. We 
shall show that this symmetry is unconditional if the back­
ground has a true Killing vector (5.1) and conditional if the 
background has a conformal Killing vector (5.5). 

Take an arbitrary vector field k a(x), not necessarily a 
Killing field (5.1) or (5.5), and calculate the Poisson bracket 
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of the dynamical variable (5.9) with HN • By the field-free 
limit of the closure relations (2.64) and (2.65), 

[K,PN] = [Pk1 +Pk,PN ] 

-(P +P ) 
- [k 1 .PN ] (k 1 .N) 

+ (P[k,P
N 

) + Pk.ilN ) 

=P 1 +P l' (5.10) 
{jNk + k·3N {jNk + (k .N) 

From the projection equation (2.17) we get 

DNk 1 + k·aN = - NK 1;1 (5.11) 

and from the projection equation (2.16) we get 

(DNk+(k\NW= _Nk(a;l). (5.12) 

Therefore, 

[K,PN ] = -P -P 
Nk 1;1 Nk (l;a) 

(5.13) 

or 

[K, PIx)] = - ~k(l;l)(X)P(x) - k(l;a)(x)Pa(x). (5.14) 

Next, we evaluate the Poisson bracket [K, Ht ]. The 
hypersurface variables enter into Ht entirely through the 
metric gab (X)[X ]. Therefore, 

~ f 3 DHt [K, H N] = d x[K, gab (X)] --. 
agab(X) 

(5.15) 

The variational derivative DH tl Dgab (x) yields the stress ten­
sor by Eq. (2.25). The Poisson bracket [ gab (X), K] is the 
change of the metric induced by the deformation k a of the 
hypersurface, 

[gab(X), K] = [ gab (X), P
k1 

+ Pk ] 

= - 2k1Kab + k(alb) = k(a;b)' (5.16) 

Equation (5.15) thus gives 

[K,Ht] =!f d3xNgIl2Tabk(a;b) (5.17) 

or 

[K, H~(x)] = !g Il2T abk(a;b)' (5.18) 

We can put now the two pieces, Eqs. (5.14) and (5.18), 
together and obtain thus an important identity 

[K,H(x)] = _!k(1;1iH(x)-k(l;a)Ha(x) 

+ 1 1/2k Ta(3 
'2 g (a;(3) . 

In the process, we have reassembled the projections 

(5.19) 

Tab' T 1a, and Tll into the spacetime energy-momentum 
tensor Ta(3, 

1 gI/2T abk + k (l;a)H~ + k 1;1H~ 
2 (a;b) a 

= ~ gl/2k(a;(3) Ta(3. (5.20) 

Of course, the dynamical variable (5.9) is an invariant 
under spatial transformations, 

(5.21) 

The strong equation (5.21) can be verified by a direct evalua­
tion of the Poisson bracket. 

From Eqs. (5.19) and (5.21) we are able to draw the 
desired conclusions: 
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Theorem: If the background has a Killing vector k a(x), 
Eq. (5.1), any parametrized field theory on that background 
has the unconditional symmetry (5.9). 

Theorem: If the field has a trace-free energy-momen­
tum tensor, Eq. (5.4), and the background has a conformal 
Killing vector, Eq. (5.5), the parametrized field theory has 
the conditional symmetry (5.9) with 

[K, H(x)] = 0 (x)H(x). (5.22) 

A special but interesting situation arises for a massless 
Klein-Gordon field. In this case, the energy-momentum 
tensor is not trace-free, but its trace reduces to a pure diver­
gence modulo the field equation O¢ = 0: 

T~ = - ga(3¢,a¢.f3 = - (~f3¢¢.f3);a + ¢ O¢. (5.23) 

This leads to a conservation law if the field propagates in a 
spacetime which admits a homothetic motion [i.e., which 
has a conformal Killing vector field (5.5) with a constant 
A (X )=A = const]. Indeed, 

(T af3kf3 );a = o Taf3gaf3 = - !(Agaf3¢¢,(3);a (5.24) 

and so the vector 

(5.25) 

satisfies the equation of continuity (5.3). As a result, the vari­
able K defined by Eq. (5.6) is conserved, Eq. (5.7). 

We can express K as a linear functional of the momenta 
! Pa ,17' J by using the rearrangement (5.8) and introducing 
17' = - gI/2¢.1 : 

K = J d 3x (k a(x (x))Pa (x) - 0¢ (X)1T(X)). (5.26) 

It is easy to check that this dynamical variable obeys Eq. 
(5.22) (with a constantA ): ThePpart of the generator (5.26) is 
subject to the identity (5.19), while a direct evaluation yields 

[J d 3X'¢(X')1T(X'),H(X)] =g-II2r _gl/2gab¢.a¢.b 

= gIl2(T~ _ Tll ) = gl/2T~. (5.27) 

It should be emphasized that neither the P-restricted part 
nor the 1T-restricted part of the mixed generator (5.26) are 
conserved separately, but they are both needed for the mutu­
al cancellation of the trace term T~. To summarize, 

Theorem: If a massless Klein-Gordon field propagates 
in a spacetime which admits a homothetic motion [Eq. (5.5), 
with A = const], the mixed dynamical variable (5.26) gener­
ates a conditional symmetry, Eq. (5.22). 

6. CONDITIONAL SYMMETRIES AND INVARIANCE OF 
THE ACTION 

The meaning ofthe P-restricted conditional symmetries 
can also be grasped through their connection with the invar­
iance of the parametrized action (2.51) under transforma­
tions induced by spacetime diffeomorphisms. 

To see how the spacetime diffeomorphisms enter into 
the game, recall that a given vector field k a(x) produces a 
one-parameter group of diffeomorphisms 

x a =xa(X(3',T) (6.1) 
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of the spacetime background by the equation 

dxa(T) = ka(X(T)), xa(o) =xa'. 
dT 

(6.2) 

On the other hand, any covector Pais pulled back by the 
diffeomorphisms (6.1), 

Pa' =X~,(X',T)PJ3(T), (6.3) 

and thus 

(6.4) 

Equations (6.2) and (6.3) can be interpreted as a one-param­
eter group of canonical transformations 

(6.5) 

generated in an 8-dimensional phase space I X a ,Pal by the 
dynamical variable 

(6.6) 

The hypersurface variables IX a(x), Pa (xll form an 
800 3 dimensional phase space. The diffeomorphisms (6.1) act 
on the hypersurfaces X Q = X Q(x) by dragging them along 
the flowlines k a(x) and on the hypersurface momenta Pa (x) 
by pulling them back according to Eq. (6.3): 

xa(X,T) =X a(XJ3(X),T), 

Pa' = X~,(Xl"(X),T)PJ3(X,T). (6.7) 

This action can again be interpreted as a one-parameter 
group of canonical transformations 

aXa(X,T) = [Xa(X,T), K], 
aT 

apa(X,T) 
---= [Pa(x,T),K], 

aT 

this time generated by the dynamical variable 

K = J d 3x ka(X(x))Pa(x). 

(6.8) 

(6.9) 

The parametrized canonical action functional (2.51) 
changes under the canonical transformations (6.9) at the rate 

as = [S, K). (6.10) 
aT 

However, S d 3X (p a X a + rT A (p A ) is a canonical invariant 
and the multipliers N (x), Na(x) do not depend on the canoni­
cal variables. Moreover, K is invariant under spatial trans­
formations, Eq. (5.21). As a result, 

~~ = J dt J d 3x N(x)[K, H(x)). (6.11) 

Equation (6.11) holds for an arbitrary vector field 
k a(x). When this field happens to be a Killing vector field of 
the metricgup(X), the Poisson bracket [K, H(x)) vanishes 
by virtue of Eq. (5.19) and the action S stays unchanged. 
Therefore, if the background has a Killing vector, the para­
metrized canonical action remains invariant under a one­
parameter group of canonical transformations (6.8), (6.9) in­
duced by the diffeomorphisms (6.2) ofthe spacetime 
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background. During this transformation, the field variables 
¢ A,rTA and the multipliers N, N a are kept fixed. The fixation 
of multipliers is consistent with their intended meaning, be­
cause the lapse function and the shift vector remain un­
changed if the hypersurfaces which they connect are 
dragged along a Killing vector field. In this way, the uncon­
ditional symmetry (5.9) is linked with the in variance of the 
action. 

A more interesting situation arises when the back­
ground has a conformal Killing vector (5.5) while the field 
has a trace-free energy-momentum tensor, Eq. (5.4). Under 
such circumstances, Eq. (5.22) implies that the action is only 
conditionally invariant: 

~~ = J dt J d
3
x! NAH~O. (6.12) 

We can paraphrase this fact by saying that the canonical 
transformation does not effect the action if we take into ac­
count an equation obtained by varying the action with re­
spect to a multiplier, N (x), which itself is not a canonical 
variable. 

We can reinterpret this in variance as an unconditional 
in variance if, together with the canonical transformation 
(6.8)-(6.9) along a conformal Killing field, we keep rescaling 
the lapse function: 

(6.13) 

Under the extended transformation (6.8 )-( 6. 9) and (6.13), the 
parametrized action behaves as an unconditional invariant, 

as = _ JdtJd3X(aN H+NaH)=O. (6.14) 
aT aT aT 

The origin of the extended invariance becomes obvious 
when we recall that the tracelessness of the energy-momen­
tum tensor on which the whole argument is based follows 
from the in variance of the field action under conformal 
transformations of the spacetime metric, 

(6.15) 

We shall first restate this result in terms of the parametrized 
action. The conformal transformation (6.15) induces not 
only the scaling of the spatial metric 

gab (X) -+ e"(X)gab(X), A, (x) ==..i (X (X)), (6.16) 

but also that of the unit normal, 

na(x) -+ e - (1/2)), (X)na(x), na (x) -+ e(1/2))' (X)n
a 

(x). (6.17) 

We want to identify the multiplier N with the lapse function 
N = X ana and so we should prescribe its scaling behavior as 

N(x) -+ e(I/2)).(xiN(x). (6.18) 

The infinitesimal version ofEqs. (6.16)-(6.18) is 

ogab(X) = A (x)gab(X), (6.19) 

ona(x) = - ~ A (x)nU(x), ona (x) = ! A (x)na (x), (6.20) 

oN(x) =!A (x)N(x), (6.21) 

whereA (x)=OA, (x). We immediately see thattracelessness of 
the energy-momentum tensor follows from the invariance of 
the parametrized action under the scaling (6.19)-(6.21): 
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-J dt J d 3
X[N(Pa Dna 

+ aH'" Dgab ) +HDN] 
agab 

= J dt J d 3x! NA (P + g1l2Tabgab - H) 

= J dt J d 3x! NA gl/2(T~ - TH )· (6.22) 

At this point, we can deduce the conditional symmetry 
(5.22) from the scaling invariance of the parametrized action. 
Indeed, if the background has a conformal Killing vector, 
the scaling can be achieved by going along its flowlines. 
Then, 

DH= aH .ar= [H,K]ar, 
ar 

DN=!ANar, (6.23) 

and the scaling invariance (6.22) of the action takes the form 

0= ~: = - J dt J d 3xN([H,K] +!AH). (6.24) 

Because N is arbitrary, Eq. (5.22) follows. We can state this 
connection as a theorem: 

Theorem: If the parametrized action is invariant under 
the scaling transformation (6.19)-( 6.21) and the background 
has a conformal Killing vector (5.5), the action is invariant 
under the extended transformation (6.8), (6.9), and (6.13). 
The dynamical variable (5.9) then generates a conditional 
symmetry, Eq. (5.22). 

The conformal transformation (6.15) leaves the field 
variables unscaled. One can wonder what happens when a 
simultaneous scaling of the metric and of the field variables 
is needed to keep the action invariant. A typical example is a 
scalar field conformally coupled to the background. 17 How­
ever, the conformal coupling is derivative and as such it falls 
outside the framework of our discussion. There does not 
seem to be an example of the simultaneous scale invariance 
for a nonderivatively coupled field. However, if we restrict 
ourselves to a constant scaling, there is an interesting case to 
be considered. It is the minimally coupled massless Klein­
Gordon field. 

It is obvious that the Lagrangian 
L = - WgI1l2~PtP.a tP,p ofthis field stays unchanged if we 
scale both the metric gaP and the field 1,6 by a constant factor, 

gap (X ) -- e"-g"p(X), 1,6 (X) -- e- (112)"'1,6 (X), A = const. 
(6.25) 

Let us see what this scaling means for the projected varia­
bles. Of course, Eqs. (6.16)-(6.18) still hold for A = const, but 
they must now be complemented by the scaling 

1,6 (x) __ e -1 112)"'1,6 (x), 1r(x) __ eI1l2 )"'1T(X) (6.26) 

of the field variables. The scaling of the momentum 1T{x) is 
consistent with the Hamilton equation 1T = - gl/2tP,1' An 
infinitesimal version of Eq. (6.26) is 
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151,6 (x) = -! AtP (x), D1T(X) =! A1T(X), (6.27) 

where A -DA is a constant. The transformation (6.26) or 
(6.27) is a canonical transformation of the field variables 
r tP,1T l generated by the functional 

Krr = -!A J d3XtP(X)1T(X). (6.28) 

It is easy to check that the parametrized action (2.51) of 
the scalar field is invariant under the constant scaling (6.16)­
(6.18), (6.26). In particular, the constraint functions (2.34) 
and (2.30) scale as 

(6.29) 

and so the scaling (6.18) of N exactly compensates the scaling 
(6.29) of H. 

The existence of the conditional symmetry (5.6) is a di­
rect consequence of this scale in variance. If the background 
admits a homothetic motion k ", the scaling (6.16)-(6.18) can 
be achieved by going along its flowlines. The scaling of the 
hypersurface variables is then generated by the functional 

(6.30) 

the scaling of the field variables by the functional (6.28), and 
the scaling of all canonical variables together by the func­
tional (5.26). The scaling of the lapse function is externally 
prescribed by Eq. (6.13) with a constant A. Because the para­
metrized action remains unchanged under this combined 
transformation, Eq. (6.24) again holds, now for the K given 
by Eq. (5.26) and for a constant A. We thus see that the 
conditional symmetry (5.26) for a massless scalar field prop­
agating on a background which admits a homothetic motion 
follows from the invariance of the parametrized field action 
under the combined (constant) scaling (6.16)-(6.18) and 
(6.26) of the hypersurface variables, field variables, and the 
lapse function. This line of argument clearly shows that the 
mixed character of the generator comes from the necessity to 
scale both the field variables and the metric in order to keep 
the action invariant. 

7. INTERNAL SYMMETRY AS A CONDITIONAL 
SYMMETRY 

We have just seen how conditional symmetries follow 
from an in variance of the parametrized action. The transfor­
mations we have considered were induced by spacetime dif­
feomorphisms and thus necessarily effected the hypersur­
face variables. The generators of such transformations were 
consequently constructed from these variables, Eq. (6.9). 

Another important class of transformations which 
leaves the action invariant does not act on the hypersurface 
variables at all, but effects only the variables in the field fi­
bers. These transformations correspond to internal symme­
tries of the field. In the parametrized canonical formalism, 
the generators of such transformations can again be inter­
preted as generators of conditional symmetries. Because the 
transformations effect only the field variables, their genera­
tors are 1T-restricted. 

Internal symmetries occur when a Lie group G of trans­
formations acting on a collection of fields leaves the field 
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action invariant. By Noether's theorem, anyone-parameter 
subgroup of G leads to a conserved current. In the canonical 
formalism, the projections rp A of the fields are identified with 
field coordinates. The one-parameter subgroup induces a 
one-parameter group of transformations 

(7.1) 

ont/J A,S. Equation (7.1) does not contain any reference to the 
hypersurface variables. Its infinitesimal version, analogous 
to Eq. (6.2), is 

(7.2) 

Typically, Eq. (7.1) is a representation rather than a realiza­
tion of the group. In this case, the coefficients h A (rp B) in Eq. 
(7.2) are linear functions of rp B. 

The canonical momenta rr A conjugate to the canonical 
coordinates rp A are pulled back by the transformation (7.1) 
and so 

drrA B 
-- = - h ArrB' (7.3) 

d7 . 

Equations (7.2) and (7.3) define a one-parameter group of 
canonical transformations generated by the dynamical 
variable 

K = f d 3X h A (x)(rp B)rr A (x). (7.4) 

Ifthe field action is left invariant by the group G, the parame­
trized action (2.51) is left invariant by the canonical transfor­
mations (7.2), (7.3): 

~! = - f dt f d 3xN[H(x),K] =0. (7.5) 

The generator (7.4) is a spatial invariant and so we do not 
need to worry about the term [Ha (x), K] = O. Because K 
does not contain any hypersurface variables, we can put 
[H(x), K] = [H"'(x), K ] in Eq. (7.5). Because everything 
in Eq. (7.5) is expressed exclusively in terms of the field varia­
bles, the super-Hamiltonian and supermomentum con­
straints cannot help us and Eq. (7.5) must be a strong equa­
tion. (We assume that there are no other constraints, like 
those encountered in gauge theories.) The invariance (7.5) of 
the action then means that K generates an unconditional 
symmetry 

[K, H(x)] = [K, H"'(x)] = o. (7.6) 
As an example, take a charged scalar field 

t/J A = f t/J,t/J * j, rrA = ! rr,rr* 1 with the energy density (2.37). 
This density is invariant under the phase transformations 

rp' = e -11I21
I TfTrp, rr' = elll2liTfTrr, and c.c. (7.7) 

In this case, 

;p = ! iT/rp, 'TT = -! iT/'TT, and c.c., 

h A (x) = B iT/rp (x), - ~ iT/¢> *(x) j, 

and the generator (7.4) reduces to the expression 

K = T/ f d 3X ! i(rprr - rp *'TT*), 

which we have already met in Eq. (2.39). 
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(7.8) 

(7.9) 

(7.10) 

An even simpler example is provided by the 
transformation 

rp' = t/J -#7, # = const, (7.11) 

which leaves invariant the action of a massless Klein-Gor­
don field. Here, h (x) = # and the conserved generator is 

K = # f d 3X 'TT(x). (7.12) 

Let us finally briefly mention the complications en­
countered in gauge theories. There, the Lie group G acting 
on a collection of "carrier fields" is turned into an infinitely 
dimensional gauge group by letting the group parameters 
depend on position. The action functional of the carrier 
fields ceases to be invariant under the gauge group. To res­
tore the invariance, one introduces another collection of 
fields, cal1ed "compensating fields," and couples them to the 
carrier fields by the Yang-Mills algorithm. The gauge invar­
iance of the total action leads to supplementary constraints 
on the canonical variables. So, in our first example (7.7), T/ is 
made position dependent, the compensating field is the elec­
tromagnetic potential t/Ja which transforms in the familiar 
way 

d dr rpa (x) = rp" (x) + T/,a (x) (7.13) 

under the gauge transformation, the total action has the elec­
tromagnetic field minimally coupled to the charged scalar 
field, and the supplementary constraint is the divergence 
equation (2.45). 

Complications arise because supplementary con­
straints can condition symmetries similarly as the super-Ha­
miltonian and supermomentum constraints do. However, 
we do not intend to discuss these complications in the pre­
sent paper. Once again, our main purpose is to understand 
the lack of conditional symmetry in geometrodynamics by 
studying a simpler case of parametrized fields. The super­
Hamiltonian and supermomentum constraints are common 
to geometrodynamics and parametrized field theories. On 
the other hand, there are no supplementary constraints in 
vacuum geometrodynamics. 

8. GENERAL THEOREMS ABOUT CONDITIONAL 
SYMMETRIES 

We have seen how a Killing symmetry of the back­
ground or an internal symmetry of the field leads to a condi­
tional symmetry within the canonical formalism. The gener­
ator K has the form 

K= f d 3x ka(X(x))Pa(x) 

for the Killing symmetry and the form 

K f d 3X h A(rp (X))'TTA (x) 

(8.1) 

(8.2) 

for the internal symmetry. The generator (8.1) does not de­
pend on the field variables rp A,rrA, while the generator (8.2) 
does not depend on the hypersurface variables X a ,P a • More­
over, the coefficient k a(x (x)) is not an arbitrary functional of 
the hypersurface coordinates, but it is a restriction of a 
spacetime vector field to a spacelike hypersurface. 
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Let us pose now an inverse problem. Can we prove, for a 
given field theory, that the generator K necessarily reduces 
to one of the previous types, or maybe to their superposition, 
such as we met for the massless Klein-Gordon field? This is 
by no means obvious, because the generic form of K, Eq. 
(3.1), allows much more flexibility in the coefficients k l,ka, 
and h A. Unfortunately, it is difficult to carry the argument 
for all field theories at once, without relying on the specific 
features of the field super-Hamiltonian. Various factors, like 
the presence of additional constraints or coupling of several 
fields, makes the general argument extremely cumbersome. 
However, we can proceed quite far on the general level if we 
limit our attention to fields whose energy density is a (local) 
quadratic function of the momenta without a linear term, 

H"'(x) = T(x) + V(xj[X,¢], 

T(x) = ~ GAB(X)[X,¢ ]1TA(X)1TB(X) 

+ ~ GAaBb(xj[X,¢ ] 1TA,a (X)1TB,b (x). (8.3) 

We assume that the field variables ¢ A, 1T A are unconstrained 
and that the "supermetric" ( GAB, G Aa Bb 1 is nondegenerate. 
The latter requirement means that 

(8.4) 

The Klein-Gordon field theory or the massive vector field 
theory which we have discussed in Sec. 2 are of this type. 

To see under what conditions the generator (3.1) re­
duces to a combination of the generators (8.1) and (8.2), let us 
study the Poisson bracket 

[K, H N] = [K(kpPN] + [K(kPHt] 

+ [K(hpPN ] + [K(h),Ht]. (8.5) 

With a little bit of caution we can use the results of Sec. 5. 
Equation (5.10) still holds if we interpret ON as the partial 
derivative ~N with respect to the hypersurface coordinates; 
i.e., ~N F(xj[X,¢ ] is the normal change ofthe variable 
F(x)[X,¢] obtained by varying X explicitly but not implicitly 
in ¢ [X]. This yields 

[K(k)'PN] = f d3X!(~N kl(X) + kaN.a)p 

+ (~N k a(x) + k IN,a - Nk 1,aJPa J. (8.6) 

Further, 

(8.7) 

Again, the first term can be handled as in Sec. 5, with the 
result (5.17). The only difference is that the expression k(a;b) 
cannot be interpreted as a projected covariant derivative of a 
spacetime vector field, but it must be defined through Eq. 
(5.16) in terms of kl and ka' This gives 
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The third Poisson bracket in Eq. (8.5) is 

[K(h I' P,y] = f d 3X t5N h A (X)'1TA (x). (8.9) 

Finally, 

[K(h"Ht] =f d 3x([h A(x),Ht]1TA(X) 

+ h A(x)[1TA(X), Ht]l· (8.10) 

We do not need to calculate it in detail. It is enough to notice 
that under our assumption (8.3) about the form of the energy 
density, [K(h p Ht ] is a quadratic function of the momenta 
without a linear term. The same thing is true about the stress 
tensor Tab, which is connected with H'" by Eq. (2.25). The 
momentum density H! is always a linear homogeneous 
function of the canonical momenta. 

Keeping this in mind, we return back to the condition 
[K, H N ] ;:::;0. This weak equation means that the sum of the 
terms (8.6), (8.8), (8.9), and (8.10) must vanish for all values of 
the variables ¢ A, 1TA, XU, and P" which satisfy the con­
straints. Alternatively, we can solve the constraints for the 
hypersurface momenta, Eq. (2.54), substitute these expres­
sions into the sum, and maintain that the sum vanishes iden­
tically in the variables ¢ A, 1TA , and X". The only term con­
taining the momenta in the third order comes from the 
expression (8.8), 

f
d3xfd3X' 15kl(x) 15TN T(x). (8.11) 

15¢ A (x') 01TA (x') 

This term must vanish identically in Nand 1T A • For non de­
generate supermetrics, this implies 

15k 1(x)/15¢ A (x') = O. (8.12) 

We thus see that the coefficient k J can depend only on the 
hypersurface variables X n, not on the fields ¢ A. 

To complete the argument, it is advantageous to replace 
the generator Kby an equivalent generator with k a = 0 (Sec. 
4). We then select those terms in the sum which are propor­
tional to the momenta and require that they vanish, 

f d 3x((Nk 1.a-kW,O)H! +t5N h A(x)'1Ta(X)J =0. (8.13) 

Let us analyze this equation first for a single scalar field. 
Then, H! = 1T¢.a and $ N h A (x) . 1T A (x) reduces to 
~N h (x) . 1T(X). Because 1T(X) is arbitrary, we get 

(8.14) 

An h (x) which satisfies this equation can contain only two 
types of terms: (I) those which are linear in ¢.a' (II) those 
which do not depend on X. In other words, 

h(x)= -ka(xj[X]¢,a(x)+h(xj[¢j. (8.15) 
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Substituting this form of h (x) back into Eq. (8.14), we learn 
that the coefficient k a(x) is subject to the condition 

(8.16) 

Next, pass to a vector field ,p A = [ ,p 1 ,,pal, rr A 
= [rr l,~l. The supermomentum then consists oftwo 

parts, one corresponding to the spatial scalar ,p l' the other 
one to the spatial vector,pa. In the smeared form, 

H't. = f d 3x[rr 1(x)LN,p1(X) + ~(x)LN,pa(x)l· (8.17) 

Equation (8.13) then reads 

H't. + f d3x(~Nh1'~+~Nha .~)=O, 
and it splits into two parts, 

~N h1 + LN,p1 = 0, 

~N ha + LN,pa = O. 

(8.18) 

(8.19) 

(8.20) 

The first equation is our old equation (8.14) for the scalar 
field ,pl' It implies that 

h1 = -ka[X],p1.a +h [,p1,,pa]' (8.21) 

where k a[x] must satisfy Eq. (8.16), 

ON k a[x] = N a. (8.22) 

This enables us to rearrange the term 

LN,pa = L/jNk,pa = ~N Lk,pa (8.23) 

and rewrite the vectorial equation (8.20) in the form 

~N(ha + Lk,pa) = O. (8.24) 

It is easy to see that Eq. (8.24) has the general solution 

Ha = - Lk,p + ha [,p1 ,,pa ]. (8.25) 

Equations (8.12), (8.21), and (8.25) show that the gener­
ator K for the vector field must have the form 

K = f d 3x (k l[X ]P(x) - rr lLk,p1 

-rraLk,pa +hA(x)[,pB]rrA(x)). (8.26) 

Moreover, the Lie derivative terms in Eq. (8.26) yield the 
smeared momentum - H k • The generator (8.26) is thus 
weakly equivalent to the generator 

K = f d 3x(k1(X)[X ]P(x) + kO(x)[X ]Po(x) 

(8.27) 

Apparently, our procedure can easily be generalized to 
arbitrary tensor fields or collections of such fields. Summa­
rizing this part of our argument, we can conclude: 

Theorem: In field theories with a quadratic energy den­
sity (8.3), any generator K of a conditional symmetry is al­
ways weakly equivalent to a generator of the form (8.27), in 
which the coefficients k \ k a do not depend on the field var­
iables, and the coefficients hA do not depend on the hyper­
surface variables. Moreover, k 1 and k 0 are connected by Eq. 
(8.16). 

It is hard to draw further conclusions about mixed gen­
erators in an unspecified field theory. However, we are able 
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to proceed either if we limit our attention to the P-restricted 
generators, or if we fix the structure of the field theory. We 
shall follow these two routes in succession. First, we derive 
some general results for the P-restricted generators. Second, 
as a characteristic example, we show what is the most gen­
eral mixed generator in the Klein-Gordon field theory. 

For a P-restricted generator, the coefficient hA in Eq. 
(8.26) must vanish. We collect the surviving terms in the 
Poisson brackets (8.6) and (8.8), eliminating again the hyper­
surface momenta through the constraints (2.54). We end 
with the requirement 

[K(kl' HN];:::: f d 3xg1/2
• [ - (ON k1(x) + kaN.a)Tll 

+ (ON ka(x) + k1N·a -Nk1,a)T1a 

+ ~ Nk (a;bITab I = 0 

on the restricted generator. 
We say that the field is generic if the projections 

(8.28) 

Tll (x), T1a (x), and Tab (X) of its energy-momentum tensor 
can be arbitrarily varied along a hypersurface. For example, 
both the massive and the massless Klein-Gordon fields are 
generic in this sense because, by assigning the canonical var­
iables,p (x), rr(x) arbitrarily along a hypersurface, we can give 
the projections (2.34), (2.35), (2.30) any chosen values. For a 
generic field, Eq. (8.28) implies that the coefficients of 
Tll , T1a , and To b must vanish independently. The first two 
equations, 

DNk1= -kaN,o' (8.29) 

ON k a = - k1N,a + Nk1,a, (8.30) 

show that the coefficients k 1 and k a behave as projections of 
a spacetime vector field under hypersurface tilts. We have 
already chosen k 1 as a spatial scalar and k a as a spatial 
vector and we are thus able to conclude, by the reconstruc­
tion theorem of Sec. 2, that k a = k 1na + k a X ~ is the re­
striction of a spacetime vector field to the hypersurface: 

k a(x) [X] = k a(x (x)). (8.31) 

Taking into account not only the hypersurface tilts, but 
also hypersurface translations, we can now relate the normal 
changes ON k 1 and ON k a to the projections k a;/3 by Eqs. 
(2.16) and (2.17). On the other hand, we know that these 
changes must be given by Eqs. (8.29) and (8.30). This allows 
us to conclude that 

k1;1 = 0 = k'l;al' (8.32) 

Also, once we know that k 1 and ko are projections of a 
spacetime vector field (8.31), we are able to interpret k,o;b I' 
which up to now was a mere abbreviation for the expression 
(5.16), as the ab projection ofthe covariant derivative k,a;/3I' 
The remaining equation, 

k,a;bl =0, (8.33) 

following from Eq. (8.28) by varying Tab, ensures that this 
projection vanishes. Taken together, Eqs. (8.32) and (8.33) 
tell us that k a is a Killing vector field. This yields a theorem, 

Theorem: A generic field with nonderivative gravita­
tional coupling and a quadratic energy density (8.3) has a P­
restricted conditional symmetry if and only if the spacetime 
background has a Killing vector. 
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As a matter of fact, we know from Sec. 5 that such a 
symmetry necessarily reduces to an unconditional symme­
try. 

The whole argument can be generalized from generic 
fields to the fields restricted by the trace condition 

(S.34) 

Let Eq. (S.34) be the only restriction on the energy-momen­
tum tensor. Then, T H , T ia , and the trace-free part 
(} ab == Tab - j Ted Ifdg ab of the stress tensor can be assigned 
arbitrarily, while the trace Ted ged is obtained from Eq. 
(8.34). Varying Tia , we recover our old equation (S.30). The 
coefficient of 8ab in Eq. (8.2S) must be proportional to the 
metric, which leads to the equation 

k{a;b)=Agab (with A =~kC;e)' (S.35) 

The variation of Tll then yields 

ON k 1 + kaN,a - ~ AN = O. (S.36) 

Once more, Eqs. (8.30) and (8.36) imply that k 1 and k a 

have the correct behavior under hypersurface tilts. We can 
thus conclude that they are actually projections of a space­
time vector field (8.3 I) and that k(a;b) is the ab projection of 
the covariant derivative k{a;l3)' Comparing Eqs. (S.30) and 
(8.36) with Eqs. (2.16) and (2.17), we see that 

k (a;b) = A ~b, 

k{a;i) = 0, (8.37) 

kl;l=-!A. 

Equations (8.37) are all possible projections of the conformal 
Killing vector field equation 

k{a;l3) = A gap' (8.38) 

We have thus arrived at the following: 
Theorem: Let the energy-momentum tensor of a field 

with nonderivative gravitational coupling and a quadratic 
energy density (S.3) be freely specifiable on a spacelike hyper­
surface, except for the trace condition (8.34). Then, the the­
ory has a P-restricted conditional symmetry if and only if the 
background has a conformal Killing vector (8.38). 

This time we know that this symmetry is truly condi­
tional and cannot be reduced to an unconditional symmetry. 

9. CONDITIONAL SYMMETRIES IN THE KLEIN­
GORDON FIELD THEORY 

The theorems of the last section deal with the P-restrict­
ed generators. Let us now follow the second route, leaving 
the generators unrestricted, but fixing the structure of the 
field theory. We choose the simplest possible model, namely, 
a single real Klein-Gordon field. Our aim is to enumerate all 
possible conditional symmetries such a theory can possess. 

The energy density (2.34) of the Klein-Gordon field is 
of the type (8.3). The Poisson bracket [K{k)' H N ] is thus 
given by the expression (S.28). In fact, our general theorem 
for mixed generators shows that the coefficient of Tia must 
vanish, Eq. (8.16). We can thus express the Poisson bracket 
[ K{k)' H N ] explicitly as a function of the field variables by 
substituting into Eq. (S.2S) the expressions (2.34) and (2.35) 
for the energy density Tll and the stress tensor Tab of the 
Klein-Gordon field. 

1660 J. Math. Phys., Vol. 23, No.9, September 1982 

The mixed generator brings in two additional Poisson 
brackets, Eqs. (8.9) and (S.lO). However, again by our general 
theorem, the coefficients h A (x) cannot depend on X a and so 
the Poisson bracket (8.9) vanishes. For the Klein-Gordon 
field, the Poisson bracket (S.lO) takes on the form 

[K(h i' H t ] = f d 3X f d 3X' B (x, X')1T(X)1T(X') 

- fd 3x fd3x' N(x')h (x)oV(x') (9.1) 
o¢ (x) , 

where B (x, x') denotes the symmetric biscalar 

B (x, x') =! N(x') g-I/2(X')oh (x)/o¢ (x') 

+ (x +-+x'). (9.2) 

Putting the terms (8.28) and (9.1) together, we end with the 
conservation condition 

[K,HN ];:::: - f d3XA(x)~(x) 

+ f d 3X f d 3X' B (x, X')1T(X)1T(X') 

+ f d3x[_(ONkl+kuN,a+Nk',c)V 

+ Ng 1
/
2k u;b¢,a¢,b] 

- f d 3X f d 3X' N(x')h (x)oV(x') = 0 
o¢ (x) 

on the mixed generator. Here, 

A (x) 1 g--I!2(ON k 1 + k uN.u - Nk C;c). 

(9.3) 

(9.4) 

The main complication introduced by the mixed gener­
ator is the presence of the biscalar term (9.2) in Eq. (9.3). Our 
first step is to determine the biscalar and through it the form 
of the functional h (x)[¢]. 

The quadratic term and the absolute term in Eq. (9.3) 
must vanish separately. Substituting B (x, x') = A (x)o(x, x') 
+ C (x, x') into the quadratic term, we learn that 

f d 3X f d 3X' C (x, X')1T(X)1T(X') = O. 

As a consequence, C (x, x') must vanish and 

B (x, x') = A (x)o(x', x). 

(9.S) 

(9.6) 

To see what are the consequences ofEq. (9.6), replace h 
by a new variable 

Ii =h _ ~ gI!2¢. 
N 

Equation (9,6) then reads 

N(x') g-I!2(x')oh (x)/lJ¢ (x') 

+ N (x) g- 1/2(X)lJh (x')!o¢ (x) = O. 

(9.7) 

(9.8) 

It is true for an arbitrary N (x) if and only if Ii (x) does not 
dependon¢ (x'), Ii (x) = Ii (x)[X]'Ontheotherhand,fromthe 
last section we know that h (x) can depend only on ¢ (x') but 
not on X a(x'). The consistency ofEq. (9.7) thus requires that 

A 1/2_ IA- t - g - - 2 - cons, 
N 

h = fl = const. 
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Recalling the meaning of A, we see that 

DNk1+kaNa -N(k\ -A)=O. , , (9,10) 

This equation, together with Eq. (8.19), implies that the coef­
ficients k 1 and k a behave as projections of a spacetime vec­
tor field under hypersurface tilts. Once more we invoke the 
reconstruction theorem of Sec. 2 and conclude that such a 
field exists, Eq. (8.31). The comparison of the generic equa­
tions (2.16) and (2.17) with the specific equations (8.16) and 
(9.10) then reveals that 

k 1;1 = - k c;c + A 

and 

(9.11) 

k1a;1) = O. (9.12) 

At this point, we can also interpret k1a;b) as the ab projection 
of the spacetime covariant derivative k(a;IJ) . 

To complete the argument, we turn to the absolute term 
in Eq. (9.3). Using Eqs. (9.7), (9.9), and (9.10), we reduce it to 
the form 

f d 3x N [2V(A - ka;a) + j g I/2k a;arp,dJ,b 

(9.13) 

where (Jab = rp,arp,b - jrp,crp ,cgab is again the trace-free part 
of the stress tensor Tab' 

Because N (x) is arbitrary, the expression in the square 
brackets must vanish. We must now distinguish two cases: (I) 
m = 0, (II) m=lO. 

(I) m = O. Equation (9.13) reduces to 

2(A - i k c;c)V + gl/2k a;b(Jab = O. (9.14) 

At each point, V = ! gl/2~brp,arp,b and the trace-free (Jab can 
be considered as independent variables. Therefore, 

A -ikc;c =0, k(a;b) =Agab . (9.15) 

Contracting the second equation and comparing it with the 
first one, we learn that A = A. Equations (9.11), (9.12), and 
(9.15) then yield all possible projections 

k(a;b) = A gab' k 1a;1) = 0, k(l;l) = - A (9.16) 

of the spacetime equation 

k(a;IJ) =Agap · (9.17) 

We know that A is a constant and so k a is a homothetic 
motion. We can summarize our results in a theorem: 
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Theorem: The massless Klein-Gordon field always has 
the conditional symmetry 

K = fl f d 3X 1T(X). (9.18) 

Moreover, it has the conditional symmetry 

K = f d 3x[ k a(X(x))Pa(x) -! Arp (X)1T(X)) (9.19) 

if and only if the background admits a homothetic motion 
k a

, Eq. (9.17). 

(II) m =10. At a given point, the quantities V, (Jab' and rp 
can be considered as independent variables, All equations 
derived in Case (I) still hold, but Eq. (9.13) yields now an 
additional condition, 

m 2g 1/2(! Arp 2 + flrp ) = O. (9.20) 

Because rp is arbitrary, 

A =O=fl. 

The generator (9.18) disappears, while the generator (9.19) 
becomes P-restricted and k a turns into a true Killing vector. 
Hence: 

Theorem: The massive Klein-Gordon field has a condi­
tional symmetry if and only if the background has a Killing 
vector. 

We have thus proved that the Klein-Gordon field does 
not have any other conditional symmetries except those 
which we have already found in Secs. 5 and 7. 
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Time-dependent embeddings for Schwarzschild-like solutions to the 
gravitational field equations 
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An explicit formula for embedding the Schwarzschild solution in a three-dimensional flat space 
with indefinite metric for arbitrary Kruskal timelike coordinate v is presented. The time 
development of the Schwarzschild solution can then be represented by a succession of spacelike 
surfaces, each corresponding to a different value of v. It is seen that the standard representation of 
the Schwarzschild metric, the Flamm paraboloid, is in fact the v = 0 special case of a similar time­
dependent embedding in a three-dimensional Euclidean space with positive definite metric. 
However, this embedding is inadequate in that it is not defined for most values of v. Thus, the 
embedding in a space with indefinite metric is to be preferred. The results for the Schwarzschild 
case are found to be readily extended to all metrics of a certain class, and a general embedding 
formula for arbitrary v results. Embeddings for the Schwarzschild, de Sitter, and Reissner­
Nordstrom metrics are then special cases of this general form. It is seen that all such solutions 
behave similarly as v gets large. This suggests an alternate interpretation of the oscillatory 
character of the Reissner-Nordstrom "wormhole." 

PACS numbers: 04.50. + h 

I. INTRODUCTION 

The Schwarzschild line element for a body of mass m 
(Ref. 1) is given by 

ds2 = - <P dt 2 + <P - 1 dr + r dfl 2 , (1) 

where 

<P = 1 - 2m/r (2) 

and 

dfl 2 = dO 2 + sin2 0 d<P 2 (3) 

is the metric of a unit sphere. Various methods have been 
employed to visualize the geometry of spacetime which 
arises from this solution. One aproach has been to embed the 
entire four-dimensional manifold in a flat space of higher 
dimension. Kasner2 has shown that, excluding the trivial 
pseudo-Euclidean case, no four-dimensional manifold satis­
fying R,.v = 0 can be embedded in a five-dimensional flat 
space. However, Kasner,3 and later FronsdaV have embed­
ded (1) in a six-dimensional space. The geometry of the 4-
manifold can then be pictured by taking subspaces of the 
higher-dimensional flat space. 

A simpler approach is that first used by Flamm,5 which 
takes advantage of the spherical symmetry of the Schwarzs­
child solution. Taking a constant-time slice of the 0 = 1T/2 
plane yields the two-dimensional line element 

ds2 = <p -I dr + r difJ 2 , (4) 

which is then embedded by equating it to the metric of a 
three-dimensional Euclidean space6 (positive definite met­
ric): 

ds2 = dz2 + dr + rdifJ 2 • (5) 

Solving for dz2 gives 

dz2 = (<P -I - 1) dr, (6) 

which upon integration yields the well-known two-sheeted 

8) Present address: Department of Applied Mathematics and Theoretical 
Physics, University of Cambridge, Cambridge, England. 

Flamm paraboloid: 

z(r) = [8m(r- 2m)]lf2. (7) 

This equation corresponds to a surface with the topology of 
an Einstein-Rosen bridge/ or "wormhole," connecting two 
asymptotically flat universes. The "throat" of the bridge has 
a narrowest region in the z = 0 plane, where the two uni­
verses join along a circle of circumference 41Tm, or, taking 
into account the O-coordinate, along a sphere of surface area 
161Tm2. 

The Reissner-Nordstrom solution for a body of mass m 
and electric charge q is given by an expression similar to (1): 

ds2 = - <p dt 2 + <p -I dr + r dfl2 , (8) 

where 

(9) 

and dfl 2 is as before. An identical procedure to that outlined 
above, with m > Iql, gives the embedding formula8

: 

J[ l <P]1I2 
z(r) = T dr 

= dr, J [ 2mr - q2 ] 112 

(r-r+Hr-r_) 
(10) 

where r ± = m ± (m2 _ q2)lf2. 
Both these embeddings suffer from an inability to pro­

vide any geometrodynamic information, that is, neither can 
indicate how the curved space develops in time. Yet both the 
Schwarzschild and Reissner-Nordstrom solutions are 
known to exhibit quite dramatic time evolution. Kruskal 
diagrams9 indicate that the Schwarzschild "throat" pinches 
off in a finite time lO and the Reissner-Nordstrom "throat" 
oscillates between a minimum and maximum circumference 
of 21Tr _ and 21Tr +. 8 

In this paper, we develop a method for embedding any 
solution of the form 

ds2 = - <p dt 2 + <p -I dr + r dfl2, 
<p = <P(r) (11) 
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at an arbitrary, but explicit, Kruskal-like time coordinate v. 
That is, we are able to portray precisely, rather than merely 
qualitatively, embeddings which include the effectively 
time-dependent nature of certain black-hole type solutions. 
The time development of the solution can then be represent­
ed as a succession of spacelike surfaces, each surface corre­
sponding to a different value of v. These surfaces are only 
defined for all v if the flat embedding space is endowed with 
an indefinite metric. It will be seen that the standard 
Schwarzschild and Reissner-Nordstrom embeddings dis­
cussed above are actually special cases, at time v = 0, of the 
embeddings which result from a similar procedure in which 
a flat space with positive definite metric is used. Such an 
embedding is found to be undefined (becomes imaginary) for 
most values ofv. We suggest it is physically more appropri­
ate, in representing solutions to the field equations, to use 
embeddings that avoid such behavior. 

In Sec. II, we present two methods for obtaining such 
an embedding for the Schwarzschild metric (1). A succession 
of surfaces at different v is given, and the v = 0 surface is 
compared to the standard Flamm embedding. In Sec. III, 
with a slight extension of the general Kruskal-like transfor­
mations of Graves and Brill,8 we generalize one of the meth­
ods of Sec. II to any metric of the form (11). In Sec. IV, we 
consider several special cases of this general form, including 
the Schwarzschild and Reissner-Nordstrom metrics. It is 
seen that all solutions of the form (11) must exhibit similar 
behavior as v goes to ± 00. Consideration of the dissimilar 
time evolutions of the Schwarzschild and Reissner-Nord­
strom solutions, in the light of this result, suggests an alter­
nate view ofthe oscillatory behavior of the Reissner-Nord­
strom "wormhole." Rather than crediting the pulsation in 
time to the separate and opposing actions of gravitational 
pull and Maxwell pressure,8 it is simpler to take the view that 
the portrayal of the full manifold which results from solving 
the equations RJw = - 81TTl-'v for a spherical mass endowed 
with charge requires a timelike coordinate v that is itself 
oscillatory. 

II. EMBEDDING THE SCHWARZSCHILD METRIC AT 
ARBITRARY v 

The well-known Kruskal transformation9 giving the 
maximal analytic extension of the Schwarzschild solution is 

{U} = (1 _ r12m)1/2 exp(rI4m) {Sinh(t 14m)} (12) 
v cosh(t 14m) 

for r < 2m, and 

{U} = [(rI2m) _ 1] 1/2 exp(rI4m) {C?Sh(t 14m)} (13) 
v smh(tI4m) 

for r> 2m. The line element, now free of the coordinate 
("pseudo") singularity at r = 2m, becomes 

ds2 =p( - dv2 + du2) + r dIJ 2, (14) 

where 

j2 = (32m3Ir) exp( - rI2m), (15) 

and dIJ 2 is as before. 
Our goal is to embed the () = 1T /2 plane of ( 1 ), 

ds2 = - <Pdt 2 + <P -I dr + rdtfJ2, (16) 
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into a flat space with metric given by 

ds'- = - dr + d~ + r dtfJ 2 • (17) 

The choice of this particular metric will be discussed shortly. 
We eliminate dt 2 from (16) in such a way that the time depen­
dence of the metric remains explicit. This is done by solving 
Eqs. (12) and (13) for t as a function of v = const, differentiat­
ing, and squaring the result. II We obtain 

dt 2 = v2(rI2m) dr 
[v2 _ (1 _ rI2m)exp(rI2m)] [1 _ rl2m] 2 (18) 

for r both greater and less than 2m. Equation (16) then be­
comes 

ds2 = [ (rI2m)exp(rI2m) ] dr + r dtfJ 2. (19) 
v2 - (1 - rI2m)exp(rI2m) 

Equating Eqs. (19) and (17) gives the embedding formula: 

dz = [ (rI2m)exp(rI2m) + 1] 112 dr. 
v2 _ (1 _ rI2m)exp(rI2m) (20) 

The same equation, with a useful intermediate result, is 
more easily obtained by setting v = const. in Eq. (14). Equa­
tions (12) and (13) give 

U
2 - v2 = - (1 - rI2m)exp(rI2m) (21) 

or 

U = [v2 
- (1 - rI2m)exp(rI2m)] 1/2 (22) 

for all r. We therefore have the requirement that 

v2 exp( - rI2m»(1 - rl2m) . (23) 

This inequality, which is independent of the signature of the 
space in which we embed our metric, is a particulary com­
pact representation of the time evolution of the Schwarzs­
child solution, as shown in Fig. 1. 

Differentiating (22) with v = const, we obtain 

du = (r/8m2)exp(rI2m)[v2 - (1 - rl2m) 
xexp(rI2m)]-1/2 dr. (24) 

·:t 
.~ 
05~ 
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o 0.5 
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15 
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FIG. 1. The inequality v2e - '> 1 - r (we have set 2m = 1), a necessary con­
dition for the Schwarzschild solution in Kruskal coordinates to be embed­
ded for arbitrary v, is a particularly simple representation of the solution's 
development in time. The embedding is defined only when v2e - '(solid lines) 
is greater than 1 - r (dashed line). The number attached to each curve indi­
cates the corresponding value of Ivl. At Ivl = 0, the "throat" has minimum 
radius 1; as Ivl increases, increasingly smaller values of r are allowed (the 
"throat" contracts). Finally, at Ivl = ± 1, r can equal zero (the "throat" 
pinches oft). 
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Substituting this expression into (14) and equating to (17) 
yields the embedding formula (20) immediately. 

Had we used the positive definite metric (5) for our flat 
embedding space, rather than the indefinite metric (17), we 
would have obtained 

dz= [ (r/2m)exp(r/2m) _1]112 dr (25) 
v2 - (1 - r/2m)exp(r/2m) 

as our embedding formula. At the Kruskal time v = 0, this 
reduces to 

dz = [ (r/2m) _ 1] 112 dr = (f/> -I _ 1)1/2 dr, (26) 
(r/2m) -1 

which is just the Flamm embedding (7). We therefore see that 
the Flamm paraboloid is a special case of the time-dependent 
embedding (25). However, it is clear that the square root in 
this equation becomes imaginary for many realizable values 
of rand v. First write Eq. (25) in the form 

dz= dr. [ 
exp(r/2m) - v2 

] 112 

v2 - (1 - r/2m)exp(r/2m) 
(27) 

Equation (23) guarantees that the denominator of this 
expression is positive. Equation (27) will therefore be unde­
fined (have imaginary square root) whenever 

v2 > exp(r/2m) . (28) 

Such a result is unsatisfactory; we expect a physically accep­
table representation of our curved space to be well defined 
for all-time v. This suggests that (20) is a more appropriate 
choice than (25), which in turn indicates that the v = 0 spe­
cial case of (20) is a more appropriate embedding than the 
Flamm paraboloid. 

This result is not surprising. We should expect the 
Schwarzschild line element to require a space of indefinite 
metric to be embedded for all v. In order to embed an n­
dimensional surface given by 

n-I 

ds2 = I g!'v dx!, dxv (29) 
U,v=o 

in an m-dimensional flat space of arbitrary signature, with 
metric 

m-I 

ds2 = I a j dJ; , (30) 
j=O 

where/; =/;(xj'and a j = ± 1, we must have 
n-I m-I 

ds2 = I g!'v dx!, dxv = I a j df; 
u.v=o ;=0 

m - I n - I a/; a/; 
= '" '" a· -' -' dx dx 4", 4- I f..t. v' 

j=O u,V=O ax!, axv 
(31) 

whence, 

m-I a/; a/; 
g!'v = I a j --. (32) 

j=O ax!, axv 

Symmetry of the metric tensor g!'v in this equation gives 
!n(n + 1) first-order partial differential equations in the m 
unknowns/;(x). If there are no inconsistencies in the equa­
tions, we have the standard result that any n-dimensional 
manifold can always be embedded in a flat space of dimen­
sionm;;;.!n(n + 1).12 In the case of the Schwarzschild metric, 
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we have goo = - 1IgII and the equations are not consistent. 
Equation (32) yields 

m-I a/; a/; 
goo= -f/>= I a j -' -', 

j=O aXo axo 
(33) 

and 

_I m-I a/; a/; 
gil = f/> = I a j -a. -a. ' 

j=O XI XI 
(34) 

which give 

m - I (a/; )2 [ m - I (a/; )2] -1 I a j - = - I a j -

j=O axo j=O aX I 

(35) 

However, given a positive definite metric (aj = 1 for all i), 

m - 1 ( a/;)2 m - 1 ( a/; )2 I a j -' = I -' ;;;.0 
j=O axv j=O axv 

(36) 

for any v. Equation (35) therefore shows the impossibility of 
embedding the entire Schwarzschild manifold in a positive 
definite Euclidean space. The case v = 0 is, of course, an 
exception to this result. If v = 0, then r> 2m, and (13) shows 
that t = 0 identically for any allowable r. The Schwarzschild 
metric is then no longer indefinite (since dt = 0), and for this 
special case the entire manifold can thus be embedded. \3 

To show the time evolution of the Schwarzschild solu­
tion using embedding diagrams, we choose different con­
stant values of v in (20). For a given v, the equation can then 
be integrated numerically to give a spacelike two-dimension­
al surface. It is clear from (20) that the time evolution ofthe 
manifold is symmetric in v about the value v = 0, and that, as 
v goes to ± 00, z(r) = r. Embeddings for illustrative values of 
v are shown in Figs. 2 and 3. Of particular interest is the 
v = 0 embedding, corresponding to the maximum size of the 
Schwarzschild "throat." At v::::: 0, (20) can be integrated ex­
actly to give 

4 

3 

N 2 

z= V2 f[ r-m ]1I2 dr =[2(r_m)(r_2m)]1/2 
r-2m 

V2 [(r - 2m)1/2 + (r _ m)1/2] 
+--mlog . 

2 (r - m)1/2 - (r - 2m)l12 

.95 

.85 

o 

~- --,--------, 
0.5 1 1.5 2 

r 

(37) 

FIG. 2. Equation (20) gives an embedding of the Schwarzschild solution for 
any Kruskal-time v. Substituting into (20) a constant value of lvi, the equa­
tion can be numerically integrated to givez = z(r). Here we show the embed­
ding corresponding to Ivl = 0 (maximum size of "throat"), Ivl = 0.85, 0.95 
("throat" contracts), and Ivl = 1 ("throat" pinches oft). To obtain the entire 
two-sheeted embeddings, the curves must be rotated about the z axis, and 
reflected across the z = 0 plane. We have set 2m = 1. 
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tOl 

t5 
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FIG. 3. Identical to Fig. 2, for the cases Ivl = I, 1.01, 1.5,5. The Schwarzs­
child "throat" approaches the line z = r as Ivl grows large. 

This new v = 0 embedding is compared to the standard 
Flamm embedding in Fig. 4. It is seen that the behavior of 
the new embedding is qualitatively similar to that of Flamm: 
the "throat" has a narrowest radius of f = 2m in the z = 0 
plane, and the surface is asymptotically flat at large f. 

III. THE GENERAL CASE 

Graves and Bri118 have given a general Kruskal-like 
transformation to remove pseudosingularities from metrics 
of the form (11), of which the Schwarzschild, de Sitter, and 
Reissner-Nordstrom metrics are special cases. It is assumed 
that rfJ If) has zeroes or poles Ithe pseudosingularities) which 
are to be eliminated by transforming f and t to new coordi­
nates U(f,t) and V(f,t ), in terms of which light continues to 
travel along lines of slope ± 1. In such coordinates, the met­
ric (11) takes the form 

dr = f2(U,v)(du2 - dv2) + r(u,v) dfJ 2 , (38) 

where 

P(u,v) = 41 (f) exp( - 2rr*)/4A 2y2 (39) 

and 

6 

4 

N 

2 

o L-~-,-- ----,---------, 
o 234 

r 

FIG. 4. The well-known Flamm paraboloid (7) is the Ivl = 0 special case of 
an arbitrary v embedding into a space with positive definite metric (25), and 
is given by the solid line. The Ivl = 0 special case of an embedding in a space 
of indefinite metric, (37), behaves similarly (dashed line); its minimum radi­
us is I, and it is asymptotically ftat for large r. Both curves are to be rotated 
about the z axis and reftected through the z = 0 plane to give the full two­
dimensional embedding. 
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r* = J dfl<P (f) . (40) 

A is an arbitrary scale factor and y is a constant chosen so 
that (39) is regular at the pseudosingularity lifmore than one 
such singularity exists, several coordinate patches may be 
required). The coordinate transformation itself is given as, 

{u(r,t)} = 2A ex I r*) {cOSh(rt )} 
v(r,t ) p y sinh(rt) 

with the inverse transformation given implicitly by 

u2 - v2 = 4A 2exp(2yr*) , 

t = (1I2y)tanh- I [2uv/(u2 
- v2

)]. 

Equation (42) gives 

u = [v2 + 4A 2exp(2yr*W/2 . 

(41) 

(42) 

(43) 

(44) 

Differentiating this equation and substituting into (38), with 
v = const., yields 

ds2 = 4A 241 -1(r)exp(2yr*) 

X [v2 + 4A 2exp(2rr*)]-ldr + r dfJ 2. (45) 

Equating (45) and (17) then gives 

dz= + 1 dr. [ 
4A 2 exp(2yr*) ] 1/2 

41 (rHv2 + 4A 2 exp(2rr*)] 
(46) 

We therefore have a general procedure for embedding any 
metric of the form (11) at arbitrary time v. Finally, we note 
that (44) provides the general requirement 

v2
;) _ 4A 2 exp(2yr*) . (47) 

IV. APPLICATIONS 

For the Schwarzschild metric, Graves and Brill put 

y = 114m, A = !, 41 = (1 - 2m/r), 

r* = r+ 2m log(r- 2m). (48) 

These values give the transformation equations 

{u} = ( _ 2 )1/2 (/4) {COSh(t 14m)} r m exp r m . h( I ) . v smt4m 
(49) 

Clearly, however, these equations are not valid when r < 2m. 
We therefore choose r* = r + 2m log\r - 2m\ in general, 
and, in addition to (49), take 

{u} = 2A ex ( r*) {Sinh(rt )} 
v p y cosh(rt) 

(50) 

for the Schwarzschild metric in the case r < 2m. The inverse 
transformation (42)-and hence our embedding formula­
now remains unique regardless of the value of r. Finally, to 
bring our results completely in line with the transformation 
ofKruskal, we take A = 1I(8m)1/2. Substitution of these val­
ues into (42) reveals that the Schwarzschild embedding of 
Sec. II is a special case of the general procedure presented in 
Sec. III. 

As a second example, consider the metric of the de Sit­
ter universe in the static frame. 14 We have • 

(51) 

where 0 < r < R. We restrict our discussion of this metric to 
the inequality (47), which, with 
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R (R + r) r* =-log -- ; 
2 R-r 

1 
Y = --·A = 1 R' , (52) 

becomes 

v2(R + r);;.4(r - R). (53) 

This inequality indicates that r cannot become infinite unless 
Ivl ;;'2, in agreement with the usual result. 15 

Finally, we consider the Reissner-Nordstrom metric 
(8), restricting ourselves to the case in which the mass ex­
ceeds the value associated by general relativity with the 
charge 

(54) 

where both are in units of centimeters. While such a restric­
tion avoids so-called "naked" singularities, 16 the physical 
significance of this metric remains unclear. Misner and 
Wheeler17 have shown the condition (54) to be incompatible 
with a nonclassical description of charge and mass. In addi­
tion, it has recently been shown that a gravitational collapse 
to the Reissner-Nordstrom singularity is impossible for a 
broad class of boundary-surface histories. IS 

With the condition (54), the metric has two pseudosin­
gularities at 

r ± = m ± (mZ - q2)1/2. (55) 

Two coordinate patches (i,)) are thus required in the neigh­
borhoods of r + and r _. Graves and Brill give 

r*=r+( r+ )IOg(r-r+) 
r+ -r_ 

_( r_ )IOg(r-r_) (56) 
r+ - r 

and 

(57) 

which yield the transformation 

{
Ui } a. {COShYit} =2A(r-ri)I/Z(r-rj)Jexp(Yir) . h ' 
Vi sm Yi t 

(58) 

where 

a j = - ~(r/r;)2 , (59) 

with (i,)) = ( +, - ) or ( - , + ). As in the Schwarzschild 
case, however, these equations need to be generalized for 
values of r other than r> r + > r _. Our criterion is that the 
inverse transformation (42) remains unique for each coordi­
nate patch. Thus, our transformations becomes 

r* = r + ( r+ ) loglr - r + I 
r+ - r _ 

_ ( r_ ) loglr _ r _I (60) 
r+ -r 

and 

{
U

i
} IllizI laj ( )/3 Vi = 2A r - ri r - rj exp Yi r i' 

where a j is as before and 

1666 

_ {COSh Yi t} /3-
I sinh Yi t 

or {Sinh Yi t} , 
cosh Yi t 
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(61) 

(62) 

depending on the sign of Ir - r i Ilr - rj I
zaj 

relative to 
2a· 

(r - ri)(r - rj ) J. 
We can substitute these values into (46) to obtain an 

embedding for the Reissner-Nordstrom solution at arbi­
trary v. In particular, the V = 0 embedding 

f [ 1 + <P (r) ] 1/2 z(r) = dr 
<P(r) 

(63) 

differs from the Flamm-like embedding (10), which results 
from a flat space with positive definite metric. 

Rather than utilizing two coordinate patches, we could, 
at least formally, follow a similar embedding procedure in 
the extended Reissner-Nordstrom manifold. Here the met­
ric (8) may be written 19 in the form 

dsz = FZ( - dt/? + ds 2
) + r dfl 2, (64) 

where 

F = F(t/J,s); r = rit/J,s) (65) 

and dfl is the usual spherical surface element. However, the 
complicated nature of the transformations (65) indicates that 
it is in practice simpler to use the series of coordinate patches 
(i,}) given by Graves and Brill. 

Finally, we wish to consider the time development of 
the manifold. Consider the general embedding equation (46), 
of which that of the Reissner-Nordstrom metric is a special 
case. It is clear from (46) that, as we let tile absolute value ofv 
in our constant time embeddings grow large, the equation 
goes to 

z(r) = f dr = r , (66) 

which is pinched off at r = 0 in the z = 0 plane. In particular, 
this same behavior holds for the Reissner-Nordstrom em­
bedding. Yet it is known that the radius of the "throat" for 
this metric must pulsate periodically in time. This pulsation 
has been credited to a "cushioning" by Maxwell pressure of 
the electric field through the "throat."g From a considera­
tion of the embedding formula, however, in which the effect 
of the presence of electric charge is taken into account by the 
values assigned r* and Y, it seems the "throat" must pinch off 
as in the Schwarzschild case. This does not take place be­
cause Ivl never goes to infinity; for an observer on the 
"throat" (u = 0 in the first patch), V reaches a maximum 
value of 

VZ = 4A 2 exp(2y + rc)(r + - rc)(rc - r _)2a , (67) 

where 

and 

r + > rc > r _ . (69) 

At this value of r = rc , the observer crosses into the second 
patch. Upon return to a patch identical to the first, the ob­
server moves only between two finite values of v, again de­
parting the patch at a time v given by (67). That is, Ivl never 
approaches infinity, but rather, oscillates between finite val­
ues. We adopt the view that the Reissner-Nordstrom 
"throat" pulsates because the timelike coordinate needed to 
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describe both patches of the manifold which results from a 
spherically symmetric mass and charge distribution must 
itself be oscillatory. 
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We study the canonical vacuum structure of Yang-Mills theories defined on an arbitrary 
(nonsimply connected) three-space. We find that the presence of flat Y ang-Mills connections with 
a nontrivial (discrete) holonomy group has profound consequences at the quantum level. In 
particular, such connections may lead to either an increase or a decrease in the number of 
quantum vacuum sectors. Our method consists of finding a representation for the space of 
classical zero-energy field configurations in terms of a function space 2J. A simple assumption 
concerning the physical equivalence of these classical configurations then permits a formal 
classification of the quantum vacua by the zeroth homotopy set 1To(2J). Significant progress is 
made in the analysis of 1To(2J) for arbitrary three-spaces and gauge groups, and several specific 
questions concerning the vacuum states and their diagonalization are answered. 

PACS numbers: 04.50. + h, 11.10.Np 

1. INTRODUCTION 

In spite of an ever-increasing level of activity, the quan­
tization of the gravitational field remains an unsolved prob­
lem. Currently, much effort is devoted to showing that the 
N = 8 supergravity theory is finite, order by order in pertur­
bation theory. I However, there has always been a school of 
thought which maintains that progress in quantum gravity 
can only be achieved through a deeper understanding of the 
underlying conceptual and technical structures. In particu­
lar, attention has been focused on the possibility that, at the 
Planck length (GIi/C 3

)1/2;::: 10- 33 cm, the topological pro­
perties of space and time may differ greatly from those that 
are implicit in conventional perturbative quantum gravity. 
Even if supergravity theory is found to be finite, a number of 
deep and fascinating questions will still exist concerning the 
role of spacetime topology. 

This interest in spacetime topology has inspired many 
studies of quantum fields propagating on a spacetime mani­
fold M whose metric is fixed and unquantized. The aim is to 
abstract the effects which are a direct result of the topologi­
cal properties of M from those arising from the background 
metric. The present paper lies within this category and con­
tains some initial results of an investigation into the vacuum 
structure of a canonically quantized Yang-Mills field wI' 

that is defined on an arbitrary, orientable, Coo three-mani­
fold~. It is technically convenient to assume that ~ is com­
pact-a condition that could arise in practice by imposing 
vanishing boundary conditions on gauge fields originally de­
fined on a noncom pact space. According to the Poincare 
conjecture almost all three-manifolds are not simply con­
nected and, as we shall demonstrate, this leads to a vacuum 
structure which differs significantly from that arising in the 
conventional flat-space theory where R3 is compactified to 
S3. 

We employ the timelike gauge Wo = 0 and look for clas­
sical Yang-Mills fields Wi (x)(i = 1,2,3) which satisfy the zero 
energy condition Fij = 0 (vanishing field strength) with the 
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usual assumption that a quantum vacuum functional ¢[w] is 
peaked around such a configuration.2 On S 3, the only solu­
tions to F ij = 0 are of the form 

(1.1) 

where n is a gauge function (i.e., a map from S 3 into the 
symmetry group G ). Clearly Wi (x) is a gauge transform of the 
zero Yang-Mills field. 

When 1T1(~ )#0 two new features arise which are most 
clearly seen by adopting the standard mathematical picture 
of the Yang-Mills field as a connection in a principal Gbun­
dIe. Now principal G bundles over Snare classified by 
1T n _ 1 (G ). 3 However, 1T 2( G) = 0 for any Lie group and hence, 
in the usual flat space S 3 picture, the bundle associated with 
the canonical fields is automatically trivial. Nontrivial bun­
dles only arise in space and. time considerations of vacuum 
tunneling. The situation is different for a general three-mani­
fold ~ (since Gbundles are now classified by elements4 of the 
cohomology group H2(~;1Tl(G ));:::Hl(~;1Tl(G)) and some of 
these bundles may admit flat connections (Le., Fij = 0). It is 
clearly impossible to construct spacetime fields wi(x,t) 
which interpolate between two connections in different bun­
dles and hence tunneling between bundle sectors cannot oc­
cur. In this sense the "topological charges" in H2(~;1TI(G)) 
can be regarded as labels for a type of superselection sector. 
We will only consider the case where the G bundles over ~ 
are trivial and will defer discussion of the general situation to 
a future publication. 

The second and major effect of 1T 1 (~ ) # 0 is the possible 
existence of zero energy Yang-Mills fields which are only 
locally like (1.1) and must be gauge patched globally. These 
arise when the holonomy group (a discrete subgroup of G) of 
the connection is non vanishing. 5 Since F ij = 0, parallel 
transport around a curve in ~ depends only on its homotopy 
class and hence leads to a homomorphism from 1T I (~ ) into 
G.6 We shall see in Sec. 2 that the converse is also true and 
any such homomorphism induces a flat connection in a G 
bundle over ~. 

The effect of non vanishing holonomy becomes appar­
ent when we consider the problem of identifying classical 
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vacua. Two solutions (U and m of Fij = 0 can be regarded for 
quantization purposes as being physically equivalent ifthere 
exists a one-parameter family of flat connections (U(A. ) with 
(U(O) = (U and (U(l) = m. Under these conditions (U and m may 
be joined by a path in time with an arbitrarily small action. 
Equivalently, an adiabatic movement from one configura­
tion to the other may be initiated by imparting an arbitrarily 
small amount of energy to the system. The quantum vacuum 
states are to be labeled2 by the equivalence classes of such 
solutions and the purpose of the present work is to identify 
these classes for arbitrary ~ and G. When ~ = S 3, only the 
pure gauge configurations (1) exist and two connections are 
physically equivalent if and only if the corresponding gauge 
functions [J are homotopic. This leads to the usual labeling 
of the quantum vacua by the homotopy classes of functions 
fromS 3 intoG, i.e., bY1T3(G ).2Thehomotopyclasses[~,G )of 
gauge functions from a general~ into G may be classified7 by 
elements of H 1(~;1TI(G)) and H3(~;1T3(G)) which we shall 
refer to as the primary and secondary cohomology classes or 
"winding numbers." However, labeling the quantum states 
by [~,G) would be incorrect as it ignores the existence of 
connections with nonvanishing holonomy. Such connec­
tions may give rise to an interpolating path of zero energy 
Yang-Mills potentials which renders two connections phy­
sically equivalent even though their primary and/or secon­
dary winding numbers are different. This collapsing ofvacu­
um sectors is easily illustrated when G = UI since any pair 
of flat connections (U and m may be linked by the (flat) affine 
sum 1t{U + (1 - It )iiJ (for a concrete example see Sec. 2. B). 
Alternatively the presence of holonomy can increase the 
number of sectors. For example, if ~ = RP 3 and G = SU2, 
then 1Tl(~) = Z2 = (e,a) and connections with the holonomy 
group Z2 exist which cannot be linked by a zero energy path 
to the pure gauge configurations. In this case (Sec. 4.A) each 
holonomy sector is associated with a countable set of wind­
ing numbers and hence the total set of vacuum sectors has 
twice the number of elements that would arise if holonomy 
were overlooked. 

It is clear from the definition of physical equivalence 
that the main task is to construct a mathematical representa­
tion of the space of zero energy connections and find the set 
of arc connected components. This zeroth homotopy set will 
then become the labeling set for the quantum vacuum sec­
tors. We shall exhibit such a representation, 9, in Secs. 2 
and 3 and show that this space is a principal bundle over a 
certain subset of the set of homomorphisms from 1T1(~) into 
G with fiber the topological group of gauge functions. Valu­
able information on 1To(9) can be extracted from the homo­
topy sequence of this bundle (Sec. 4.A) which is used in Sec. 
5, to derive specific results. The problem of diagonalizing the 
resulting states and tunneling amplitudes is discussed in 
Sec.4.B. 

All spaces will be assumed to possess a preferred base 
point and, unless stated to the contrary, all maps will be base­
point preserving. The set of such maps between two spaces X 
and Y is denoted Y x and the set of base point preserving 
homotopy classes will be written [X,Y). The set of r-times 
differentiable maps between two Coo-manifolds M and N is 
written C '(M,N ). 
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The preliminary results of our investigation were sum­
marized in Ref. 8. 

2. FLAT CONNECTIONS 
A. Construction of flat connections 

We start by reviewing briefly a standard technique9,IO 
for constructing principal G bundles with flat connections. 

"'-
Let ~ denote the universal covering space of ~ and let 
Hom(1T 1 (~ ),G) be the set of homomorphisms from 1T I (~ ) into 
G. Then l' is a principal1T I (~ )-bundle over I and, given any h 
in Hom(1TI(~ ),G), leads naturally to a principal G-bundle. 
More precisely we define l X h G to be the set of equivalence 
classes under the 1T I (~ ) action, 

y:.I X G_l X G, 

(y, g)--'(yy,h (y-I )g), (2.1)' 
"'-

where yy denotes the usual action of yE1T I (~ ) on~. Then the 
"'-

C 00 manifold ~ X h G is a principal G bundle over ~ under 
the group action 

g':.I XhG-l XhG, 

[y, g) -- [y,gg'), (2.2) 

with projection map rdefined by r[y, g): = r(y), where ris the 
"'-

natural C 00 map from ~ onto ~. 
Let t -- x, be a differentiable loop in ~ starti~ at the base 

point xo~ and let t --y, be the covering path in I starting at 
the base point YoEI. Then the horizontal lift of x, in l X h G, 
passing through the point [Yo, g), is defined to be 

t __ [y"g]. (2.3) 

Now YI = Yoy, where YE1TI(~) is the homotopy class of the 
loop t -- x,, and hence 

[YI' g) = [yoy, g) = [Yo,h (y)g) = [Yo, g]g-Ih (y)g, (2.4) 

which shows that the holonomy group of the point [Yo, g) is 
Adg-Ih(1TI(~ )). 

Different homomorphisms may induce inequivalent G 
bundles but in the present paper we will only consider the 
product case. Thus let !!It denote the set of all elements h of 
Hom(1TI(~ ),G) such thati X h G is isomorphic to the trivial 
bundle~ X G. For any such homomorphism there is a trivia­
lizing bundle map: 

iXhG-~ XG, 

[y, g)--(r(y),D (y)g), (2.5) 

with 

D (yy) = D (y)h (y) for all y in 1TI(~). (2.6) 

The condition (2.6) on the map D froml into G ensures that 
(2.5) is independent of the choice of representative elementsy 
and g in the equivalence class [y, g). In terms of the fixed 
product structure ~ X G, the horizontal lift (2.3) becomes 
t--(x"D (y, )g), which is to be compared with the lift t __ (XI' g) 
corresponding to the trivial connection in~ X G with a van­
ishing Yang-Mills field. Using standard results in Ref. 6 it 
follows that the Yang-Mills field on ~ X G associated with 
the homomorphism h, is the Lie-algebra-valued one-form on 
~, 

(2.7) 
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where a; is defined by lifting the local coordinates in ~ to I. 
By virtue of (2.6), the righ~::hand side of (2.7) is independent 
of the pointy in thefiberin~ lyingoverxE2:. Equivalently, w 
may be defined as the projection into ~ of the 1T1(~ )-invar­
iant, Lie-algebra-valued one-form on.I, D - 1·(0), where Ois 
the Cartan-Maurer form on G. 

Since every fiat connection on ~ X G'can be obtained in 
this way9 we see that the set ofzero energy C 00 Yang-Mills 
fields on the trivial G bundle is in bijective correspondence 
with the set 

ii'(ool: = {DeC oa(I,G)13he~ such that 

D (yy) = D (y)h (y)'Vye1TI(~))' (2.8) 

Note that gauge transformations appear in the form 

D (y)~!}(r(y))D (y). (2.9) 
If w\OI = D (O)a;D (0)-1 and Will = D (l)a;D (1)-1 then a 

one-parameter family w~") of interpolating fiat connections 
may be written as 

wnx) = c .. (y)a;c .. (y)-I with C .. (yy) = C .. (y)h .. (y), 
(2.10) 

where Co = D(O), CI = D(I),andA~h .. isapathin~ whose 
end points are the homomorphisms producing the functions 
D (0) and D (I). 

B. A U1 example 

To illustrate these ideas consider a Ul example with 
A 

~ = S I (hence ~ = R). Let D Il)(y) = ei21Tny and 
D (2)(y) = e,'21Tm

y
• Then, if S I is parametrized by an angle 0 

lying between 0 and 1, the period of the covering space R is 
one and D (I) and D (2) correspond to pure gauge functions 
with primary winding numbers nand m and potentials 
w~1 = - i21Tn and w~1 = - i21Tm, respectively. The affine 
sum wI") = AW~I + (1 - A )U)~) is associated with the func­
tion C .. (y) = expi211}'! An + (1 - A )m ), which satisfies 

C .. (y + 1) = C .. (y)exp!i21TA (n - mlJ (2.11) 

and the holonomy group of wI" ) is Z if A is irrational and 
Z(q.n _ m) if A = pi q with p and q having no common divisors. 
Note that although C .. interpolates smoothly between D (I) 

and D (2) the holonomy group changes discontinuously. 

3. TOPOLOGICAL PROPERTIES OF i» 
A. The topology on i» 

In Sec.} we constructed Coo connections using Coo 
maps from~ into G. However, it is difficult to decide a priori 
what degree of differentiability is really appropriate. In or­
der that Fij can be constructed, the functions D from ito G 
must be at least twice differentiable and it is natural to extend 
the treatment of Sec. 2 to C r fields and define 

ii'(rl : = IDec'r)(i,G)13he~ such that 

D(yy) = D(y)h (y)'Vye1Td~ lJ. (3.1) 

Thus in principle we might obtain different vacuum-state 
classifications by 1To(g(rl) for different r's. 

This problem cannot be resolved without first specify­
ing the function-space topologies. Again there is no obvious 
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unique choice but there are two natural requirements. The 
gauge transformation map (cf. 2.9) cr(~,G)xglrl_glrl, 
(!l,D )~!l.rD, should be continuous and if D n is a convergent 
sequence (or net) of Clrl functions, then DnaiD n- I should 
also converge. These criteria are met easily by emJ>loYing the 
compact open C r topologies on C r(~,G) and C r(.2',G ) and by 
giving girl the subspace topology. In the Appendix we prove 
the useful result that, for all r, 1To(glrl) = 1To(g(OI). This ena­
bles us to concentrate On the space g =g(OI which is readily 
subject to an algebraic-topological analysis. 

B. The bundle of flat connections 

The continuous action in Sec. 3.A of G Ion g is free 
and suggests that g might be a principal G bundle over the 
quotient space giG I. Moreover giG I is clearly in bijec­
tive correspondence with ~ via the projection map which 
associates with each Deii' the homomorphism h for which 
D (yy) = D (y)h (y). If g were indeed a bundle over ~ the as­
sociated homotopy exact sequence would provide potent in­
formation on 1To(g). 

The first step is to put a suitable topology on 
Hom(1T I (.2' ),G). Since 1T I (~) is a discrete group, the natural 
choice is the point open topology in which the open sets are 
arbitrary unions and finite intersections of all sets of the form 

(3.2) 

where ye1T I (~ ) and 0 is an open subset of the Lie group G. 
Weil has observed that Hom(1Tt(.2' ),G) is a real analytic var­
iety.11 This is shown by considering a presentationof1TI(~) in 
terms of n generators and m relations (n and m are finite 
integers since ~ is compact). If F is the corresponding free 
group then Hom(F,G ) is a product X 7 ~ t G of n copies of G 
and Hom(1TI(~ ),G) is the real analytic subset of X; = t G on 
which the m relations are satisfied. Analytic sets are locally 
arcwise connected and hence the path components of 
Hom(1Tl(~ ),G) coincide with the topological components. 
All homomorphisms in a ,.path component induce isomor­
phic principal G bundles .2' X h G and in particular the set ~ 
of homomorphisms which induce the product bundle is a 
union of components of Hom(1T d.2' ),G). 

Let q be the projection from g onto ~ which maps D 
into the defining homomorphism. Since D is base-point pre­
serving,D (yo) = 1,andhenceD (YoY) = h (y). Thus a concrete 
representation for q is 

q(D )(y): = D (yoY). (3.3) 

We have the important result 
Proposition 3.1. g isa locally trivial, principal Gbundle 

over ~ with projection map q. 
Proof (a) q is continuous since 

q-t(Ny .o) = [Deg ID (Yoy)CO L which is open in the com­
pact open topology. The action of G Ion i» is continuous 
and free. 

(b) The main step is to show that g is locally trivial. As 
an analytic set Hom(1Tt(~ ),G) is triangulable and hence each 
element possesses an open neighborhood that is contractible 
over itself. Furthermore, since Hom(1T I (~ ),G) is a closed sub­
space of the compact space X 7 ~ t G it is itself compact and 
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can be covered by a finite number of such sets. We will prove 
local triviality by constructing a continuous local section (Tv 

over each contractible set VC ~. 
Let Vbe such a set with a map F:V X 1---+ V with 

F (h,O) = hand F (h, 1) = h for some (This induces a defor­
mation retraction of I X Vonto I X {h J. Define a 1T I (I ) ac­
tion on.I X V X G by 

r:(y,h, g)-..(Yr,h,h (r-I)g) (3.4) 

and let (.I X V) X TG denote the set of equivalence classes 
under this action. This is a principal G bundle over I X V 
with the projection map 17[y,h, g] = (r(y),h) and right G ac­
tion [y,h, g]g': = [y,h, gg']. Now the mapf:I X V---+I X V, 
(x,h )-"(x,h ) induces a pullback from (.I X V) X/.TG to give a 
bundle that is isomorphic to the trivial bundle (I X h G ) X V. 
Moreover fis homotopic to the identity and hence 
(.I X V) X TG is also a trivial principal G bundle and there­
fore admits global cross sections. These are of the form 

cp (x,h ) = [y,h,D -'(y,h )], (3.5) 

where D (Yr,h ) = D (y,h )h (r)· 

Thus (T v(h )(y): = D (y,h ) is the desired local section 
over V. 

(c) Finally we show that ~ is homeomorphic to IiJ /G~. 
The projection map p:IiJ---+IiJ /G ~ is continuous and open 
when IiJ /G ~ carries the usual quotient topology. The na­
tural mapj:IiJ /G ~---+~ j[D ]: = q(D) is continuous and bi­
jective with an inverse i:~---+IiJ /G ~,i(h ):= [Dh ] where Dh 
is any element in IiJ with q(D) = h. Over a contractible open 
set V, i l v = p.(T v is continuous and since ~ is covered by 
such sets, i is continuous on ~. Hence ~ is homeomorphic 
to IiJ /G~. Q.E.D. 

Although the bundle is locally trivial it will not in gen­
eral be trivial and global cross sections will not exist. Thus 
we have a type of Gribov phenomenon, 12 although it should 
be emphasized that our bundle of fiat connections is quite 
different from the bundle of irreducible connections consi­
dered in Refs. 13 and 14. 

4. THE HOMOTOPY EXACT SEQUENCE FOR 1To(1ZJ) 
A. The exact sequence 

Considerable information on 1Ta(IiJ) may be extracted 
from the homotopy exact sequence of the fiber bundle in 
Proposition (3.1). IiJ decomposes into disjoint pieces over 
the components of ~ and in each one we choose a base point 
Dh lying over the base point h in the corresponding ~ com­
ponent Ch • The group G ~ is injected into the fiber over h by 
the map i:n-..nDh • The homotopy exact sequence of the 
bundle is 

a i. q. 

1TI(~ ,h ) -+ [I,G ] ---+ 1Ta(IiJ ,Dh) ---+ 1Ta(~ ,h )---+{ * I, (4.1) 

where the last two entries are sets (not groups) whose base 
points are the components containing Dh and h, respective­
ly. Note that we have used 1To( G ~) = [I,G] and that the sur­
jection of q. follows from that of q. 

The general theory's of this exact sequence of sets and 
groups provides the crucial result 
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q; I(Ch ) = [I,G ]!keri. 

::::: [I,G ]!a(1TI(~,h )). (4.2) 

Thus in principle we have achieved a complete specification 
of 1T a( IiJ) in terms of the components {C h J of ~ and the 
abelian group [I,G]/a(1TI(~,h )). Note that, if 1TI(~,h) = ° 
for all h, the vacuum-state classification is simply 

(4.3) 

In particular, if I = S3 then 1T](I) = Oand~ = {* I and the 
usual classification by [S3,G] = 1T3(G) is reproduced. An­
other example where Eq. (4.3) is applicable is I = RP 3 and 
G = SU2. Then 1T](I) = Z2:::::(e,a) and Hom(1T,(I ),G) pos-

. . (10) sesses Just two elements gIVen by h (a) = Oland 

h (a) = ( - 1 0 ), which induce connections with trivial-° -1 
and Z2-holonomy groups, respectively. Since all SU2 bun-
dles over a three-manifold are trivial5 it follows that 
Hom(1T](I ),sU2) = a:> and 1Ta(IiJ) is the disjoint unionoftwo 
copies of [I,G] = [RP 3,SU2] = Z. 

B. The quantum states 

We will denote the states corresponding to Ch and 
IE[I,G]/a(1T,(~,h)) by ICh,l) and assume that, as usual, 
there is a gauge transformation operator Tn acting On these 
states such that 

(4.4) 

Thus the states are not only invariant under "small gauge" 
transformations (i.e., those that are homotopic to a constant) 
but also under those whose homotopy classes belong to the 
little group a (1T](9f,h )). Wemaydiagonalizethegaugeaction 
in analogy with the usual fiat space theory and construct the 
"8-vacua" 

ICh,8) = 18(/)ICh,l), (4.5) 
I 

where 8 is a character of the abelian grou p [I, G ]/ a( 1T d.9? ,h )). 
These new states are gauge invariant up to phase factors and 
have the inner products 

(Ch,8ICh,8') = 808 , I(Ch,OICh,l )8(/), (4.6) 
I 

where the sum is over [I,G ]/a(1Td&f,h )). They also diagona­
lize the tunneling amplitudes within a fixed holonomy sector 
(i.e., the "in" and "out" states have the same Ch label) but 
there is no reason to expect that transitions between different 
elements of 1To(a:» can be easily diagonalized. 

Tunneling is expected between different holonomy sec­
tors on a compact I because the affine sum of any two fiat, 
nonsingular connections describes a configuration of zero 
energy. In other words, the time-dependent configuration 
wI' (x,t ) defined by 

w;(x,t): = A. (t )w\]I(x) + (1 - A. (t ))W\21(x), 

wa(x,t ): = 0 (4.7) 

interpolates between the two fiat, static connections W\ll and 
W\21 with finite Euclidean action L [A. ]. This configuration can 
contribute to the transition amplitude within the functional 
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integral approach to quantum field theory, even though wI" 
is not a solution to the classical field equations. It is interest­
ingtonotethatthefunctionA (t): = A (t) - !whichminimizes 
L [A ] satisfies 

(4.8) 

where 

K ,: = L d 3X ([wOI - W(21] 1\ [w(1) - w(2)W, 

K2: = L d 3X (WOI - d 21
)2. 

Equation (4.8) can be recognized from standard ¢i 4 theory to 
have a kink solution. 16 (Note that the above argument will be 
inappropriate if ~ is originally noncom pact and boundary 
conditions are imposed that lead to non-square-integrable 
fields). 

It is clear that the main mathematical problem is to 
represent the boundary map a in as concrete a form as possi­
ble. In terms of the bundle fiJ, this map is obtained by taking 
a loop p in fJ? such that p(O) = h, and considering its lift to a 
curveA __ D" in fiJ with D, = Dh • Then the homotopy class 
of DoD ;: I in G I is independent of the choice of lift and 
a rp] = [DoD h~ I]. Thus a defines the characteristic class9 of 
the bundle fiJ restricted to the component Ch of fJ? and may 
be viewed as an element of 

c. Prime three-manifolds 

It should be noted that a special role is played by prime 
three-manifolds. Such a manifold cannot be decomposed 
into a topological sum ~ 1.~2 unless either ~ I or ~2 is S 3 and 
conversely every compact three-manifold can be decom­
posed into a connected sum of a finite set of prime manifolds. 
Now 1Td~I.~2) is the free product'? 1T1(~d.1TI(~2) and hence 

Hom(1TI(~I.~2),G) = Hom(1TI(~d,G)xHom(1TI(~2),G). 
(4.10) 

Thus the computation of Hom(1TI(~ ),G) may be reduced to 
that for prime manifolds. As an example consider the prime 
space S I XS 2 with 1T1(S I XS2) the free group Z. Then 
fJ? ::::;Hom(1TI(~ ),G)::::;G and (4.1) becomes 

a i. 

-1TI(G)- [~,G] -1To(fiJ)-!.j, (4.11) 

where for simplicity it has been assumed that G is connected 
so that 1To(G) = ! .j. It follows at once that if 1T1(G) = 0 then 
1To(fiJ) = [~,G] = [S I XS 2,G]::::;Zandso the vacuum states 
are labeled by a single integer. On the other hand if 
~ = (S I XS 2).(SI XS2) then Hom(1TI(~),G) = G XG and 
(4.11) now contains 1T1(G) X 1T1(G). Once again 1To(fiJ) = Z if 
1TdG) = O. 

In general it is very difficult to compute Hom(1TI(~ ),G) 
directly and information on a needs to be obtained by other 
means. 
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5. SOME RESULTS ON THE BOUNDARY MAP a 
A. 1T1 (~) is infinite 

We will now discuss the computation of a for the com­
ponent of fJ? which contains the trivial homomorphism 
holY) = 1. Lettheloopspacen Hom(1TI(~ ),G) carry the com­
pact open topology. IS Since the loops pass through the base 
point ho we have n Hom(1T I(~ ),G) = nfJ? and hence 
1T1(fJ?,ho) = 1To(n Hom(1TI(~ ),G)). Our first result is 

Proposition 5.1. 1T dfJ? ,ho) = 0 unless 1T d~ j contains ele­
ments of infinite order. 

Proof Let y = 1T I (~ ) be such that r" = 1 for some p. 
Then (h (y)Y' = 1 for all hEHom(1TI(~ ),G). The exponential 
map is a local diffeomorphism from the Lie algebra of G onto 
G and hence there is some open neighborhood U of lEG such 
thatg" = 1 ifand only ifg = 1. Define VI: = !h Ih (y) = Ij 
and V2 : = I h Ih (y)~U j. These are closed subsets of 
Hom(1TI(~ ),G )with V/1V2 = 0and V luV2 = Hom(1TI(~ ),G). 

Now consider pEl.? Hom(1TI(~ j,G). Then 
WI: = p~ '(vd = IAES 'lp(A )(y) = Ij and 
W 2: =p~ 1(V2) = (AES 'lp(A )(y)~U j are closed subsets ofS I 
with S I = WIUW2 and wlnw z = 0. Thus W2 = w~ and hence 
W 2 is open. But S I is connected and therefore W 2 = 0 or S I. 
However,p(O)(y) = 1 and so WI #0 which implies W 2 = 0 
and WI = S I. Thus ptA )(y) = 1 and so p is trivial if all ele­
ments of 1T1(~ ) are of finite order. 

In particular, if 1T1(~) is finite, q~ I(Cho ) = [~,G ] and 
the quantum vacua in the Ch" holonomy sector are labeled by 
the winding numbers in [~,G]. 

B. Reduction to a lifting problem 

Assume now that 1T1(~) is infinite and thatp is a nontri­
vial loop in nfJ? We seek a curve C" in fiJ such that 
CI(y) = 1 and C" (yy) = C" (y)p(A )(y) as then a rp] is equal to 
the homotopy class of CoEG I. The computation of Co is 
equivalent to finding the pairs of gauge functions that can be 
linked by paths in fiJ in the sense that n I can be joined to n 2 

if and only if n,n 2~ I can be joined to the identity. The ho­
motopy class of Co lies in [~,G] and can be classified by the 
primary and secondary winding numbers belonging to 
H 1(~;1TI(G ))andH 3(~;1T3(G )),respectively.Ideallyonewould 
relate the group elements to the homotopical properties of p 
and the rest of this section is devoted to deriving results of 
this type. 

Let E" be a curve in fiJ satisfying Eo(y) = E,(Y) = 1 and 
E" (yy) = E" (y)p(A )( y). If such a curve exists then 
C" (yy)E,,~ l(yy) = C" (y)E,,~ l(y) and hence C" (y)E,,~ t(y) may 
be viewed as a function n" from ~ into G. However, n I = 1 
and no = Co, so that A --n" is a homotopy from Co to 1. 
Thus a rp] is trivial if and only if an E" exists. We will start an 
investigation by studying the obstructions to the construc­
tion of E". 

Let nG denote the loop space of G equiped with the 
compact open topology. This function space is a topological 
group with the product law 

(5.1) 

Of course nG is also an H space under the loop composition 
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(CUt V CU2)(A. ) = CUt(U), O<A.<! 

= CU2(U - 1), !<A.< 1 (5.2) 

and these two H structures can be shown to be homotopic, I 9 

i.e., CUI'CU2 -CUt V CUz for all pairs CUI and CU2' There is the natu­
ral homeomorphism 

fl Hom(1Tt(.I ),G )-+Hom(1TI(.I ),flG), 

(5.3) 

wherexp(Y)(A.): = pIA. )(y) and Hom(1Tt(.I ),flG) has the point 
open topology. 

Let (E1T,T/rr,B1T) be a universal1Tt(.l') bundle"with a map 
u ~-+B1T inducing the universal covering space.I and a cor­
responding bundle map ul-+E1T. By analogy with the dis­
cussion in Sec. 2 we may regard E1T as a principal (flat) flG 
bundle via the homomorphism 

Xp :1Tt(.I )-+flG. (5.4) 

Thus we form the quotient E1T X Xp flG of E1T X flG by the 
1Tt(.I i-action y(e,cu) = (eY,Xp(y)-t cu ) and define a projection 
T/:E1TX xpflG-+B1T, T/[e,cu]: = T/rr(e) and a right flG-action 
[e,cu]cu': = [e,cucu']. This principal flGbundle is induced by a 
map BX p into the base space of a universal flG bundle. We 
show in the Appendix that there exists such a bundle whose 
base space is G and we have the picture 

flG • E1TX x flG 

/$/// ( 

.I .. B1T-G. (5.5) 
U BXp 

Now a lift ¢ of u is necessarily of the form 
¢ (x) = [u(y),E -t(y)], with E (yy)(A. ) = E (y)(A. )PIA. )(y) and 
E(y)(O) = E(y)(l) = 1. Hence the definition E,,(y): = E(y)(A.) 
provides the one-parameter family offunctions that we seek. 
Conversely, any such E" gives rise to a lift t/J. But T/ is a 
principal fibration with classifying map BXp and hence u lifts 
if and only if BX p ·U is homotopically trivial. 20.2t Since BX p ·U 

is a map from .I into G it is classified7 by elements of the 
cohomologygroupsH t(.I;1Tt(G ))andH 3(.I;1T3(G )),andanE" 
exists ifand only if BXp'u - *, which will be true ifand only if 
both group elements vanish (* denotes the constant map 
from.I into G). 

C. Obstructions to constructing a C). 

Before discussing the cohomological relations between 
BXp andp let us return to the problem of CA.' By analogy 
with the above, we construct the principal flG bundle 
E1T X xPG over B1T X G with the projection map 
t [e,p] = (T/rr(e),p(O))andflG action [e,p]cu = [e,pcu]. Consider 
the map (u,A )~-+B1TX G, (u,A )(x): = (u(x),A (x)- I), where 
AEG.I, and contemplate the lifting problem 

flG-E1TX yPG 

J/J 
.I • B1TXG---. G. 

(u.A I 
(5.6) 

Lifts of (u,A ) are in one-to-one correspondence with curves 
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C" in!iJ such that C" (y,y) = C" (y)P(A. )(y), Ct~) = 1, and 
Co(y) = A (r(.v)), whereris the projection from.Iinto.I. Thus 
the main problem is to find the homotopy class of A in terms 
of p and the first step is to compute the classifying map [. 

Proposition 5.3. The classifying map [is given by the 
chain of maps 

Bxxt 11-

B1TXG -+ GXG-+G and ,u(gl,g2):=gtg2' 

_ Proof (a) There is an flG-equivariant map 
BX:E1TXyflG-+PG of the form Bx[e,cu] =L(e)cu, where 
L (ey) = L (e)x(y) for all yE1Tt(.I). Define PGX TPG by the 
equivalence relation (Pt,P2)=(PtCU,CU -th)'ticuEflG. Then 
PG X TPG is a principal flG bundle under the action 
fpt,P2]CU = fpl,P2CU] and there is a bundle-map pair 
LXI :E1TX yflG-+PG X TPG; BX X 1 :B1TX G-+G X G with 

the projection PGX TPG!... G X G, o(pt>Pz) = (Pt(0),P2(0)). 

(b) There is another bundle-map pair PGX TPG--+PG, 
fpt,P2] --PtP2; G XG-+G, (gt,g2) -- gtg2 andhenceE1TX PG 
is isomorphic to the pull back of the universal bundle PG b; tne 
composition of these two maps. Q.E.D. 

Lifts of (u,A ) (and hence C,,) exist if and only if 
/.(u,A ) - *, which in turn is true if and only if the correspond­
ingmembersofH t(.I;1Tt(G ))andH 3(.I;1T3(G ))vanish. Theele­
mentinH t(.I;1Tt(G ))is 1.(u,A )*Lt whereL I is the characteristic 
element

22
inH t(G;1T t(G)) = Hom(1Tt(G ),1T t(G ));[itistheiden­

tity homomorphism from 1Tt(G) onto 1Tt(G)] and we have 
Lemma 5.4: If hER t(G;1Tt(G)) then 

I· (u,A )*h = ((BX·u)* - A *)h. 
Proof Any hER I(G ;1T\(G)) is primitive and hence 

,u*(h) = h X I + 1 Xh in H t(G X G;1Tt(G i). Thus 
l*(h) = BX*(h )X 1 + 1 xh inH I(B1TXG;1Tt(G)). Now 
fp,A )~-+B1TX G may be factored as 

.d uXA txv 

.I -+.I X.I --+ B1TXG -+ B1TXG, whereLl is the diagonal 

map x __ (x,x) and v(g): = g-t. We have the exact sequence 

G-H t(.I;1Tt(G)) EB H 1(.I;1Tt(G ))-+H t(.I X.I; 1Tt(G)) 

--+H2(.I;1Tt(G ))*1Tt(G) EB 1Tt(G )*H 2(.I;1Tt(G ))-+0 

and,onthesubgroupH t(.I;1Tt(G)) EB H t(.I;1Tt(G )),themapLl * 
is Ll *(a,b) = a + b in H t(.I;1Tt(G)). However, lOth ) has no 
components in the torsion-product parts of 
H t(B1TXG;1Tt(G)) and soLl o·(uXA (-(I Xv(-rth) 
= (BX·uj"{h ) - A O(h ), which proves the result. Q.E.D. 

Similar considerations apply to the pullback of the gen­
erator t3 of H 3(G;1T3(G)) which is isomorphic to Z if Gis 
simple and nonabelian so that 1T3(G) = Z. [Of course there 
are no secondary numbers if 1T3(G) = 0]. If 1Tt(G) = 0 then L 
. '" 3 
IS primitive and, as in Lemma 5.4, 

(1·(u,A ))Ot = ((BX'u( - A ·)t (5.7) 

f?r all t in-!f 3(G;1T3(G)). If 1TI(G )¥=Othen L may not be primi­
tive and,u (L) = LX 1 + 1 Xl plus terms in 
H2(~;Z)®HI(G;Z) andH 2(G;Z)*H 2(G;Z). Now 1TJlG) is 
abeban and, if finite, it is a sum of cyclic groups and hence 
H I(G;Z) = Hom(1TdG ),Z) = o. On the other hand if 
1T\(~) = Z, then the. Ser!,e exact cohomo~gy sequence22,23 
appbed to the fibratIOn G-+G-+B1T\(G) (G is the universal 
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covering group of G ) shows that H 2( G;Z) = H 2(B1T I (G );Z) 
= H 2(BZ;Z ) = H 2(S I;Z) = 0. Thus there are no 

H2(G;Z)®H I(G;Z) terms for any 1TI(G). In addition, 
H 2(G;Z)*H 2(G;Z) contains only elements of finite order 
and these can be neglected since their pullback to H 3(.2';Z) 
must vanish. This is because H 3(.2';Z );::::Z for.2' compact 
and orientable (which we are assuming). The net effect is that 
l acts as if it were primitive and we have shown 

Lemma 5.5: If lEH3(G;1T3(G)) then 
/.(u,A j"l = ((BX'u)* - A oIl. 

We can now derive the important result 
Proposition 5.6: The map a:1TI(~,ho)~[.2',G] is 

afp] = [BXp·u]. 
Proof A curve CA in!iJ linking A to 1 exists if 

{·(u,A )-*, which is trueif/·(u,A )"il = ° = /.(u,A )*l3' which 
by the results above, is equivalent to (BXp 'U}"ll = A oil and 
(BXp 'U}"lJ = A °l3' However, the homotopy class of a map is 
uniquely determined by its pullback of II and l3 and conse­
quently/·(u,A )-*iff[BXp'u] = [A ].Butafp] = [Co] = [A]. 

Q.E.D. 
Thus, in the component of ~ containing ho, we have in 

principle solved the problem of computing the vital map a in 
terms of the homotopy properties ofp. In practical terms it is 
most advantageous to represent [BXp'u] cohomologically 
and the next step is an attempt to compute the primary and 
secondary classes associated with this map thus splitting the 
problem into two parts. 

D. A representation of the primary class 

We want to relate the properties of X:1T I (.2' )~flG with 
BXo:H I(G;1TdG)) ~H I(B1T;1TI(G I). Now H I(G;1TI(G)) 
= Hom(1TI(G ),1TI(G)) and H I (B1T;1T I (G )) 
;:::;Hom(1T 1(.2' ),1Tl(G)) and it suffices to study BX' on the iden­
tity homomorphism ll' In this language the primary coho­
mology class of BX is 

Proposition 5.7: (BX'll)(Y) = [X(Y)] the homotopy class 
of X (y) in flG. 

Proof If hEHom( 1T d G ), 1T I (G)) then 

(BX'(h ))(y) = h (BX' (y)) for all yin 1T I (.2' ), where BX' maps 
1T I (.2' I into 1T1(G). The homtopy exact sequence of the fibra­

BX 
tion [cf. (5.5)] E1TX xflG--B1T -- G is 

--1T I (E1T X xflG )--1Td.2' 1--1T,(G) 

--1To(E1TX xflG 1--1To(B1TI--*, 

where,since1T I (.2' )isdiscrete,B1T I (.2' ) = K (1T I (.2' I, I )andhence 
1T1(B1T) = 1Td.2'). On the other hand, by mapping SO into the 

t' 

sequence20 ~1TI{.2') --flG--E1TX xflG--B1T we get 

x· 
__ 1TI(E1TX J1G )--1Td.2' 1-- 1To{flG )--1To(E1TX xflG )--1To(B1T) 

where X. is the composite map 
x E 

1Tl(.2') -- flG __ 1To(flG I ;:::;1TI(G) with E{lU) = flU]. Thus 

Bx.(yl = E·X(Y) = [X(y)]· 
Q.E.D. 

We note that u':H I(B1T;1TI(G )) __ H 1(.2';1Tl(G)) is the 
identity map from Hom(1Td.2' ),1TdG)) onto itself and hence 
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Corollary 5.8. The primary class in H I (.2'; 1T I (G )) repre­
senting BXp'u is just the homomorphism y--[x (y)] from 
1T1(.2') into 1T1(G). In particular the primary class of the end­
point Co of the curve C", must be y--[x (y)]. 

As an illustration of Corollary 5.8 we can consider the 
case G = VI, where there is no secondary class (1T3(Vl) = 0). 
LetA be any function from.2' into V 1. Then A. is a map from 
1T1(.2') into 1TdVl) = Z and wedefinepEfl Hom(1TI {.2' ),Vl) by 

ptA )(y) = /"'A.(YI = Xp(Y)(A I. Then A. (y) = [X(y)] for all 

yE1T d.2' I and so for any AEV l.oF there exists a p such that 
A - BXp ·u. Hence the boundary map a is onto. Furthermore, 
1ToUjp) = ! * I and hence 1To(!iJ) = ! * I i.e., there isjust a sin­
gle vacuum sector in this canonical quantization scheme. Of 
course this is already obvious from the observation that the 
affine sum of two zero-energy V 1 connections is itself zero 
energy. 

More generally let A map.2' into any compact Lie group 
G and consider the exact sequence 

E 

l--(flG )o--flG -- 1T d G )--0, (5.8) 

where (flG)o is the base component of flG. If A. is the in­
duced homomorphism from 1T1(.2') into 1TI(G), we seek a ho­
momorphismx from 1T I (.2' ) to flG such thatE·X = A •. Now 
1T I (G ) is abelian and hence A. factors through 
1T](.2' )/[1T1 (.2' ),1Td.2')] ;::::HI {.2';Z ), which is asum ofb l (the first 
Betti number) copies of the integers Z plus a set of cyclic 
groups. It is clearly sufficient to find a homomorphism t/J 
from HI (.2';Z ) into flG such that E.t/J = /3, where A. = f3·a 
and a is the canonical projection from 1T I (.2' I onto HI (.2';Z ). 
Now suppose for example that 1T1(G) = Zq or Z with gener­
ator f..l and choose lUEflG such that E(lUl=[lU] = f..l. The map 
t/J must vanish on the cyclic groups (proposition 5.1) and we 

define it on EB ~~ I Z by t/J (n I,,,.,n b, ): = lU~i" ,mini, where the 
integers m i are defined by A. (0,0, ... ,1,0, ... ,0) (1 in the Ith 

place) = f..lfn,. Then E·t/J (n 1,,,.,nb, ) = f..lLmini = A. (n w",nb,). 

Hence, given any A:.2'--G and provided that b l > 0, we 
can find a X such that the primary cohomology classes of A 
and BX'u are equal. Thus a maps onto the primary classes in 
[.2',G] or, more precisely, there is a surjective map 
8:[.2',G J--H 1 (.2';1Tl(G )) and8.aissurjective. For most groups 
(SO 3 is one exception) 8 splits and [.2',G] can be expressed as 
a direct sum,? in which case a maps onto the H ] (.2';1T] (G )) 
subgroup. Thus in the holonomy sector Cho the primary 
classes drop out of the vacuum state classification. We do not 
know if this is true for the other sectors. Note that if b l = ° 
then the primary classes may reappear in the classification. 

We have been unable to find a general expression for the 
secondary winding number comparable to that in Proposi­
tion (5.7) although, since XI-X2 impliesBXI-BX2' only the 
homotopy class of X can be relevant. However, in a few spe­
cial cases it is possible to show that the secondary class van­
ishes and this might always be so. For example, if 1TI(.2') is a 
free group with generators Yl>Y2, ... ,Yn and X is a homomor­
phism into flG, let lUl, ... ,lUn be the loops in G such that 
X (y,) = lUi' i = 1, ... ,n. Now suppose that 1T1(G) = 0. Then 
there are paths lU~tl in flG such that lUll) = lUi and lU\OI = ], 

(the trivial loop). Define it I(Yi, Yi, ... ) = (v\: llU:~ I ... for any 
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word ri, ri, .... Then t_it
) is a homotopy of X with the trivial 

homomorphism and hence BX is homotopically trivial. Thus 
the secondary winding number of BX'u vanishes identically. 

A more interesting example is afforded by the case 
when 1T I (.I ) is abelian. 

E. Abeuan 1T1(.I) 

Only prime manifolds can have an abelian 1T I (.I ) and the 
only possibilities, 17.24 with 1T1(.I) infinite, are 1T1(.I) = Z (eg., 
S I XS2) or Z $ Z $ Z (eg., S I xS I xS I). Any homormor­
phism of Z into G necessarily factors through a U 1 subgroup 
which in turn is mapped into G via a maximal torus. Thus if p 
is a loop in Hom(1T I (.I ),G), p" factors as 

QA e i). 

Z_U1_T_G; 

(5.9) 
C). f). i). 

Z$Z$Z-U1xU1XU1- T-G. 

Now any two maximal tori are conjugate and hence Xp fac­
tors as 

a e ili A dp 

Z_flU1_flT_flG _ flG, 

C f m Adp 

Z$Z$Z-fl(U1XU1XU1)_flT_flG - flG, 

(5.10) 

wherea(n)(A ): = a" (n), etc. and (Adp)(A ): = Ad(P,,) for some 
curve p" in G. This latter term has no effect on BX p and we 
finally obtain 

Ba Be i 

BXp:BZ- U1_ T-G, 

Be Bf i 

B(Z$Z$Z)-U1XU1XU1_T_G, (5.11) 

and werecallthatBZ-S I andB (Z $Z $Z)-S I xS I xS I. 
Now suppose that G has rank lor 2, such as G = Ul, 

U2, 8U2, 8U3, 803, 804, 80S, etc.,; then H 3( T;Z) = 0 and 
hence BX: must vanish on H 3(.I;1T3(G ))-there is no secon­
dary number. On the other hand since dim.I = 3, simple 
obstruction theory l5.22 shows that 

[.I,U(n)] = [.I,U2] n>3, 

[.I,8U(n)] = [.I,SU2] n>3, 

[.I,SO(n)] = [.I,80S] n>6, 
(5.12) 

and so the secondary numbers of BXp vanish in these cases 
too. 

F. Nonhomotopic C" paths 

Let us conclude this study of the map a and the paths 
C" by observing that in Eq. (5.6) homotopically inequivalent 
lifts may occur. The corresponding curves C" still link 1 
with A (x) but they cannot be deformed into each other. The 
classes of inequivalent lifts are labeled by [.I,flG] = [S.I,G] 
where S.I is the (reduced) suspension of .I. 20.21 These homo­
topy classes may be expressed cohomologically using the 
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type ofPostnikov technique described in Ref. (7). Some sam­
ple results are 

[S.I,SOS] = [S.I,SU2] = H 3(.I;Z2) $H 2(.I;Z) 

= Z2 $HI(.I;Z), (5.13) 

[S.I,SU(n)] = HI(.I;Z), n>3, (5.14) 

[S.I,SO(n)] =HI(.I;Z), n>6, (5.15) 

and it is worth noting that even in the conventional S 3 case 
we get such an effect since [S (S 3),SU2] = 1T4(SU2) = Z2 and 
so there are two classes of curves linking 1 with A. On the 
other hand, 1T4(SU(n)) = 0 if n>3 and in this case the pheno­
menon is absent. Thus there is a new type of "topological 
charge" associated with the SU2 vacuum states but its phys­
ical significance is unclear to us. 

6. CONCLUSIONS 

We have seen that the canonically-quantized Yang­
Mills field on a general three-space.I has a vacuum structure 
that differs significantly from the familiar one where.I = S 3. 

New phenomena arise from the non vanishing of 1T I (.I) and 
the corresponding possibility of a non vanishing discrete ho­
lonomy group giving zero energy solutions that are not pure 
gauge. These can either increase or decrease the naive [.I,G] 
classification by respectively increasing the holonomy sector 
or by permitting new zero-energy paths which enlarge the 
class of gauge functions that are physically equivalent. 

We have identified the space of zero-energy solutions 
with the function space .@lrl(r>2)andclassified the quantum 
vacua by 1To(.@)' A crucial result is the exact homotopy se­
quence (4.1) and the ensuing enumeration by 
q; I(Ch) = [.I,G ]Ia1TI(~,h) of the states associated with 
the holonomy sector Ch • States and transition amplitudes 
can be diagonalized using the characters of this group and in 
Sec. 5 we have presented a number of results on a1TI(~,h). 
The major problems that remain to be solved are: 

(1) The calculation of the secondary winding number of 
[ BX p ·u] in terms of the homomorphism p for a general 
1T1(.I) (i.e., other than abelian). 

(2) The derivation of analogous results in holonomy sec­
tors other than C h" . 

(3) If (1) is impossible in general it would be useful to 
solve it for at least a selection of prime manifolds such as 
those having nilpotent or solvable fundamental 
groups. 17.25.26 

(4) An exhibition of a definite example in which the 
secondary winding number of [BXp'u] is nonvanishing. 
This would drastically change the appearance of the (J vacua. 
Alternatively, one would like a proof that this number van­
ishes for all 1T I (.I ). 

(5) The entire construction should be repeated for the 
case where the G bundle over .I is nontrivial. 

It is possible to write down analogs of the lifting prob­
lem (5.5) which apply to an arbitrary holonomy sector, but it 
is difficult to recast the information into a usable cohomolo­
gical form. A useful tool in this respect is the "dual" version 
of (5.5) or its extensions. We have the dual relation 
flG I = G SI and, for example, Eq. (5.5) dualizes as 
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(6.1) 

where A denotes the smash product of pointed spaces and 
the equivalence relation on (E1T A .'W) X Gis 
(e,h,g)==(ex,h,h (y)-Ig). 

(cf. (.I X V) X TG in Sec. 3.B). A lift ¢ is necessarily of 
the form ¢ [A.,x] = [u(y),p(A. ),E (A.,y)] and thus we recover the 
E (A.,y) function. 

We hope to return to these problems in a later paper as 
well as to the question of the analogous effects in the canoni­
cal quantization of the gravitational field. 

APPENDIX 

Proposition A.I: 1To(ii)'lr)) = 1To(§) for all r where 
§==§(o). 

Proof There is a natural map i. from 1To(§(r)) into 
1To(§) which we wish to show is a bijection. 

(a) To prove that i. is surjective it suffices to show that 
any element of § is homotopic to some element of §(r). We 
know, however, that there is a one-to-one correspondence 
between elements of § induced by a given homomorphism 
he.'W and cross sections ¢ of the C 00 fiber bundle.I X h G_.I 
with ¢ (x) = [y,D (y) -I]. Every continuous cross section of a 
C 00 fiber bundle over a compact base space is homotopic to a 
C r section27,28 and hence for every element of § there exists 
a suitable element of §(r). 

(b) To show that i. is injective, we must show that any 
two elements of Do and DI of §Ir) which can be joined by a 
path of D A in § can also be joined by a path in § (r). First we 
triangulate the real analytic set.'W with ho and h I (the homor­
phisms corresponding to Do and D I) as two of the vertices. 
We deform the projection of A.~D A in.'W into a path A.~h A 
which lies entirely in the one-skeleton of .'W. Since § is a 
fiber bundle (Proposition 3.10) the homotopy lifting proper­
ty20,22 guarantees that DA can be simultaneously deformed 
into a new path D A in § such that Do = Do and D I is homo­
topic toDl' ThusDI(y) = n (x)DI(y) withn (x) homotopic to 
1 through a one-parameter family A.~n A (x) of C r functions. 
Then A.~n I-_IA (x)DA (y) is a path of continuous functions 
whose initial and final points equal Do and D I' Thus without 
loss of generality we can assume that A.~D A covers the de­
formed path A.~h A in the base space .'W. 

The curve h A intersects the singular set in .'W at a finite 
number of vertices which we will label with the correspond­
ing values of A. so that 0 <..1.1 <..1.2 < ... <A.n < I (ho and/or hi 
could also be singular points). Consider the interval 
IA = [O,A. d and construct the trivial principal G bundle 
(.I XII)T X G over.I XII with the equivalence relation 
(y,A.,g)==(yy,A.,h A- I(y)g) and projection t:[y,A.,g]~(r(y),A. ). A 
continuous cross section is of the form l,b(x,A. ) = [y,A.,D A- I 

(y)] and, because.I XII is a Coo manifold (with boundary), 
there exists a C r cross section29 rP'r)(x,A. ) such that 
dID A (y),D ~)(y)) < E for all A.e[O,A.I] and with E sufficiently 
small that DA -D ~). Here d ( , ) is a metric on G. 
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Now D ~)(y) = (/) (x)Do(y) for some C r function (/) (x) 
which is homotopic to 1 through a family t~(/), of C r func­
~ons. We can replace D ~)(y) by the family of C r functions 
D~)(y) = (/)11~~/A,D~)(y) which satisfiesD~) = Do and of 
course d(D1(y),D \')(Y)) < E. We can repeat this procedure for 
the finite set of~ntervals ( [A.i,A.i + I ] l and end with a contin­
uous pat? A.~D A (r) of C r fu~ctions with the property that, 
by choosmg E small enough, D \') - D 1• Once again one uses a 
family n, of C r functions in order to set D \') = D I while 
leaving alone the condition D~) = Do. This final curve in 
SOlr) is the one we seek. 

Q.E.D. 

Proposition A.2. There is a universal nG bundle whose 
base space is G. 

Proof (a) Let PG denote the space of paths in G, whose 
endpoint is 1, equipped with the compact open topology. 
Then P G is a topological group and nG is a closed normal 
subgroup. Form the canonical nG bundle 

a 

nG-PG - PG / nG, where PG / nG is given the usual quo-

tient topology (which is compatible with its group structure). 
The projection map a is a continuous, open, homomorphism 
with kernel nG. 

We define 1T:PG-G by 1T(P) = p(O) and t:PG / nG-G by 
t [P] = p(O). Then 1T and t are continuous and t is a bijection. 
However, 1T is a homomorphism from the metrizable group 
PG to the compact group G and hence 1T is open [Ref. (30) p. 
98] which in turn implies t is open. Thus t is a homeomor­
phism and we obtain the principal nG bundle 

rr 

nG-PG_G. 

(b) To prove local triviality, let Ube a neighborhood of 
leG such that the exponential map is a diffeomorphism onto 
U. Define a map O':U-1T- I

( U) by u(g) = (g, l where t """,g, is 
the unique geodesic in U with go = g and g 1 = 1. Then 0' is a 
continuous local section and local sections can be construct­
ed everywhere by pulling 0' around G -;:::;PG /nG with the PG 
action. 

(c) PG is a contractible space and hence the locally tri­
vial bundle nG_PG_G is a univeral nG bundle. Thus Gis 
a model for B (nG ). 

Q.E.D. 
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In the framework of the classical theory of Brownian motion the time evolution of the distribution 
function in the full phase space of a particle immersed in a fluid is governed by a Fokker-Planck 
equation. The reduced distribution function in coordinate space fulfills the Smoluchowski 
equation in first approximation. This work improves previous derivations by including higher 
order corrections and by using an expansion which permits the discussion of the size of the error 
made by truncating the infinite series. The derivation is based on the adaption of a powerful 
mathematical tool used in quantum field theory: The Fokker-Planck equation is written in terms 
of boson operators. Conditional equilibrium averages of operators are defined which play the role 
of vacuum expectation values. The time-ordered cumulant expansion is used to calculate the 
formal diffusion operator in terms of conditional equilibrium averages of powers of the "Liouville 
operator in the interaction picture." It is shown that all these averages can be obtained from a 
Gaussian generating functional which is explicitly calculated using the time-ordered version of 
Glauber's theorem. The resulting diffusion equation, a fourth order partial differential equation 
in the position space, is obtained by calculating the cumulant expansion up to sixth order. 
Conditions on the potential are established which guarantee that these equations are dissipative 
and it is shown that all solutions approach the Boltzmann distribution as t-+ 00 • Curvilinear, non­
Euclidean coordinates are introduced in order to interpret these diffusion equations. Nonlinear 
diffusion equations and their application regarding the self-avoiding random walk are discussed. 

PACS numbers: 05.40. + j 

1. INTRODUCTION 

The motion of a particle immersed in a fluid is governed 
by the Smoluchowski equation. This is the time evolution 
equation for the reduced probability density P (t,q) as a func­
tion of the time t and the position q. Under the influence of an 
external potential U and the fluid the reduced probability 
density changes with time according to 

~P(t,q)= ~'DC~ + _1_ au )P(t,q). (1) 
at aq aq kT aq 

D denotes the diffusion constant, Tis the temperature, and k 
is the Boltzmann constant. 

A simple example shows that the Smoluchowski equa­
tion cannot be completely correct in general. The Smolu­
chowski equation is an approximation in contrast to Ein­
stein's result, which holds in absence of external forces and 
turns out to be exactl--compare Sec. 4. 

For instance, consider the harmonic oscillator under 
the influence of random forces described by the Kramers­
Liouville equation- a completely solved problem. 2 The first 
moment of the reduced probability density is3 

(q(t) = (q(O)e -lcI2m1t(cosh Wit - _c_ sinh Wit) 
2mwi 

with the friction coefficient c, the mass m, the frequency w, 
andw i = (c2/4m2 - u?)I12. Thetimedependenceof(q(t) is 
in good agreement with the Smoluchowski equation for the 
reduced probability density P (t,q). 

~P(t,q) = ~A (~ +q ma} )P(t,q) 
at aq aq kT 

(2) 

for large times, t>w 1- .. if Einstein's diffusion coefficient 
Ao = kT /c is replaced by the w-dependent expression 

A =A (E) =Ao 1 - (1 - 4£)1/2, (3) 
2E 

with E = (mw/c)2. In the limit as E-+O, A (E) approaches Ao. 
As an infinite series 

A (E) = A 0(1 + E + 2c + ... ). (4) 

This example shows that, in general, the diffusion equa­
tion contains higher order corrections which depend on the 
potential. 

A very good survey of previous derivations of the Smo­
luchowski equation (and corrections) is contained in Ref. 4. 
The present work improves these derivations in three ways. 
First, the boson operator representation and the introduc­
tion of appropriate conditional equilibrium averages reduces 
the calculation to a purely algebraic problem. Secondly, we 
are able to show that all necessary averages in the momen­
tum space can be obtained from a Gaussian generating func­
tional. This important result makes it possible to calculate 
the time-ordered cumulant expansion up to sixth order, 
which leads to new corrections of previously published diffu­
sion equations. Thirdly, the expansion used here is physical­
ly motivated though all calculations are exact and do not 
contain any further approximations_ It is necessary to keep 
the physical picture in mind because some mathematical 
manipulations are only formally correct. In our picture the 
correlation of the momenta can be viewed as a particle which 
decays exponentially. 

The starting point of our discussion is the Fokker-
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Planck equation for translational Brownian motion, which 
is called the Kramers-Liouville equation in the following. 
We consider the Brownian motion only in the Markovian 
limit.5 

2. CUMULANT EXPANSION OF THE OPERATOR G 

The time-ordered cumulants give an explicit expansion 
of the formal diffusion operator G describing the time evolu­
tion of the reduced probability density P (t,q), 

a 
- P (t,q) = G (t,q)P (t,q), 
at 

~ 

G (t,q) = I G In)(t,q). (5) 
n = 1 

The description of the motion of a particle moving in a 
fluid leads to the Kramers-Liouville equation.2 This serves 
as a starting point for the description of a particle influenced 
by an arbitrary external potential U (q) and a "Brownian flu­
id." The fluid is considered to be composed of particles 
which exert a fluctuating force with vanishing mean on the 
particle immersed in the fluid and it is assumed that this 
force has a white spectrum. The only constants entering the 
description are the Boltzmann constant k, the temperature T 
with /3 =(kT) - I, the mass m, and a friction coefficient c 
which depends on the size of the particle and the viscosity of 
the fluid. 

The Kramers-Liouville equation is a first order partial 
differential equation describing the time evolution of the 
probability density I(t,q,p) which depends on the time t, the 
position q, and the canonical conjugate momentap. q andp 
are vectors in JR. the Kramers-Liouville equation is 

a 
- I(t,q,p) = (L + K )/(t,q,p), 
at 

I a au a 
L= -m- p.- + -'-, 

aq aq ap 

a (-I /3-1 a ) K=c-· m p+ -. 
ap ap 

(6) 

(7) 

(8) 

L is Liouville's operator and K denotes Kramers' operator, 
which describes the effect of the random force acting on the 
Brownian particle. Equation (6) describes how the initial dis­
tribution, given by a functionJo = I(O,q,p), changes in time. 
Any initial distribution will approach the Maxwell-Boltz­
mann distribution gMB in the limit as t_ 00. With the parti­
tion function Z, 

(9) 

For a large particle moving in a dense fluid, the main 
contribution in Eq. (6) is due to the Kramers operator. The 
Kramers operator forces the relaxation of the momentum 
distribution to the Maxwell distribution gM' 

gM (p) = (21TI/3 )-3/2e -- {3(p'/2m). (10) 

In order to calculate that diffusion operator G of the 
time evolution equation 

~P=GP 
at 

for the reduced probability distribution P (t,q), 
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(11) 

P (t,q) = f d 3p I(t,q,p), 
R' 

(12) 

an approach very often used in quantum mechanics turns 
out to be useful here, too. In analogy to the interacting pic­
ture used, for instance, for the quantum mechanical treat­
ment of radiation, the time dependent transformation 

I(t )=e'K}(t) (13) 

leads to the Kramers-Liouville equation in the "interaction 
picture", 

(14) 

In order to calculate this new operator 1 (t ), and also for 
the further analysis, it is useful to introduce the following 
operators: 

(15) 

(16) 

(17) 

(18) 

These operators consist of three components, e.g., 
a = (a l,a2,a3 ). The operators a and at are dimensionless, but 
the operators band b t have the dimension of an inverse time. 
The Liouville operator L and the Kramers operator K are 

L = b t·a - b.at, (19) 

K = - clmat·a. (20) 

The dot "." denotes the usual scalar product of two vectors 
with three components. The commutator algebra of the 
components of the operators a, at, band b t is 

[a;.aj ] = [aT,aJ] = 0, 

[a;.bj ) = [a;,b J] = [a;,bj ] = [a;,b J] = 0, (21) 

[b;.bj ] = [b j,b J] = 0, 

[bbt]=m-I a
2
u . 

" J aq;aqj 

The Liouville operator in the interaction picture is giv­
en by the infinite series 

1 (t) = e-tkLetK = f ~A In). 

n ~O n! 
(22) 

The operators A In) are defined by recursion, A (0) = Land 
A In + I) = [A {n),K ]. This identity is proved in Ref. 6. The 
commutator algebra of the components of the operators a 
and at-a three dimensional Weyl algebra-and the fact 
that all a-operators commute with all b-operators, Eq. (21), 
leads immediately to 

A In) (- c)n t ( c )nb t = -;;;- b·a - -;; ·a . (23) 

Substituting these expressions into the sum on the right-
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hand side of Eq. (22) gives 

i (t) = b tIt ).a - b (t ).at , 

b tIt )=b te - lelm)t, (24) 

b (t )=be1elm)t. 

In order to take full advantage of the properties of the 
operators introduced by Eqs. (15 )-( 18) it is useful to consider 
the scalar products 

(u,v) J d 3pgM IU*(p)V(p), (25) 
R' 

(if,h ) )= J R' d 3q J R' d 3p gM~ f*(q,p)h (q,p). (26) 

The inverse ofthe Maxwell distribution, respectively, the 
Maxwell-Boltzmann distribution, serves as weight function. 
Consequently 

(au,v) = (u,atv), (27) 

«aJ,h» = (if,ath », (28) 

«bJ,h» = (if,b th ». (29) 

These identities hold for all functions which vanish suffi­
ciently rapidly at infinity; they are proved by integrating by 
parts. The operators at and b t are the formal adjoint opera­
tors of a, respectively b. 

The definition of the scalar product (.,.), Eq. (25), can 
be extended to functions which depend also on q. 

(J,h )= J R' d 3p gM Y*(q,p)h (q,p) 

= (J,h )(q). (30) 

We will see that the diffusion operator G can be ex­
pressed in terms of a sum of products of operators of the form 

(31) 

Keeping the definition (30) in mind, this expression can be 
interpreted as the conditional equilibrium average of the nth 
order product i (td···i (tn), 

(i (tl)···i (tn) (gM,i (tl)···i (tn)gM) 

= JR,d 3pi (tl)···i (tn)gM' (32) 

The cumulant expansion, which will be used to calcu­
late the diffusion operator G, is based on the following 
theorem: 

Theorem 1 (Theorem on time-ordered exponentials): 
For an arbitrary operator M (t), the nth cumulant average 
(M(td···M(tn)e for tl >t2> ... > tn is defined by 

(M(tl)···M(tn)e= I (- l)k- II 
partitions of n p 

,tIl (tI:M (tipiS)))' • 
(33) 

The sum runs over all ordered partitions of the first n inte­
gers in k subsets (ill, ... ,iln , ) •.. (ik I , ... ,ikn.l, with ilr < ils for 
r <s, alII, and ill = I.p is a permutation of the integers 2, ... ,k 
and p( 1)== 1. Then the following identity holds: 
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\: exp fdS M(S)) 

=: exp fds{(:ex p fdS'M(S'))c -I}. (34) 

The time-ordered exponential is viewed as a formal power 
series, 

T exp f'dsM(s) = 1 + f f'ds l· .. ("n-ldsnM(sd···M(sn). . Jo n =)0 Jo 
(35) 

Equation (34) is provide in Ref. 7. 
The connection between the operator cumulants G Ii I 

and the cumulant average (33) is 

Gln)(t 1) = f'dt 2···fn 'dtn (M(td· .. M(tn)c' (36) 

00 

The complete cumulant expansion G (t) = I G In)(t) can be 
n=l 

written as the cumulant average of the time-ordered expo-
nential of the operator M (t ), 

G(t)=\:exp fdSM(S))c -1. 

Again, the time-ordered exponential is viewed as a formal 
power series in the operator M (t). The cumulant average of 
powers of the operator M(t) oftheform (M(td .. ·M(tn )c is 
given by Eq. (33). 

The Theorem on time-ordered exponentials shows that 
the cumulant expansion leads indeed to the time evolution 
equation for the reduced probability density P (t,q) if the ini­
tial momentum distribution is Maxwellian 
f(O,q,p) gMP(O,q). [This is only an apparent restriction 
since, as it turns out, the diffusion operator G (t ) is indepen­
dent of the initial momentum distribution in the limit as 
t--.oo]. We have 

P(t,q) = (gM,J) = (gM,etKf> = (el-tclm)at.agM'/) 

= (gM'/) = \: exp fdS i (s) )(O,q) 

=! exp fdS G(s)P(O,q). (37) 

Hence, the reduced probability density P (t,q) fulfills the evo­
lution equation (a fat)p = GP. 

Sometimes it is useful to have a recursive definition of 
the cumulant averages (for instance, for the proof of the clus­
ter property for cumulants). The nth cumulant average 
(M(td· .. M(tn)c can be expressed in terms of the average 
(M(td· .. M(tm)c with m <no 

Theorem 2 (Inversion formulas.9 ): 

(M(tl)···M(tn) 

I (M(t;") ... M((,J)c .. ·(M(t;k,) .. ·M(t",,,!>c· (38) 
partitions of n 

The sum runs over all partitions of the first n integers in k 
subsets (ill, ... ,i1n , )· .. (ik I , ... ,iknJ The subsets are ordered 
ils < ilr for S < r. The order of the cumulant average is deter­
mined by the condition ill < in for I < I'. 

Proof Using the Theorem on time-ordered exponen­
tials, one obtains a functional equation. For all functions 
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A (s):R+--+C, 

(~ exp fdS A (s)M(s) 

(39) 

= T exp i'dS{(T exp f'ds' A (s')M(s') - I}. 
-- Jo -- Jo c 

n 

Taking the functional derivatives 8nl IT 8A (t j ) and setting 
;=1 

A (t;}o==O gives the desired result (38). This completes the 
proof of Theorem 2. 

3. DIFFUSION EQUATIONS 

In this section the cumulant expansion up to sixth order 
will be calculated. The first nonvanishing term, the second 
cumulant is exactly Smoluchowski's result. 

Equations (33) and (36) give an expansion ofthe diffu­
sion operator G in terms of the averages, 

(40) 

The first step consists of calculating all necessary averages of 
this form. Though this procedure seems simple enough, the 
higher order corrections, the fourth, sixth, etc., cumulants, 
have never been calculated before because this calculation 
becomes very cumbersome. A breakthrough can be achieved 
by realizing the simple structure of the Liouville operator in 
the interaction picture: L (t ) is linear in the creation and de­
struction operators at and a. Their properties are summed 
up by 

(41) 

(aju,v) = (u,a;v), (42) 

ajgM = O. (43) 

However, all this means that for each i the operators a j and 
aj are a pair of destruction and creation operators formally 
identical with the boson operators used in quantum field 
theories. 10 The properties of these operators are much 
simpler than the properties of the original differential opera­
tor a lap and the multiplication operator p. They also allow 
the construction of an orthonormal basis for the momentum 
space,II.12 

(44) 

The Maxwell distribution gM corresponds to the vacuum in 
quantum field theory. 

The first cumulant G (I), Eq. (36), is the average of L (t). 
This operator contains only first powers of a and at. How­
ever, the expectation value of these operators vanishes, 
(a) = 0 and (at) = O. Hence G(I)(t) = (L (t) = O. The sec­
ond term of the cumulant expansion (5) is according to Eq. 
(36) equal to f~ ds(L (t)L (s). Using the orthogonality rela­
tion (tPn,tPn') =8 ,8 ,8 ,forthebasefunctions(44) 

n.n] n 2 n2 n,n] 

leads to (L (t)L (s) = - b tIt )·b (s). 

GO)(t) = 0, 

G (2)(t) = - i'dS b tIt )·b (s). (45) 
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The second cumulant gives the first diffusion equation 
for translational motion. Evaluating the time integral and 
replacing the operators band b t by the original definitions 
(17), (18), and (24) leads to 

!... P (t,q) ~ G (2)(t )P (t,q) 
at 

= ~ .A (t )(/3 au + ~)p (t,q) 
aq aq aq 

= ~.A (t )e - flU ~ eflUp (t,q), 
aq aq 

A(t)= 
1 _ e-1c1m)t 

pc 

(46) 

(47) 

The reduced distribution P (t,q) fulfills the Smoluchowski 
equation (46). The diffusion coefficient A (t) is time depen­
dent and vanishes for t-o because initially the momentum 
distribution is Maxwellian. At the beginning, there is no cor­
related motion because the average momentum ( p) vanish­
es for t = O. The diffusion coefficient becomes stationary 
after a short time (long, however,compared with mlc). 

The calculation of the higher order corrections is based 
on a formula for the averages (L (td .. ·L (tn ), which shows 
that the operator L (t ), and a Gaussian random variable i 
with mean zero, have an important property in common: All 
moments of i can be expressed in terms of the second mo­
ment (i2 )==£i1. The odd moments vanish and the even mo­
ments are (i2m) = 1·3· ... (2m - I)£i1m

• The following 
theorem represents a generalization of this Gaussian proper­
ty. It is an important results of this work. 

Theorem 3 (Gaussian Property) 13: 

For tl > t2> .. · >t2m , 

(L (tdL (t2) .. ·L (t2m ) (48) 

partiti~of2m~ tVI (L (tju-t) I·IL (tj2J)}' 

with (L (t ) I =b tIt ) and IL (t ) = - b (t). The sum runs over 
all partitions of the first 2m integers in subsets 
(i li2) .. ·(i2m _ 1 i2m ) with i2j _ 1 < i2j . The operators on both 
sides of Eq. (48) are time ordered. 

Proo/Themomentsoftheoperator L (t ) can becalculat­
ed using the generating functional ¢ [A ], 

¢ [A l=(~ exp L" dti,d3qi,dV{"'J), (49) 

{ ... J = [b t(t,q,q'j-a - b (t,q,q'j-at]A (t,q,q'). 

The distributions b t(t,q,q') and b (t,q,q') are obtained by ap­
plying the operator b tIt ), respectively, b (t) on the delta func­
tion 8 (q - q'). 

b t(t,q,q')=b tIt )8(q - q'), 

b (t,q,q')=b (t )8(q - q'). 

(50) 

The delta function 8 (q - q') is considered as a function of q. 
If the support of A is bounded, the integral in Eq. (49) is finite 
and hence ¢ [A. ] < 00. 

The moments of the operator L (t) are generated by tak­
ing the functional derivatives of ¢ [A ] and setting A. to zero. 
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(51) 

¢ [A ] is a real valued functional, but taking the functional 
derivatives leads to a generalized function, a distribution in 
the variables tl ... ,tn, qO,. .. ,qn' This distribution multiplied 
withf(q n) gives, after integrating over R3n, the function 
(I (td···1 (tn)f(qo). 

Since the argument of the exponential in the definition 
of¢ [A], Eq. (49), is linear ina anda\ thefunctional¢ [A] can 
be calculated using the time-ordered version of Glauber's 
theorem. 14 Along the lines of Ref. 15 one obtains 

¢ [A] = exp [ -l'" dSlf'dSz(--')]' 

( ... ) = f d 3qf dVf d 3q"f d 3q'" (52) 
R\ R' IR' R' 

3 

X I {b ;(SI,q,q')A. (SI,q,q') 
I~ ) 

3 

The sum I in Eq. (52) can also be written as the scalar 
I~ I 

product b t(sz,q,q')·b (sz,q" ,q"'). The argument of the exponen-
tial is a quadratic form in the test function A. Taking the 
functional derivatives according to Eq. (51) gives, therefore, 
the sum of partitions in ordered subsets of two elements. For 
instance, 

{r 
--4----¢ [A 1 
II DA (tj,qj_ I,qj) 
i= I 

= b t(tl,qo,qd·b (tz,q),qz)b t(t3,q2,q3)·b (t4,q3,q4) 

+ b t(tl,qo,qd·b (t3,qZ,q3)b t(tz,ql,qz)·b (t4,q3,q4) 

+ b t(t),qo,q))·b (t4,q3,q4)b t(tz,ql,qz)·b (t3,qZ,q3)' (53) 

Integrating over the variables ql to q4 gives 

(L (td···L (t4 ) = b (tdtb (tz)b t(t3)b (t4 ) (54) 
L....:..:....J L..:....::.:..J 

+ b t(tdb t(tz)b (t3)b (t4) + b t(td~ (t3)b (t4). 
I , I I I I 

In this equation the lines indicate how the scalar products 
have to be calculated, e.g., the last term is equal to 

I b ilt lIb J(tz)bj (t3)b j (t4)· This illustration concludes the proof 
jJ 

of the Theorem 3. 
Equations (38) and (48) provide all tools needed for the 

following calculation of the fourth and sixth cumulant. Only 
the results are listed here; for more details see Ref. 16. The 
calculation is cumbersome but patience leads to the goal. 
The results are, adopting Einstein's convention of summa­
tion, 
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G(6)(t) 

= (~ _ 3c te -- (elm)t _ 3c te - (2elm)t _ ~ - 13elm)t 

2 m m 2 

_ ~e-12Clm)t + ~e-Ielm)t) m
Z 

{ ... } 

2 2 c5 

+ [~ _ (E- )Ze -- ellm + 2c te - etlm + ~ te --12elm)t 

2 m m m 

_ 4c e -- lelm)t + e·- 2lelm)t + ~ e -12elm)t ] m
2 

( ... ), 

m 2 c5 

The matrix Uij stands for the second derivative a Zu laqjaqj' 
In the limit as t goes to 00, one obtains 

G 4(00) = ~ ~ Uij(f3 -) ~ + au,) (57) 
c aq j aqj aqjj 

and for the sixth cumulant 

(6) m
2 a [ 1 ] G (00)=-- 2VVI +VI-V+-VI --

c5 aqj lj J 'v J 213 ''1/ 

X(f3- 1 ~ + UI ) 
aql 

+ 3m
z 
~ (VI ~ )(13 -) ~ + UI)' (58) 

2csf3 aqj 'v aqj aql 

Discussion 
The higher order corrections G (4), G (6), etc., vanish in the 

absence of external forces. This follows from the fact that the 
cumulant averages (I (td···1 (tn )e vanish for n > 2 if the 
operators band b t commute. In general, the second cumu­
lant is exact for a multiplicative stochastic Gaussian process 
if the stochastic operators commute. 17 Einstein's result, 

!... P (t,q) = A (t )Vz P (t,q), 
at 

(59) 

is therefore exact. The stationary value of the diffusion coef­

ficient is obtained in the limit as t-+ 00, D = limA (t) = l/f3c. 
t-+oo 

In the presence of external forces the second cumulant 

U. R. Steiger and R. F. Fox 1682 



                                                                                                                                    

leads in the limit as t-+ 00 precisely to the Smoluchowski 
equation. This equation can be interpreted as the conserva­
tion law of the current, 

I==JP, (60) 

1= -=-!. ~ - 1.- au, (61) 
{3c aq c aq 

~P';;t, - a -j. (62) 
at aq 

Adding the corrections given by the fourth cumulant, 
one obtains a diffusion equation with position dependent dif­
fusion coefficients. 

a -a 
-P';;t, --Dk1jl' 
at aqk 

Dkl = Okl + (mlc2 )Ukl · 

This equation agrees with the results given in Ref. 4. 

(63) 

(64) 

It can be shown that all solutions of the Smoluchowski 
equation (62) tend toward the equilibrium distribution, the 
Boltzmann distribution gB as t-+ 00. This is not always true 
for Eq. (63) because the diffusion coefficients D kl !c{3 become 
negative if Ukl has a negative eigenvalue smaller than 
c- 2/m. Obviously this is nonsense. The diffusion equation 
(63) can only be applied if the potential is sufficiently smooth. 
If the curvature of the potential U is very small, Eq. (63) 
reduces to the Smoluchowski equation. If the curvature is 
very large the new equation leads to significant changes of 
the solutions. On the other hand, if Uij is very large the high­
er order corrections may become more and more important. 
In this case it is also questionable if the cumulant expansion 
converges. Equation (63) can be tested directly for simple 
cases, for example, the harmonic oscillator. Equation (63) 
gives the first correction of the diffusion coefficient given by 
Eq. (4). This series converges only if € < 1/4. This means that 
the correction given by Eq. (63) and (64) can lead to a quanti­
tative change of the diffusion coefficient in the order of 0-
25%. 

Equation (63) is further improved if the sixth cumulant, 
Eq. (58), is included. This leads to 

2m
2 

m
2 

m2] + -- UkU1 + - Ukl"U + -- Ukl"' jl c4 I I c4 I I 2{3c4 /I 

a (3m 2 a ). 
- -- --4- Uklj - it· 

aqk 2c {3 aqj 
(65) 

It seems that for the harmonic oscillator the higher order 
corrections lead always to a second order partial differential 
equation of the same form as the Smoluchowski equation but 
with a modified diffusion coefficient. 

In the next section we will show that all solutions ofEq. 
(65) reach the Boltzmann distribution as t-+oo if the poten­
tial is sufficiently smooth. 

In general, for a diffusion equation 

a 
-P=AP 
at 

(66) 

one requires that the diffusion operator A is dissipative; 18 

this means 
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Re«¢, A¢»..;O for all ¢ED (A ). (67) 

The scalar product used in the following discussion is 
defined 

(68) 

We denote by H the set of all functions </J on R3 which are 
measureable on R3 such that the expression «</J,</J » defined 
by Eq. (68) exists, «</J,</J » < 00. Functions which are equal 
almost everywhere are identified. The norm on H is defined 
by 

II</J II «</J,</J» 1/2 for </JEli. (69) 

The diffusion operator given by Eq. (62) is dissipative 
because for A (2) = - (a/aq)·J, 

Re«tf;,A (2)tf;» = Re«tf;, - a Jtf;» 
aq 

3 

= - I Re«Jj tf;,Jj tf;»(c{3)-l..;o. (70) 
;=1 

Similarly one shows that the operator A (4) = (- a/aqdDkIJ[ 
is dissipative if all eigenvalues of the symmetric matrix D kl 
are non-negative. 

These concepts are useful because one can now prove 
that the solution of these diffusion equations approach the 
Boltzmann distribution in the limit as t-+ 00 • First, the norm 
liP (t)1I of a solution of the diffusion equation (66) decreases 
monotonically in time, 

!!...-IIP(t JlI2 = !!...- Re«P(t ),P(t)) 
dt dt 

= 2 Re «P(t),AP(t)) 
..;0. (71) 

The norm IIP(t )11 must reach its minimum as t-+oo because 
liP (t )11 is bounded from below, liP (t JlI ;;;.0. Hence, 

:tIIP(tlllt~oo =0. (72) 

This means that Re( (P,AP» = 0 at t = 00. But the equa­
tion Re( (P,AP) ) = 0 implies that P = gB in the case of the 
diffusion equations (62), A = A (2), and (63), A = A (4). For in­
stance, 

Re«P, ~ .JP» = 0, 
aq 

~«JIP,JIP» = 0 fori = 1,2,3, 

~JIP = 0 for I = 1,2,3, 

~P=gB . 

Therefore, by requiring that the diffusion operator A is dissi­
pative and also that gB is the only function which fulfills the 
equation Re( (gB,AgB» = 0, one makes sure that all solu­
tions reach finally the Boltzmann distribution gB' 

Calculating higher order cumulants leads very fast to 
extremely complicated expressions for the diffusion opera­
tors. The sixth cumulant leads to a third partial differential 
operator; compare Eq. (58). From the investigation of A (4) 

one suspects that, again, the diffusion operator 
A (6) = G(2) + G(4) + G (6) is only meaningfulifthepotential U 

is sufficiently smooth. This is actually the case. Without go-
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ing into all details the result may be stated as follows: 

(i)Re«t/',A(6)t/'» = D=>t/'=gB' (73) 

(ii)A (6) is dissipative if 

I - 42 - ~ 44 >0, 

with 

41 = suplD viU(q)I ... ID "kU(q)l( ! )lml12/3 k -112, 

qER3,lvi l>l, 

(74) 

!=IVil+···+lvkl. (75) 

The derivatives D " are defined D Y 

= (a laq,y(alaq2){3(alaq3)Y' v = (a, /3, y) and 
Ivi = a + /3 + y. 

41 is dimensionless constant which is typical for the 
cumulants G (k) for k>! + 2. For more details see again Ref. 
16. 

From Eqs. (73) and (74) and from the previous remarks 
it follows that all solutions of the diffusion equation 
(al at )P = A (6)p, P (t = O)EH, approach the Boltzmann distri­
bution as t~ 00 (for sufficiently smooth potentials). This is an 
important result because the form of the operator A (6) differs 
very much from a typical diffusion operator, for example, 
such as A (4). 

4. INTERPRETATION, APPLICATIONS, AND REMARKS 
ON THE CONVERGENCE OF THE CUMULANT 
EXPANSION 

Position dependent diffusion coefficients. First, we con­
sider the diffusion equation (63). It was already pointed out 
that one must require 

a2u c2 

-- < - for all i,j. (76) 
aqiaqj m 

The diffusion equation (63) can be reduced to a diffusion 
equation with constant diffusion coefficients. This is 
achieved by introducing new variables Q = Q (q), a coordi­
nate transformation which has an interesting physical inter­
pretation, illustrating the interplay of the Newtonian dyna­
mics and the pure Brownian motion. 

Consider the symmetric matrix Dkl(q) defined by Eq. 
(64). It is possible to find a square root ga{3(q) such that 

ga{3(q)g{3y(q) = Day(q), (77) 

ga{3 (q) = g{3a (q). 

We introduce the new variables QI' Q2' Q3 by 

(78) 

The new coordinates QH Q2' Q3 are the coordinates in a non­
orthogonal coordinate frame. These coordinates belong to a 
differentiable manifold with the metric 

(79) 

The metric is the inverse of the diffusion matrix [Dl'y(q)). 
The new coordinates Qj.t (ql' qz, q3) are well defined by 

Eq. (78) if dQj.t is an exact differential. This condition can be 
written 
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(80) 

The new density P '(t,Q) is obtained from the density 
P (t,q) by the transformation 

P '(t,Q) = gp(t,q(Q)), (81) 

with 

g-det (ga{3)' (82) 

In order to derive the diffusion equation for the new distribu­
tion function P '(t,Q), Eqs. (78) and (81) are substituted into 
Eq. (63). This leads to 

~P'(tQ)- ~ -I ~D e-{3U -I~ 
at ' - g c/3g/w aQa j.tv gy{3 aQ{3 

xef3Ug- IP'(t,Q). (83) 

It is convenient to write current operator J in the form 
J = ( - kT Ic)e - U{3(alaq)e U{3. The potential Uis now consi­
dered as a function of Q; 

U= U(q(Q)) = U(Q). (84) 

The derivative (al aQa )ggj.t-::' I vanishes as a consequence of 
the integrability condition (80). Hence Eq. (83) can be written 

~P'(t,Q)= ~~e-U{3+lng~eU{3-lngp'(t,Q). (85) 
at c/3 aQa aQa 

This is the diffusion equation in the new coordinates Q. In 
these curvilinear coordinates, the diffusion equation looks 
like a diffusion equation in an Euclidean space with constant 
diffusion coefficients {j afJ (1/ c/3 ) and potential 
U-/3-llng.19 

The transformation Q = Q (q) has a physical meaning. 
Recall that the inverse of the square root of the matrix Dij is 
in first order in ml c2 given by 

_ I ~ m a2 u 
gj.tv <;;;;;uj.tv - -z 

2c aql'aq" 
(86) 

The approximation is consistent because the matrix Dij is 
accurate only up to first order in ml cZ

• The higher order 
corrections would be specified by the higher order cumu­
lants. The expression (86) satisfies the integrability condition 
(80). The new variables Q are 

tk 2a(q) 
Q=q+ --. 

2 

t k is the correlation time of the momenta, 

tk = mlc. 

a(q) is the acceleration due to the force - au laq, 

( ) 
-I au aj.t q = --m --. 

aqj.t 

(87) 

(88) 

(89) 

It is easy to verify the Eq. (87) is a solution ofEq. (78) and (87). 
Equation (85) shows that the "effective potential" in the 

new variables Q is equal to U - /3 - I In g. We use again the 
approximation (86). Hence, 

U'~:=U-/3-llng<;;;;;U- ~det( a
2
U). (90) 

2c /3 aqi a% 
The diffusion equation (62) can now be written 
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:t P'(t,Q) = (91) 

with 

(92) 

Equation (92) has the sameform as the Smoluchowski 
equation (46) obtained for translational diffusion in first non­
vanishing order. But Eq. (92) describes a different process. 
The new interpretation is given by the coordinate transfor­
mation (87) and the new potential U' defined by Eq. (90). 

Comparison ofEqs. (87) and (91) shows a competition 
between the Newtonian dynamics and a Brownian motion. 
Equation (87) is the orbit of a Newtonian particle under the 
influence of a force which is constant in time: 
q(t) = qo + vot + at 2/2. In Eq. (87) the term containing the 
initial velocity Vo vanishes. the Newtonian dynamics applies 
only for a very short time the correlation time of the mo­
menta t k • Applying the transformation (87) shows that ever­
ything else is a pure Brownian motion with external poten­
tial U' governed by the Smoluchowski equation (92). 

Nonlinear diffusion equations. In a manner similar to 
the preceding presentation the diffusion equation can be der­
ived for N interacting particles.4

•
16 This is leads to a partial 

differential equation in the 3N dimensional position space. 
There are only few applications for the N particle diffusion 
equation because it cannot be solved in general for large N. 
On the other hand, one may ask the question if the reduced 
density 

p(t,q) = J d 3q2 ... J d 3qnJ d 3
PI ... J d 3Pn 

R3 R3 R J R] 

Xf(t,q,q2,· .. ,qN,PI,,,,,PN) (93) 

fulfills a simple diffusion equation if N is large and the inter­
action between the particles is weak. [In Eq. (93) 
f(t,q,q2,· .. ,qN,PI"",PN) is the probability density in the 6N di­
mensional phase space.] If the correlations between the par­
ticles can be neglected, the N body problem reduces to the 
one particle dynamics. For this case we propose the follow­
ing diffusion equation: In one dimension, 

a 
atp(t,q) 

=D~(l + m ~U[p] )(~ +.8 au[p]) (t,q), 
aq c2 a2q aq aq p 

(94) 

and similarly in three dimensions. The potential U is now a 
functional of the density p. For a specific two particle inter­
action potential V(q) one can write (only the one dim men­
sional case is considered in the following) 

U [p](q) = J dq'V(q - q')p(q'). 
R' 

(95) 

The diffusion equation (94) can be used to describe ex­
cluded volume effects if one chooses the potential 

V(q) = a6(q). (96) 

a monitors the strength of the excluded volume force. Com­
bining Eqs. (94H96) leads to 
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p, =Apqq 

+ B [pPqq + (pq)2] + C [(pqq)2 + ppqqq] + .... (97) 

p, andpq denote the partial derivatives (a /at) pand(a /aq) p, 
respectively. This equation serves only as a simple illustra­
tion and therefore we did not write out the terms proportion­
al to a 2. The constants are A = D, B = aD Ikt, and 
C=amD/c2. 

Equation (97) represents a description of the self-avoid­
ing random walk?O For classical diffusion (or random walk) 
the variance c? of the distribution p(t,q) increases propor­
tional to time. One expects that the distribution p(t,q) 
spreads out faster in the case of the self-avoiding random 
walk. 

Equations for the first and second moment of the distri­
bution p(t,q) can easily be obtained from Eq. (97). 

!!.... (q) = 0, (98) 
dt 

d J+oo J+oo - (q2) = 2A + B dq p2(t,q) + C dq p\(t,q) + .... 
~ ~oo ~oo 

(99) 

The first term in Eq. (99) alone would lead to the old result 
c? ~t. The second and third term are always positive; the 
variance c? increases now faster in time. In the sense of a first 
approximation one can assume that the distribution p(t,q) is 
Gaussian for all times if the initial distribution was Gaus­
sian. This approximation leads to a simple differential equa­
tion for the variance c?: 

!!,r = 2A + ~ 17~1 + C 17~3 + .... (100) 
dt 21T1/2 2(21T)1/2 

For large values of c? the higher order corrections can be 
neglected. In this case one obtains again 17 ~ t 1/2. On the oth­
er hand, if 17 is small the contributions of the higher order 
terms become more and more important. If the right-hand 
side of the differential equation (100) is dominated by the 
third term one obtains the relation 17 - t 1/5. In this case the 
higher order corrections of the diffusion equation do not 
only lead to a quantitative modification of the solution but 
they lead to a qualitatively different solution. 

Remarks on the convergence of the cumulant expansion. 
The following remarks are not a substitute for a rigorous 
proof of the convergence of the cumulant expansion. From a 
practical point of view it is more important to understand the 
physsical implications and to establish criteria which allow 
identification of the physical situations (type of potentials, 
possible values of the parameters m, c,.8) which are best 
described by the diffusion equations derived in the previous 
section and to be able to distinguish these situations from 
those where these diffusion equations cannot be applied. In 
this case one would have to go back to the Kramer-Liouville 
equation. 

Consider the cumulant expansion 

(101) 

There is a formal similarity between the cumulant expansion 
and Mayer's expansion of the grand canonical partition 
function for the real gas.21 Furthermore, the cumulants have 
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a cluster property analogous to the cluster property of the 
Ursell functions. The cluster property for the cumulants is a 
consequence of the following factorization property. We say 
that the moments (M(tI) ... M(tn) satisfy the factorization 
property if, for all nand 1 <,i<,n - 1, 

(M(tl + r) ... M(t; + r)M(t;+ I ) ... M(tn) 

- (M(ti + r) ... M(t; + r) (M(t;+ I ) ... M(tn)-o. (102) 

One can show22 that, if this factorization property holds, the 
cumulant averages go to zero if the "distance" r between two 
"time clusters" becomes large. We have for all nand 
l<,i<,n-l 

(103) 

The cumulants are appreciably bigger than zero only if the 
time moments tpo .. ,tn are clustered together, for instance, if 
all variables tI, ... ,tn are contained in a short interval of time. 

One can easily verify that the factorization property 
(102) hol~s also for the Liouville operator in the interaction 
picture, L (t) [compare also Eq. (48)]. 

(I (ti + r) ... 1 (t; + r)I (1;+ I ) ... 1 (tn) 

- (I(t l +r) ... I(1; +r)(I(t;+I) .. ·I(tn)~e-lelmIT.(I04) 

This means in physical terms: The momentap(t) andp(t + r) 
become independent random variables if r>t k = m/ e, since 
the momentum p(t + r) has been changed by many random 
collisions _with the Brownian fluid particles. Therefore, the 
operator L (t) can also be considered as an independent ran­
dom operator acting on the spatial distribution of the time 
difference r is large compared with the correlation time of 
the momenta tk • The autocorrelation function of the mo­
menta and also the expression (104) decrease exponentially 
in r, the lapse of time. 23 

Equation (96) represents a strong version of the factori­
zation property (94), which leads to a strong cluster property 

(I(tl +r) ... I(t; +r)I(t;+d .. ·I(tn)e~e-IclmIT. (105) 

This equation and the invariance of the cumulant averages 
under time translations, 

(I (t l + r) ... 1 (In + r)c = (I (II ) ... 1 (In)c, (106) 

can be used to show that the limit of G Inl as 1---+ rf:J exists for 
all n. Moreover, the cluster property (105) shows that the 
higher order cumulants are very small if the correlation time 
ofthe momenta, Ik = elm, is small measured on a macro­
scopic time scale with units tmac ' The nth cumulant is pro­
portional to (Ik/tmac)" - I, 

Glnl~(lk/lmacln-l. (107) 

In the following it is useful to represent the exact solution, 
obtained by solving the Kramers-Liouville equation P (I), 
graphically. We assume that the time-ordered exponential 

P(I) = <!' exp i'dS I (s)Po (108) 

converges for some macroscopic time I, which can be small 
but still large compared with Ik = mlc. The time-ordered 
exponential can be represented graphically. 
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(T exp r'ds I (s) = 
~ Jo (109) 

1 + +~ 

+~+~ 

+ 

The straight lines denotes the t axis. The circles represent the 
operators b, respectively, b t and wiggled lines t,~t, 
stand for a factor e - elmlt, - t,l. 

o 

• 
tI~t2 

I axis 

-b; 
bj 

e - elmlt, - t,IO .. 
If (110) 

It is understood that an integration over all possible 
ordered sequences of time t> t I > ... > t n > 0 is performed in 
all diagrams. 

The lines ~ can be interpreted as the 
propagator of a virtual particle describing the correlation of 
the momenta. 

Equation (109) is an expression of the Gaussian proper­
ty..: Th~ first diagram is the second moment of I (t ), 
(L (tl)L (t2). The next three diagrams add up to the fourth 
moment, etc. 

The graphical representation (109) is very convenient to 
compare the exact solution P (t ) gained from the Kramers­
Liouville equation with the approximate solutions, for in­
stance the first approximation P 12'(t ) which is the solution of 
the Smoluchowski equation (a lat )pm(t) = G (2)p 121(1 ). The 
function P(2)(I), 

P 12I(t ) = ~ exp fdS G 121(S)Po 

= ~ exp [ - fdS fdS'b t(s).b (S')]Po, (111) 

could also be represented graphically but the operators 
b t(t) and b (t) are no longer time ordered in the expansion 
(Ill)! All nonoverlapping graphs appearing in (111) agree 
with the corresponding graphs in (109). These graphs are 

etc. (112) 

On the other hand, the expansion (111) also contains terms of 
the form 

( 113) 

with tl > 13 > 14 > t2! The corresponding term in the expan­
sion (109) is the time-ordered product of (113) given by 

(114) 

The two expressions (113) and (114) are not equal if the oper­
ators bl and b ~ do not commute. The "errors" which arise 
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from the incorrect ordering of these operators in the expres­
sion (111) are corrected if the fourth cumulant is included. 
The fourth cumulant is therefore proportional to the com­
mutator [bob J] . Multiple "overlaps" are corrected by 
higher cumulants. The higher cumulants generate nested 
commutators, which lead to expressions in terms of deriva­
tives of the potential U. For instance, 

[bi,bJ]=m- 1 a
2

u , 
aqiaqj 

etc. 

(115) 

If the operators bi and b J commute, only the second 
cumulant survives. Rotational diffusion has also been stu­
died. 24.25 In this case the higher order cumulants do not van­
ish even in the absence of an external potential, quite con­
trary to the translations diffusion without external forces. 
These corrections, which have been calculated up to fourth 
order,24 are due to the noncommutativity of the operators 
M I , M 2 , M 3, the infinitesimal generators ofSO(3), which cor­
respond to the operators 

a a a 
i aq' i aq2' i aQ3' 

and the infinitesimal generators of the translations in R3. 
The main reason why the cumulant expansion gives 

such as excellent description of the diffusion process is given 
by the fact that not only the first few diagrams in (109) but 
also the higher order diagrams are represented correctly to a 
large extent if the correlation time t k is small. 

5. CONCLUDING REMARKS 

It has been shown that the diffusion equation for trans­
lational Brownian motion can be calculated using a boson 
representation of the Kramers-Liouville equation and the 
time-ordered cumulants. The first six terms of this expan­
sion have been calculated. They have led to a fourth order 
partial differential operator. It has been shown that Ein­
stein's result is exact in the limit as t-oo. In general, the 
higher order cumulants are small because the cluster proper­
ty holds. 

The boson representation can be extended to coupled 
translational and rotational diffusion of molecules or arbi­
trary shape. 16 The Gaussian property [Eq. (48)] does not ap­
ply for rotational diffusion but rules have been derived for 
calculating the moments (1 (Ii ) ... 1 (In) in the most general 
case. 16 The boson representation allows one to calculate or 
estimate the higher order corrections in a straightforward 
manner. This work generalizes earlier results on rotational 
diffusion24 and coupled translational and rotational 
diffusion.25.26 

It can be shown that the effects on diffusion due to the 
so-called long time tails,27 the nonexponentially decreasing 
tails of the velocity autocorrelation, are very small in three 
dimensions. These non-Markovian aspects of Brownian mo­
tion will be discussed in an upcoming publication. 
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Note added in proof It has been brought to the author's 
attention that a one dimensional version ofEq. (65) and the 
proof of the conjecture on the harmonic oscillator below Eq. 
(65) have been published previously.28 
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Definitions of the nonintegral effective dimensionality of recursively defined lattices (fractal 
lattices) may be based on scaling properties of the lattices, or on the qualitative behavior of 
cooperative phenomena supported by the lattices. We examine analogs of these definitions for 
regular (i.e., periodic) lattices supporting long-range interactions. In particular, we show how to 
calculate a harmonic oscillator effective dimension, a scaling dimension, and a random walk 
effective dimension for simple cubic lattices with a class oflong-range interactions. We examine 
the relationship between these three dimensions for regular lattices, and conjecture a constraint 
on the analogs of these dimensions for fractal lattices. 

PACS numbers: 05.50. + q 

I. INTRODUCTION 

Lattices of effectively nonintegral dimensionality have 
been studied recently by a number of authors!-4 with a view 
to obtaining information about the effect of dimensionality, 
degree of symmetry, and topological structure on critical 
phenomena. Such lattices are frequently defined recursively 
(and consequently are hard to visualize), but have the advan­
tage that renormalization group techniques are easily ap­
plied and analytic results are sometimes available. 

There is no a priori method for assigning a numerical 
value to the dimension of a nonstandard lattice, and several 
definitions currently in use fail to asssign the same dimen­
sion to particular lattices (although they do coincide, as they 
should, with the usual value of the dimension of any Bravais 
lattice). Nelson and Fisher! and Gefen, Mandelbrot, and 
Aharony2 employ a definition based on scaling properties, 
while Dhar3 uses a dimension based on lattice dynamics. 5 

Neither of these definitions gives the value 1 for the lower 
critical dimension of the Ising model. 6 To gain insight into 
the relationship between the inequivalent definitions, we 
consider here some model systems in which the effective di­
mensionality of a simple cubic lattice is changed when the 
physical processes (interactions) it supports are long ranged. 
We are able to calculate a harmonic lattice dimension h (in 
the manner of Dhar3 ), a scaling dimension! (analogous to 
that of Nelson and Fisher l and Gefen et al.2

), and a random 
walk effective dimension r (proposed by Hughes, Shlesinger, 
and MontroW·8

). 

II. EQUATIONS OF MOTION 

We begin by writing down a few results from the theory 
oflattice dynamics9•10 and the theory of random walks, 11,12 
and noting certain mathematical similarities between them. 

''This research was supported in part by a postdoctoral fellowship from the 
Commonwealth Scientific and Industrial Research Organization of Austra­
lia, held by B. D. H., and by DARPA. 

Consider an s-dimensional simple cubic lattice of coupled 
harmonic oscillators, each oscillator possessing only one de­
gree offreedom (for simplicity). If x(l,t ) denotes the displace­
ment of the oscillator at site I and time t, and each oscillator 
has mass m, then the equations of motion of the lattice may 
be written in the form 

a2 

m -2 x(l,t) = I r(l'){ x(1 + l',t) - x(l,t )}; at I' 

(1 ) 

here the interaction constants are assumed to satisfy the rela­
tion r(l) = y( -1);;.0 to ensure stability of the lattice. The 
trial solution 

x(l,t ) a:. exp(i6.1 - iwt ) 

leads to the dispersion relation 

w2 = W(6) = (11m) Iy(I) [ 1 - exp(i6.1)). 
I 

(2) 

(3) 

For a random walk on the same lattice commencing at 
the origin, the probability P n (I) of the walker being at the site 
I after n steps may be easily calculated in terms of the single 
step jump distribution p(I), since 

Pn + 1 (I) = V(I - 1')Pn (I'). (4) 
I' 

Here we assume that the walk is symmetric, i.e., p(l) 
= p( - I), in addition to the usual requirements that l:1 

pIll = 1 and p(I);;'O. It follows immediately from Eq. (4) that 

Pn + 1 (I) - Pn(l) = Ip(l'){Pn(1 + I') - Pn(I)}, (5) 
I' 

and the similarity between the right hand sides of (1) and (5) 
implies a mathematical relationship between the solutions of 
the lattice dynamics and random walk problems, as first 
pointed out by Montroll. 13 In terms of the structure function 
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..1(0) = LP(I)e'l.e, (6) 
I 

the random walk generating function 
00 

P(I,z)= L Pn(l)zn (7) 
n=O 

is given by 

P (I,z) = _1_ r exp( - 11.0)d sO, 
(21T)' JB 1 - z..1 (0) 

(8) 

the volume integral being taken over the first Brillouin zone, 
i.e., the hypercubeB = 10 = (01,02,···Os)I-1T.;;Oj';;1Tj. 
Writing 

t = L y(1) and p(l) = t -1y(1), (9) 
I 

we set up the explicit mathematical correspondence between 
the lattice dynamics and random walk problems, so that the 
dispersion relation (3) becomes 

w 2 = W(O) = (tim)! 1 - ..1(0) j. (10) 

In the terminology of probability theory, A (6) is the 
characteristic function of the discrete probability distribu­
tion p(I). Although it is clear that 1..1 (6) I.;; 1, with equality 
holding at the points (21Tm 1,21Tm2, ... ,21Tms)' mj integral, i.e., 
the centers of the Brillouin zones, it is not obvious at which 
other points A (6) may attain the value 1. [This is an impor­
tant question, because such points influence the asymptotic 
properties of the walk, as can be seen from Eq. (8).] A neces­
sary and sufficient condition that no such additional points 
exist has been given by Spitzerl4 (the walk must be "aperiod­
ic" in a certain sense). In the Appendix we give a short proof 
that in fewer than four dimensions no such additional points 
may exist, provided that p(l) is nonzero for certain nearest­
neighbor transitions. 

III. HARMONIC LATTICE DIMENSION 

Let g(w) denote the distribution offrequencies9
•
10 and 

G (w2
) the distribution of squared frequencies for a lattice of 

harmonic oscillators. For a simple cubic lattice of spatial 
dimension s, with nearest-neighbor coupling only, it can be 
shown that as w---+O, g(w) a:. WS 

- I, or equivalently 

[ g(w')dw' = fow' G (W'2)d (W'2) _ Aws, 

with A constant. For any infinite lattice of oscillators, 15 
Dhar defines the dimension of the lattice as h if 

(11) 

H(w2) [' G(WI2)d(W'2)_A (w)w h asw---+O, (12) 

with A (w) bounded, but not vanishing, in the neighborhood 
of w = O. [The need to allow for nonconstant A in generaliz­
ing Eq. (11) is seen from Dhar's analysis3 of the truncated n­
simplex lattice.] For nonperiodic lattices, the determination 
of H (w2

) is a matter of some difficulty. 16 In contrast, for the 
translationally invariant lattices considered in the present 
paper, H (w2

) is easily found from the dispersion relation of 
the lattice at small wavenumbers. For the remainder of this 
paper, let C denote a constant, the value of which is not 
necessarily the same from line to line. Since 
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G (w2
) = C Sa o(w2 

- W(O))d s6, 

it follows that 

H(w2) = C Sa 8(w2 - W(6))d sO, 

(13) 

(14) 

with 8 denoting the Heaviside unit step function. For suffi­
ciently small values of w only the local behavior of W(6) in 
the neighborhood of its zeros contributes to the asymptotic 
form of H (w2

), and from known properties oflattice walk 
structure functions we will usually only have zeros of W (0) at 
the centers of the Brillouin zones (see the Appendix). 

If the coupling constants y(l) of the lattice satisfy the 
condition 

L fy(l) < 00 (15) 
I 

or, equivalently (in the random walk terminology), if the 
mean-squared displacement per step, 

s 

(f) = L (/J) = L fp(I), (16) 
j= I I 

is finite, then it is not difficult to establish that 

l-..1(O)-..!. ± (/J)OJ. 
2 j= I 

(17) 

Consequently, forsmallw, it follows from Eq. (14) thatH (w2
) 

is given by the volume of a hyperellipsoid with semiaxes pro­
portional to w, i.e., 

(18) 

The harmonic lattice dimension h is thus the same as the 
usual dimension s of the space lattice unless the coupling 
constants are so long ranged that Eq. (15) is violated (or, 
equivalently, the associated random walk has infinite mean­
squared displacement per step). We consider the canonical 
example of an interaction for which h > s: 

(19) 

where,u <2. Gillis and Weiss l7 have shown that Eq. (19) 
arises if 

p(l)-C III-s-P. as 111-00. (20) 

It is easily shown that for the lattice system governed by Eq. 
(19) 

H (w 2 ) _ Cw2SIp., 

so that 

h = 2<>1,u. 

(21) 

(22) 

Not only does h exceed s but also, by choosing,u sufficiently 
small, h may be made arbitrarily large. In Secs. IV and V we 
study random walks with structure function similar to Eq. 
(19). 

IV. SCALING DIMENSION 

For self-similar lattices (as considered in Refs. 1-6), it is 
possible to define a scaling dimension or fractal dimension 18 
as follows. Suppose that the lattice is generated by breaking a 
finite portion of it into N identical parts, each similar to the 
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original, but scaled down by a linear factor L. Then 

f=lnNllnL (23) 

is the fractal or scaling dimension. An analog of this for 
random walks or lattice dynamics on cubic lattices may be 
considered7

•
8 by building a self-similarity property into pIll. 

In one dimension the canonical example is the "Weierstrass 
random walk"? 

p(l)=a-l fa-nIb n+b nl 
2a n ~ 0 I.b I. - b 

(a,b> 1; b integral), for which 

A (0) = a-I i: a - n cos(b no ) 
a n~O 

a-I 
=a-IA(bO)+ --cos(O). 

a 

(24) 

(25) 

The mean-squared displacement per step is infinite when 
b 2>a, and the long-time behavior of the walk is not Gaussian 
if the inequality holds strictly (which we now assume). 

The walker makes on the average about a jumps of 
length I, forming a cluster of sites visited, before making a 
jump of length b to begin a new cluster; about a such new 
clusters are formed before ajump oflength b 2 occurs, and so 
on. While this self-similar cluster formation is obvious for a 
walk of limited duration, it is necessary that the random 
walk be transient, i.e., not every point is certain to be 
reached, for the clusters to persist for a walk of infinite num­
ber of steps. In one spatial dimension, transience of the walk 7 

requires the inequality b > a. The set of points visited in a 
walk of infinite duration may be assigned the fractal dimen­
sion 

f= Ina/ln b, 

provided that the walk is transient, i.e., 

O<f< 1. 

(26) 

(27) 

The quantity f arises as a scaling dimension not only from 
this probabilistic argument, but also directly from the func­
tional equation [Eq. (25)]. It can be shown that iff < 2, the 
small 0 behavior of the structure function is given by 

A(O)-I-IOIIQ(O), (28) 

where Q is a continuous but highly oscillatory function [be­
ingperiodicinlnlO I with period In b, i.e., Q (0) = Q (be)]. As 
1/1-+00, 

p(/) = 0(1/1- 1
- / ); (29) 

there is an effective power-law decay (of exponent - 1 - f) 
with some superimposed noise. 

A well-defined scaling dimension does not exist for gen­
eral one-dimensional long-tailed jump distributions for 
which p(/) = 0 (1/ I - 1 - IL) with 0 <fL < 2, such as the exam­
ple of Gillis and Weiss, 17 

00 

A(O)=t(l+fL)-' L n--I--ILcos(nO), (30) 
n=l 

where t is the Riemann zeta function. However, by analogy 
with the Weierstrass walk, we assign to it the fractal dimen­
sionf=fL. Forthecasep(/)-C 1/1- 1 -l'as 1/1-+00, weh~ve 
scaling in the tail of p(/), but not for small values of I. WIth 
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fL = In N /In L, the scale change I-+Lf ' transforms p(1 )dl 
from C 1/1- '-I'dl toN-IC 1/',-1 --ILdl' = N -'p(l')dl'. 
Analogs of the Weierstrass random walk may be constructed 
in higher dimensions,8 but are most naturally discussed in 
terms of continuous space and we do not enter into these 
questions here. 

V. RANDOM WALK EFFECTIVE DIMENSION 

P61ya '9 showed that the probability u for a symmetric 
random walker, taking nearest neighbor steps on a simple 
cubic lattice, to return to the starting point is unity in one 
and two dimensions, and less than unity in three or more 
dimensions. These results are most easily obtained 11.20 from 
the generating function P (l,z) [Eq. (8)], where u = 1 - R -', 
and in s dimensions, 

1 i d'S R = lim P(O,z) = lim -- . 
z .1- z .1 - (217")S B 1 - ZA (9) 

(31) 

For P6lya's walk, and for any symmetric walk with finite 
mean-squared displacement per jump, I - A (9)-con­
stant·191 2 as 191-+0. P61ya's conclusions must be modified 
when 1 - A (9) = 0 (19Ir), as in Eq. (28), and the following 
argument shows that in this case the random walk may be 
considered to take place in a space of effective dimension 
greater than the Euclidean dimension. 

We restrict our attention to the case when the only zero 
of! - A (9) inBisat 9 = o. The convergence or divergence of 
the integral is determined by the behavior of the integral in a 
small hypersphere (ofradiusp) centered on the origin. Intro­
ducing polar coordinates, we see that if the mean-squared 
displacement per jump is finite then 

1 
d S9 If' 161 S 

- I ----c --dI91, 
101<.1' 1 - A (9) 0 191 2 

(32) 

while if 

l-A(tJ)-CltJl lL (0<11<2), (33) 

then 

i d s9 {1' 191 s
- 'd 191 

1(11<;1' 1 - A (6) -C Jo 1911' 

if' 16 liS + 2 - 1'1- 1 

=C d191. 
o 1912 

(34) 

We infer from Eqs. (32) and (34) that for a walk on an s­
dimensional space lattice, ifEq. (33) holds then in analogy 
with Eq. (32), the effective dimensionality of the random 
walk?·8 is 

r =s + 2 - fL. (35) 

For example, even in one dimension the random walker need 
not return to the starting point iffL < 1, and thus the random 
walker exhibits the qualitative behavior of a walker in a high­
er dimensional space. We note that as 0 <fL<2, we have 

s<r<s+2. (36) 

The above definition of effective dimension is of course not 
the only one which may be based on random walk properties. 
Other random walk statistics (such as the mean number of 
distinct sites visited in n steps21) may also be used to define a 
random walk dimension. 
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VI. DISCUSSION 

To cast light on the problem of assigning useful dimen­
sions to nonstandard lattices, we have considered the prob­
lem of nonstandard interactions on an s-dimensional simple 
cubic lattice. We have shown that it is possible to define a 
harmonic lattice dimension h, a scaling dimensionf, and a 
random walk dimension r. The examples considered yield 
the following inequalities and relations among the dimen­
sions: 

h>s, 0</<.2, s<.r<s + 2, 

h = 2s1f, r = s + 2 - f 
If we eliminate s from the preceding equations we find the 
relation betweenf, h, and r: 

fh = 2[r + / - 2]. (37) 

Since r> 1, it follows that 

fh>2(f - 1]. (38) 

Although this inequality has been derived for cubic lat­
tices supporting fractal interactions (necessarily restricted to 
the case/ < 2) we conjecture that it holds/ora classo//ractal 
lattices with/ the usual fractal dimension and h the harmonic 
lattice dimension, calculated with nearest-neighbor cou­
plings only. It is easily verified that the truncated n-simplex 
lattice3 (f = In n/ln 2, h = 2 In n/ln(n + 2)] and the modi­
fied rectangular lattice3 (f = 2, h = 1.5] are consistent with 
(38), and indeed the inequality holds strictly. Counterexam­
ples to (38) might be able to be constructed by forming suit­
able direct products22 offractallattices, but the authors have 
encountered none to date. A systematic investigation of pos­
sible relations between h and the key topological parameters 
ofa fractal lattice (such asf, lacunarity, ramification,2 etc.) 
would be of considerable interest. 

APPENDIX 

It is well known23 that for a one-dimensional lattice 
walk, A. (0) = 1 if and only if 0 = 211"ml a (a = lattice spacing, 
m = 0, ± 1, ± 2, ... ). It is not possible to generalize this in the 
obvious manner to an s-dimensional cubic lattice [A. (0) = 1 
only at the centers of the Brillouin zones] without some 
further restrictions on the walk. We prove (for a lattice of 
unitspacing)thatifs = 20rs = 3, the structure function A. (9) 
attains the value 1 at no point other than 9 = 0 inside or on 
the boundary of the first Brillouin zone B = (9 1 - 11" 
<.OJ <.11" J, provided that certain nearest-neighbor transitions 
have nonzero probability. [Equivalently, in the lattice dyna­
micsterminology, W(9)vanishesinBonlyat9 = O,ifcertain 
nearest-neighbor couplings are nonzero.] 

We assume that for s;;;.2 and unit lattice spacing, 

A. (9) = I exp(zl·9)p(I) (AI) 
I 

attains the value 1 at some point 4» in B, with 4» =1= O. It follows 
from Eq. (AI) that 

0= I [exp(zl.4») - l]p(l) 
I 

= I [cos(I.4») - 1 ]p(l) + i I sin(I·9)p(I). (A2) 
I I 
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As the summand in the real part of the right-hand side ofEq. 
(A2) is never positive, we deduce that p(l) can be nonzero at 
most at points I lying on the family of hyperplanes, 

1.4» = 211"m (m = 0, ± 1, ± 2, ... ). (A3) 

Ifwe define d = 211"/14»1 and n = 4»114»1, we may rewrite the 
family of hyperplanes as 

I·n = md, (A4) 

with d the distance from the origin (I = 0) of the two hyper­
planes closest to the origin which do not pass through the 
origin. Since 4» lies inB, 14»1 2<.sr, with equality ifand only if 
4» lies at a corner of B, and so 

d ..... 2s- 1/ 2 • ? (AS) 

In particular, if s = 2 or s = 3, then d> 1, and the nearest­
neighbor sites for which p(l) > 0 can only lie on the line or 
plane through the origin (1.4» = 0). Hence for s = 2 or s = 3, 
if p(l) > 0 for s orthogonal nearest-neighbor transitions, 
A. (9) = 1 in B if and only if 9 = O. When s = 4, (AS) shows 
only that d;;;. 1, with equality if and only if 4» is one of the 16 
vertices of the Brillouin zone B, so that if p(l) > 0 for four 
orthogonal nearest-neighbor transitions, A. (9) = 1 on B at 
9 = 0 and at most also at the 16 vertices of B. For s > 4, the 
present argument gives no information. 

The hypothesis that certain nearest-neighbor transi­
tions have nonzero probability cannot be removed. To see 
this, we note that a nearest-neighbor random walk on a 
body-centered cubic lattice (in three dimensions) can be de­
scribed in terms of a random walk or a simple cubic lattice, 
with nearest-neighbor transitions forbidden. It has been 
pointed out by Joyce24 that for such a walk, singular points 
other than the origin must be considered in Eq. (8). 

The breakdown of the simple argument used here to 
examine where A. (6) = 1 for s > 4 appears to be another cur­
ious example of the strong qualitative difference between 
walks in four or fewer dimensions and walks in more than 
four dimensions. 25 ,26 
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It has been brought to our attention by the referee that if h < 2 this relation 
also holds for fractal lattices. 

22D. Dhar, J. Phys. A 14 L185 (1981). 
23E. Lukacs, Characteristic Functions (Griffin, London, 1970), 2nd ed. 
24G. S. Joyce, J. Math. Phys. 12, 1390 (1971). 
25K. Lindenberg, V. Seshadri, K. E. Shuler, and G. H. Weiss, J. Stat. Phys. 

23, II (1980). 
l6p. Erdos and S. J. Taylor, Acta Math. Acad. Sci. Hung. 11, 231 (1960). 
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It has been known for a few years that the Heisenberg field of the extended object can be obtained 
in expanded form as a power series of quantum operators and creation and annihilation operators 
by solving the Yang-Feldman equation. Such an expression is called a dynamical map (mapping 
of the infield into the Heisenberg field). We will show that the Heisenberg field thus expressed (the 
dynamical map) is Lorentz covariant if it satisfies the equal time canonical commutation relation. 
In this paper we limit ourselves to the invariance of the first order term. Also, our Heisenberg field 
is (1 + 1) dimensional and is of the tree approximation. In the course of the calculation, we find 
that the quantum mechanical operator and the quantized field may be mixed by the Lorentz 
transformation if the space derivative of the classical field soliton solution is assumed to decrease 
not faster than l/x2.1t indicates that the Hilbert space may not be the direct product of two sub­
Hilbert spaces, even though it is a product of two subspaces, one of which is a Fock space of the 
quantized field and the other is of the quantum mechanical operator. 

PACS numbers: 11.10. - z, 11.30.Cp 

I. INTRODUCTION 

In the last few years, through the study of extended 
objects in quantum field theory, I great progress has been 
made in our understanding of physical systems which pre­
sent both quantum mechanical and quantum field proper­
ties. One of the main approaches to the subject uses the so­
called boson transformation method,2 which is applied to 
systems described by the scalar field theory. 

In this method, first using the Yang-Feldman strategy, 
the scalar Heisenberg field is given by a functional of the 
asymptotical free field. The trick is to introduce a C-number 
function which obeys the same homogeneous equation of 
motion as the free field. Thus the Heisenberg field is now, by 
means of the boson transformation method, a functional of 
the sum of the free field and the C-number function. This full 
Heisenberg field, called the dynamical map, describes the 
extended object, and due to the boson transformation 
theorem,2 obeys the same Heisenberg equation of motion as 
the free field. Now, if we consider only static extended ob­
jects, i.e., where the C-number function depends only on the 
space variable, the requirement that the dynamical map 
obey the equal time canonical commutation relation implies 
the introduction of classical quantum coordinates. As has 
been shown in the tree approximation, these quantum co­
ordinates reflect the in variance of the dynamical map under 
space translations. 3 Moreover, in (I + 1) dimensions, if Lor­
entz in variance is assumed for the description of the ex­
tended object in the one particle approximation, then the 
dynamical map depends only on two generalized coordi­
nates4 X and T. Therefore we can assume that the dynamical 
map can be written as rp (X, T) at least in the tree approxima­
tion. 

a) Present address. 
b) Postal address: Centre de Recherches Nucleaires. Physique Theorique des 

Hautes Energies, 67037 Strasbourg Cedex, France. 

Our purpose in this paper is to show in the tree approxi­
mation that rp (X, T) describes completely the extended object 
in the second order in quantum coordinates and field opera­
tors. Thus if the equal time commutation relations are as­
sumed, then in this approximation, by calculating the energy 
stress tensor, we obtain the infinitesimal Lorentz transfor­
mation of the dynamical map rp (X, T) to first order in the 
quantum coordinates and field operators. Therefore as ex­
pected, by the Lorentz transformation, quantum coordi­
nates and field operators mix together. 

The paper is organized into five sections. In Sec. II we 
recall briefly the main results which concern the dynamical 
map in the tree approximation. In Sec. III, in this approxi­
mation, assuming that the extended object in (1 + 1) dimen­
sions is described by the dynamical map rp (X, T) and that this 
latter function satisfies the equal time commutation rela­
tions, we obtain the equal time commutation relations of the 
quantum coordinates and field operators up to third order. 
Section IV is devoted to the calculation of the second order 
field stress tensor and to the first order infinitesimal Lorentz 
transform of the quantum coordinates and field operators. 
In the final section we draw some conclusions. 

II. USEFUL PROPERTIES OF THE DYNAMICAL MAP IN 
THE TREE APPROXIMATION 

If one begins with the Heisenberg equation of motion 
for the full scalar field ",(x,t ), 

(0 - m2
)'" = ~;, (2.1) 

and performs a static boson transformation over the free 
field ({lo, i.e., 

(2.2) 

which together with the C-number static function fIx) sa­
tisfy the homogeneous part of Eq. (2.1), then by virtue of the 
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Yang-Feldman method and by the boson transformation 
theorem, 2 the dynamical map '/I (x,! ), which describes the ex­
tended object, is given in the tree approximation by the Tay­
lor expansion 

1 00 

'/I (x,t ) = - r !f}nl(x,!), 
n! n =0 

(2.3) 

where ¢(Ol stands for the vacuum expectation value ¢ (x) of 
the dynamical map '/I and !f}n) is an n-order field operator in 
the free field <PO' In addition the field operator ¢(n) is deter­
mined by a recursion formula, 3 which gives the different 
equations of motion up to third order: 

(0 - m 2)¢ = ~;, (2.4) 

(0 - m2)¢(I) = ~:; ¢(I), (2.5) 

( 0 - m 2 _ 8
2
V) ¢(2) = 8

3
V ¢(I)'. (2.6) 

82¢ 83¢ 
From the fact that the equal time commutation relation 
must have the canonical form, it follows that the field ¢(I) is a 
sum of a field X' which describes both the scattered and 
bound states, and a quantum mechanical piece (the quantum 
coordinates) so that in (1 + 1) dimensions we have3 

[X' + -q-ax'¢ ',X + -.-L ax¢] = i8(x -x'), (2.7) 
y/M y/M 

with 

[q,p] = i. (2.8) 

Here and in the following, the prime index stands only for 
the space argument and the constant M is the mass of the 
classical extended object defined by 

(2.9) 

With the use of the recursion formula, it has been shown that 
we can check the dependence of the'" on the quantum co­
ordinates to all order.3

•
5 The solution", of the Euler equation 

(2.1) thus obtained is not unique. The'" given in Refs. 4 and 5 
is the one obtained by replacing in (2.3) the coordinates (x,t) 
by the generalized quantum coordinates (X,T), which are 
given by4.5 

X = x cosh A + t sinhA + B, (2.10) 

T= t cosh A +x sinhA + B tanh A, (2.11) 

where the time independent operators A and B are defined, 
in terms of the covariant quantum coordinate4 q, by 

coshA = (1 - q2)-lf2, (2.12) 

sinhA =q(1_q2)-lf2, 

B = q(O)(1 _ q2)-lf2. 

(2.13) 

(2.14) 

We can obtain another solution by adopting the following T 
given in (13.18) of Ref. 6, instead of(2.11). 

T= t cosh A + x sinhA. (2.15) 

In fact there are infinitely many other solutions whose T's 
differ from (2.11) and (2.15). Then we cannot expect that all 
of these solutions can satisfy the canonical commutation re­
lation. Only some of them should do. In this paper, however, 
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we expand the'" into a power series on A, B, and X, and limit 
ourselves to the second order. Then, in this paper we find 
that all of the canonical solutions should be identical in this 
approximation. 

III. SECOND ORDER EQUAL TIME COMMUTATION 
RELATION OF THE QUANTUM MECHANICAL AND 
FIELD OPERATORS 

The Taylor expansion of the dynamical map (2.3) in 
terms of the generalized quantum coordinates (2.10), (2.11) 
or alternatively (2.10), (2.15), up to the third order in the 
quantum mechanical and field operators, is given by 

'/I (X,T) = ¢ (x) + '/I(lI(X,t) + '/I (21(X,t ), (3.1) 

where for convenience we have defined the first and second 
order pieces of the dynamical map as6 

'/I (I)(x,t ) = cax¢ + X, (3.2) 

'/I (21(X,t ) = ~ c2a~ ¢ + ! xA 2ax¢ 

+ caxX + xAX + ~!/P). 
Here the quantum mechanical operator C, defined as 

C=B+At, 

(3.3) 

(3.4) 

with the use of the commutation relation (2.8) and the defini­
tions (2.12), (2.14) of the operators A and B, is seen to satisfy 

[C,A] = ilM. (3.5) 

Now if we assume that the equal time commutation relation 
holds for the dynamical map (3.1), we must have 

['/I', tP] = i8(x - x'), 

['/1','/1] = O. 

(3.6) 

(3.7) 

Actually, with the use of the commutation relations (2.7) and 
(3.5), it is easy to check that the first order piece '/1(1) of the 
dynamical map satisfies these two commutation relations so 
that their expansion yields two sets of expressions. One set is 
given by their first order vanishing piece and the other is 
obtained in keeping only the second order piece, which is 
proportional to the quantum mechanical operator C. 

The first order piece leads to 

~x'¢ '(axX + xX) +! [X',tiP )] 
M 

(3.8) 

~xax'¢ 'X +! [X',¢(2)] - ~x'ax¢x' +! [¢(2)',x 1 = O. (3.9) 

As for the second order piece we have 

cax' (:;{tx.¢ '(axX + xX) +! [X',tiP )]) 

+ cax (:;{tx¢ax'X' +! [¢(2)',X]). (3.10) 

cax' (~xax.¢'x + iAx8 +! [X',¢(2)]) 

+ cax ( - ~x'ax¢x' - iAx'8 + ~ [¢(2)',x 1). (3.11) 

The fact that the expression (3.9) does not appear exactly in 
(3.11) does not matter here because to have an exact second 
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order piece, we must deal with the third order expansion of 
the dynamical map 4ft(X,T). 

It follows from the two latter sets of relations that the 
different equal time commutation relations are 

[ 
• (2)' 2i ~ A. '(a ") tf; ,X] =--Ux''!' xX+xX' 

M 

[ . , .1,(2)] _ 2i:J -I.' a x X,'!' -Mx'r.p x , 

(3.12) 

(3.13) 

(3.14) 

It is easy to verify that these three commutation relations are 
self-consistent. 

As expected, the time derivative of the commutator 
(3.14) is given by the difference of the commutators (3.12) 
and (3.13). Also summing the time derivatives of the two first 
commutators (3.12), (3.13) and using the equations of motion 
(2.5), (2.6) we obtain the condition 

{(if: _ mZ _ (jZV) _ (az, _ mZ - ~)} [tf;IZ),X'] 
x (jz¢ x (jz¢ , 

(3.15) 

which by virtue of the equation of motIOn (2.5) is exactly 
fulfilled by the expression for the commutator (3.14). 

In addition we can notice that the last commutator is 
proportional to the space argument of the two particle field 
tf;IZI, so that near the origin this commutator behaves like that 
of the free fields. Moreover in this case the first two commu­
tators are equal. 

At present, we can calculate the generators of the infini­
tesimal Lorentz transformation to second order in the quan­
tum mechanical and field operators. 

IV. LORENTZ TRANSFORMATION 

A. The second order field stress tensor 

In (1 + 1) dimension scalar field theory, the generator 
of the infinitesimal Lorentz transformation is given by 

Mox = j(XT ()() + tTox) dx, (4.1) 

where TJ.lv is the usual energy stress tensor. If we take the 
second order expression (3.1) for the dynamical map and 
write the potential as a Taylor expansion in terms of the 
classical field ¢, then by use of the equation of motion (2.4) 
and the asymptotical properties of this field [due to the fini­
teness of the classical part of M Ox ,xl ax ¢ f vanishes as x goes 
to infinity], the generator of the Lorentz transformation be­
comes in the tree approximation 

Mox =M~2 +M~2 +M~2· (4.2) 

Here the zeroth, first, and second order pieces in the quan­
tum mechanical and field operators are defined by 

M~2= fx[~(ax¢f+~z ¢z+V(¢)]dx, (4.3) 

M~~ = - MB + fXJx(Jx¢X) dx + t f Xax¢ dx, (4.4) 
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MIZ) = f x [liP I!)' + I(a 1/1(\1)2 + ~ (m2 + (jZV) 1/1(11' 
Ox 2 2 x 2 (j2¢ 

+ Jxt 4ft (2)ax ¢)] dx + t f (tj/wax 4ft11l 

+ tj/(2)ax ¢ ) dx, (4.5) 

Mbeing the mass of the classical extended object. The M ~~ is 
merely a constant. In addition the first term of expression 
(4.4) is the generator of the Lorentz transformation in the no­
particle sector.4 

B. The infinitesimal Lorentz transformation of the full 
first order dynamical map 

Using the equation of motion (2.5) of the one particle 
field, it is easy to see that 

[X ',X] = o. (4.6) 

Therefore, since this field also commutes with 1/1(1) and all the 
quantum mechanical operators, it follows that 

[X',Mox ] = j x [tj/(J)[X',tj/IIJ] + ax ([X',I/IIZI] ax¢ )] dx 

+ t j ([x',tj/W] ax 1/111) + [x',tj/I2I] ax¢ ) dx. (4.7) 

The quantum mechanical operators A and B are time inde­
pendent, so from the expression of the first and second order 
pieces (3.2), (3.3) of the dynamical map and the equal time 
commutation relations (2.7) and (3.12), (3.13), keeping in 
mind the asymptotical property of the classical field ¢, we 
can verify that 

[X,Mox ] = i(xX + taxX) 

- ~ A. [xa t/J (Xtj/III + ta 1/1 111 ]::: YO • (4.8) MXo/ x.. x 00 

Here the term proportional to the time variable in the 
bracket comes from the expression 

j(XX + 2axX)ax¢ dx, (4.9) 

by using the equation of motion (2.4), (2.5). As for 1/1 111 , it is 
the first order piece of the dynamical map defined in (3.2). 
The last commutation relation shows that in the Lorentz 
transformation the one particle quantum field, the classical 
field ¢, and the quantum mechanical operator A mix togeth­
er in a coherent form. In the asymptoticallimit it becomes 

(4.10) 

which, in this case, gives as expected the infinitesimal Lor­
entz transformation of the asymptotical free field. This re­
sult is not surprising since the asymptoticallimit of the equal 
time commutation relation (2.7) has exactly the canonical 
free field form. If the space derivative of the classical field 
decreases more rapidly than lIx 2 as x goes to infinity, then 
the bracket of the right-hand side of(4.8) vanishes, and there 
is no mixing in the Lorentz transform of the one particle 
field. This is the case for the sine-Gordon model. 7 

To calculate the infinitesimal Lorentz transform of the 
quantum mechanical operators A and B, it is better to modify 
the expression T)ij of the energy part of the generator M i?1. 
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From the equation of motion (2.5) it follows that 

T~2 = H Vi(l)' + ax (f/I(1)ax f/I(1) + 2aX¢f/I(2)) - Xf/l(II]. 
(4.11) 

Then with the help of the commutation relation (3.5) and the 
asymptotical property of the classical field, we obtain 

[A,Mox] = i - 2~ [x(2ax¢axX + a;¢X)]::::, (4.12) 

[B,Mox] =~ [x(2ax¢axX+a;¢X)]::: 
2M 

+ ~ [xax¢ (xVi(l) + tax f/I(l))] :: :: . (4.13) 

Thus the first order Lorentz transform of the quantum me­
chanical operators A andB has a one-particle free-field part. 
From these last commutation relations, the generator Max 
being written to second order in the quantum mechanical 
and field operator, we can obtain the exact Lorentz trans­
form of the generalized quantum coordinates (2.10), (2.11) up 
to the second order terms. They are 

[X,Max ] = iT(l) +..!...- [xaX¢ (x Vi (1) + tax f/I(II)] :: :: , 
M 

(4.14) 

[T,Max] = iX(l) - ;~ [x(2Jx¢axX + a;¢X)] :: :: , (4.15) 

where, as usual, T(l) and X<1I stand for the first order expan­
sion of the generalized quantum coordinates. If the term 
xax ¢ vanishes as x tends to infinity, then we see that the 
generalized quantum coordinates play the role of the space­
time variable for the extended object in the no particle sector. 

What about the first order infinitesimal Lorentz trans­
form of the dynamical map? In order to have the exact first 
order piece of the Lorentz transform of the dynamical map, 
we must deal with its first and second order pieces (3.1). 
Owing to the expression (4.8) and (4.12), (4.13) of the Lorentz 
transform of the one particle field X and the operators A and 
B and to the fact that the sum of the three last terms of the 
second order piece (3.3) of the dynamical map commute with 
the first order piece (4.4) of the energy stress tensor, it follows 
that 

[¢ + f/I(1I + f/I(2),Max ] = ix(~ + Vi(l)) + itax(¢ + f/I(II). 
(4.16) 

The first and second order pieces f/I (1) and f/I (2) are defined in 
(3.2) and (3.3). So up to the second order the dynamical map, 
which describes the classical, quantum mechanical, and one 
partical field properties of the extended object, is at least in 
the tree approximation, a relativistic covariant entity. But if 
we dissociate the extended object into its classical and quan­
tum mechanical pieces on the one hand and its quantum field 
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piece on the other, then the transformation relations (4.8) 
and (4.12), (4.13) show that in a change of reference frame the 
quantum mechanical piece mixes with the quantum field and 
that the quantum field piece mixes with classical field and 
quantum mechanical operators. In this sense the quantum 
mechanical or field aspect of the extended object depends on 
the frame of reference, just as the magnetic or electric aspect 
of the electromagnetic field. 

V.SUMMARY 

If we construct the dynamical map of a static scalar 
extended object using the Yang-Feldman method, the dyna­
mical map is not determined uniquely at each order of the 
perturbation expansion due to the zero energy modes of the 
soliton solutions. In Ref. 5, it was shown that if we assume 
the canonical commutation relations to be held for the set of 
quantum mechanical and quantum field operators, then the 
dynamical map can be given exactly, at least to the second 
order, by f/I (X, T). 

In this paper we have shown in the tree approximation 
that the first order piece of the dynamical map is Lorentz 
covariant, assuming that the static scalar extended object is 
described by the dynamical map f/I (X, T) and that the equal 
time canonical commutation relations work. Thus the static 
scalar extended object in (1 + 1) dimensions is fully de­
scribed by this dynamical map: In order to have the dynami­
cal map of the nonstatic extended object, we have to perform 
a Lorentz transformation. Moreover, the main result is that 
the quantum mechanical and quantum field aspects of the 
extended object depend on the frame of reference if the space 
derivatives of the classical field soliton solution do not rapid­
ly fall off to zero. If it appears that this fact is a general 
feature of an extended object with more degrees of freedom, 
as for instance spin and colors, then this could be very attrac­
tive for our understanding of hadron physics. 
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We introduce scalar interactions for the relativistic spinning particle in such a way as to preserve a 
supersymmetry that leaves a special position-variable invariant. This generates systems of 
particles in scalar interaction with a supersymmetry for each spinning particle. For two-particle 
systems the supersymmetry eliminates all spin complications and reduces consistency problems 
to those of a purely bosonic system. Once the latter are disposed of, our approach leads to 
consistent systems of quantum mechanical wave equations. 

PACS numbers: 1l.30.Pb, 11.10.Qr 

In the last six years, many authors have applied Dirac's 
constrained Hamiltonian mechanics to interacting spinless 
particles to obtain consistent systems of relativistic wave 
equations. I In a previous paper,2 we even used such techni­
ques to extend a nonrelativistic heavy quark potential devel­
oped by Richardson3 (for the tP and r families) to the relativ­
istic domain of the light and intermediate mass vector 
mesons. Although our formalism gave a good account of the 
ground states and observed radial excitations, it neglected 
quark spin from the start. Quantum mechanical descriptions 
derived from classical constraint systems are not easily ex­
tended to include spin, however, without upsetting the deli­
cate consistency ofthe original classical dynamics. One way 
to avoid this difficulty is to build a consistent version of clas­
sical or "pseudoclassical" spin into the canonical formalism 
before quantization. For the free particle in an external 
field,4.s and system of particles with a collective spin,6 these 
problems have been overcome by other authors through the 
use of one-dimensional, locally supersymmetric actions 
analogous to those for supergravity.7 However, in order to 
deal with the more complicated system of two interacting 
particles, each with its own constituent spin, we need to find 
a way to introduce a supersymmetry8 for each spinning par­
ticle and preserve all of them against breaking induced by 
interaction. 

We shall see that when an initially free supersymmetric 
spinning particle is put in scalar interaction with an external 
agent, a spinless particle, or a second supersymmetric spin­
ning particle, the requirement that the interacting system 
remain supersymmetric determines the spin-dependence of 
the potential. The resulting supersymmetric actions even­
tually lead to first-class Hamiltonian constraint systems 
suitable for quantization. 

First, we remind the reader of the corresponding treat­
ment for spinless particles. A free particle is described by the 
arc length action 

s= J LdT= J -m(-x2)1/2dT, (1) 

which leads to the mass shell constraint on the particle's 
four-momentum, 

(2) 

One introduces interaction with an external scalar field by 
letting m~m(x) in (1) and (2). A similar Lagrangian for two 
spinless particles leads to two mass shell constraints 

JY I =PI
2 +m I

2 :::::;O, JY2=p/+m I
2:::::;O. (3) 

Todorov l found that such constraints become compatible 
(i.e., {JY I ,JY2J = 0) when the potentials m; obey 

(4) 

wherex = XI - x 2 depends only on the components ofx per­
pendicular to the total four-momentum. That is, 
m; = m;(xl 2/2),9 where 

xi = (g'-''' - PI' P''Ip 2 )xy, (5) 

withP= PI + P2' 
We introduce spin at the pseudoclassicallevel4-6 

through anticommuting degrees of freedom (elements of a 
Grassmann algebra) that, together with ordinary degrees of 
freedom, satisfy 

AD = (- l(A€BDA; Eodd = 1, Eeven = O. (6) 

We describe a single free spinning particle by modifying a 
Lagrangian recently proposed by Galvao and Teitelboims so 
that its odd Lagrange multiplier v is a coordinate (instead of a 
velocity). 

S = J L dT = J [ -m( - X2
)1/2[ 1 + iv(u.O + Os)] 

(7) 

where u = x/I - X2
)1/2, while 0, Os, and v are odd Grass­

mann functions of T. This action consists of a bosonic length 
of world-line piece, plus an odd constraint that leads to the 
Dirac equation, plus a kinetic term for the spin degrees of 
freedom. It leads directly to Galvao and Teitelboim's Dirac 
and mass shell constraints in phase space 

(8) 

This action is left invariant (on shell 10) by the supersymmetry 
transformation 

8x = E(O - pOs), 80 = - iE P, 

80s = - iE( - p2)1/2, 8v = _ iE/( _ X2)1/2 (9) 
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[where p=aL lax = mu( 1 + ivOs) - imvO, 
p = pl( - p2)1/2] whose Noether generator is 

G = p,O + (- p2)1/20s' (10) 

That is, 8S = Fdr (d Idr) (EG):::::O. Since our generator G 
differs from S, our supersymmetry transformations (9) and 
their consequences are to be contrasted II with those in Refs. 
4-7. 

With pseudoclassical Dirac brackets replacing Poisson 
brackets,4-7.12 

a a 

. a a . a a +1---- +1--, 
aol-' a0l-' aos a05 

the constraints .Y' and JY' in (7) are consistent, 

[.Y',.Y'1 =iJY':::::O, 

1 
[.Y',JY'1 =-;-{.Y',[.Y',.Y'I) = 0, 

I 

(11) 

(12) 

and are left (weakly) invariant by G. G has a strongly vanish­
ing bracket with itself, and hence might be termed an abelian 
supersymmetry generator. Two supersymmetry transforma­
tions generated by G do not produce a reparametrization of 
the world-line, in contrast to those generated by .Y'.4-7 

We start with this description of a free spinning particle 
and add interactions in such a way as to retain supersym­
metry. An important consequence of the transformations (9) 
is that they leave invariant a special position variable, 

x = x + i0051m. (13) 

For the free particle, x has linear r development for arbitrary 
v and is a position variable with v-dependent Zitterbewegung 
subtracted out. 13 Thus, if we start with an initially supersym­
metric Lagrangian (7) for each particle and insert an x depen­
dence for each through x, we will obtain a supersymmetric 
Lagrangian that describes interaction. 

To introduce scalar interactions, we first modify each 
mass m to a mass potential m(x)just as we would for spinless 
particles. Then we replace x by its supersymmetric counter­
part x wherever x appears. This prescription leads to a self­
referent definition of x in the interacting case 

(14) 

Since the 0 's belonging to a given particle anticommute,I4 
(14) leads to a terminating Taylor-series expansion that de­
termines x in terms of OJ> Os;, m, and m's ordinary deriva­
tives with respect to the x;. The resulting Lagrangians give 
constraints of the form 

.Y'j = Pj,Oj +mjOSj:::::O 

for each spinning particle, and 

JY' 2 -2 ° j=Pj+m j ::::: 

(IS) 

(16) 

for each particle (boson or fermion), For each fermion, 
[.Y' j'.Y' j I = iJY'j:::::O and [.Y' j,JY'j I =0, so that the con­
straints for each particle are self-compatible. 

Mutual (first-class) compatibility of interacting parti­
cles requires that [.Y'j>.Y' j 1:::::0, [.Y';,JY'j I :::::0, and 
[JY'j,JY'j 1:::::0 for all i# j, The Jacobi condition for the 
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pseudoclassical Dirac bracket 

L 17ay[Aa,[Ap .Ay ll=O, (17) 
cyclic 

where 17ay = nit - ra;€Yj, relates all constraint brackets to 
[.Y'j>.Y' j I for two fermions, or [.Y';,JY'j I for one fermion 
and one boson. Hence, if these brackets vanish strongly, then 
so do all the others. For the two-body case, this will lead to 
the same problems as that solved by Todorov for the inter­
acting system of two spinless particles as in Eqs. (3HS). 

For a supersymmetric spinning particle in scalar inter­
action with a spinless one, our constraints become 

.Y'I = PI,OI + mIOSI :::::O, JY2 = p~ + m~ :::::0, 

mj = mj(x~/2).IS (18) 

Here 

Xl =(XI -x2h =xl +iOU 05I /m l · 

Using the Grassmann-Taylor expansion, we find 

ml = m I + i;cl ,OIOSlmi 1m I' 

m2 = m2 + iXl,OIOSIm~/ml' 

(19) 

(20) 

where the prime denotes derivative with respect to argu­
ment, Then the constraints take the form 

.Y'I = PIOI +mIOS= PIOI +mIOS' 

JYI = - i[.Y'I,.Y'd = Pl 2 + mI
2

, 

JY2 = p/+m/, 

where 

m/ = m/ + 2ixl,OIOSlmi, 

m/ = m/ + 2ixl ,OIOSlm2'm2Im I· 

Application of the Jacobi identity (17) leads to 

[JY2,JYl l = - i{JY2,[.Y'I,.Y'II} 

= - 2i{.Y'I,[JY2,.Y'd}· 

But, if m 12 - m 2
2 = constant, then 

(21a) 

(2Ib) 

(21c) 

(22) 

[JY2,.Y'd = 2x1 '(PI - P2)(mi - m~)'OlslmI = 0,(23) 

So, the constraints .Y'I'JYI,JY2, are all first-class. In the 
static limit mc-+oo ,m2 finite or m2-OO ,m l finite, (21a)-(21c) 
reduce, respectively, to the correct constraints for a spinless 
particle or for a supersymmetric spinning particle in an ex­
ternal scalar potential. 

For two supersymmetric spinning particles in scalar in­
teraction, the constraints are 

.Y'I = PI,OI +mIOS I :::::0, .Y' 2 = P2,02 + m20S2:::::0. (24) 

Once again m=m(x~ 12), 15 where Xl now becomes 

Xl = (Xl - X2)1 = Xl + iOll OsJmI - i021 0S2Im2' (2S) 

A Taylor expansion makes the spin content of Xl explicit: 

(26) 
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Thus, we find that 

ml = m l + ix1,(}/J5Im;lm l - iXl '(}2(}52m; 1m2 

+ (}ll '((}U (}5 I (}521m Im2)m; 

+ Xl '(}1(}5IX l '(}2(}dmi Im lm2), 

Then the constraints become 

(27) 

Y I = PI'(}I +ml(}51-ixl'(}2(}5Z(}5Imilm2-;:::;O, (28a) 

Y 2 = P2'(}2 + m2(}52 + iX1'(}1(}51(}52m;lml-;:::;O, (28b) 

dY'1 = ~ IYI,Ytl = p/ + m/-;:::;O, 
I 

dY'2 = ~ I Yz,Y2 1 = h 2 + m~ -;:::;0, 
I 

(28c) 

(28d) 

Once again we find that I Y I'Y 21 = 0 provided that 
m 12 - m/ = constant, Jacobi identities lead to the vanish­
ing of all other brackets, so that all are compatible. For ex­
ample, 1dY'1,dY'21 = - 2i(Y I,IdY'2,Ytl} 
= - 4( Y 1'[ Yz,l Y I,Y2 11}, This time the two static lim­
its each produce a single supersymmetric spinning particle in 
an external scalar potential. So, once spin complications 
have been disposed of by the supersymmetric structure of 
(28), compatibility problems reduce to those of the purely 
bosonic case. In fact, our system (28) might be regarded as 
the "square root" of Todorov's bosonic one, 1.5 

We quantize these systems by turning brackets into ca­
nonical commutators (anticommutators),16 

1 
I ' 1- ifi [ , ] ± . (29) 

The Y matrices emerge as the operator versions of the fer­
monic variables 

(30) 

Then the constraints Y i ( and dY'j) become a consistent set of 
coupled Dirac (and Klein-Gordon) equations. For example, 
in the spin-one-half-spin-one-half system Y 1-;:::; 0 and 
Y 2 -;:::;Obecome 

Y ItP = (Y5IYI' PI + m lY51 - (ili/2lxl 'Y2Y51m i Im2)tP = 0 
(31) 

and 

Y 2tP = (Y52Y2' P2 + m2Y52 + (ili/2) X1'YIY52mUml)tP = 0, 

which reduce to ordinary Dirac equations in either static 
limit. The quantum consistency condition 
[ Y I' Y 2] _ tP = 0 can be verified in direct analogy to the 
classical condition I Y I'Y 21-;:::;0. Because of the equiv­
alence in form of the Poisson bracket relation 

IAaAp.Ayl =AaIAp.AyJ + 17pyIAa.Ap JAy (32) 

and the quantum commutation (anticommutation) relation 

[AaAp.Ay] - '7ny'7~y = Aa [Ap.A y ] - '7~y 
+ 17py[Aa.Ay ] -'7nyAp, (33) 

the verifications of classical and quantum consistency are 
virtually identical. 17 

To summarize, we have extended two-body relativistic 
constraint mechanics and its quantization to include con­
stituent spin. The introduction of supersymmetry is crucial 
for eliminating spin complications. This is achieved through 
the replacement of the relative coordinate x with an x vari-
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able that induces a particular spin dependence for direct sca­
lar interactions whenever fermions are present. 

We can extend our approach to include interactions 
other than the scalar. The resulting wave equations may lead 
to realistic spectra for confined systems of spinning quarks. 
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We contemplate deriving a wavefunction approach to Coulomb-distorted nuclear scattering. The 
theory of ordinary differential equations supplemented by certain well-known properties of 
higher transcendental functions has been found adequate for the purpose if the nuclear potential is 
a nonlocal separable one with exponential form factors. The method presented will work for 
potentials of arbitrary rank. We have derived specific results for Jost function and Fredholm 
determinants for scattering by (i) Coulomb plus Yamaguchi and (ii) Coulomb plus Mongan case 
IV potentials. 

PACS numbers: 24.10. - i, 24.90. + d 

I. INTRODUCTION 

Experiments which involve scattering by additive inter­
actions are analyzed by the use of the Gell-Mann-Gold­
berger scattering-by-2-potential theorem! (GG theorem). 
Applicability of the GG theorem is directly related to the 
existence and/or completeness of the wave operators for the 
scattering system. 2 The wave operators exist under strong 
limits when each of the associated interactions is of short 
range, but they do not exist in the presence of a Coulomb 
force. To deal with long-range interactions, the wave opera­
tors are judiciously modified by relaxing some requirements. 
Recently, the situation with regard to this has been nicely 
summarized by Chandler.3 On several occasions van Haer­
ingen,4 van Haeringen and van Wageningen,5 and Kok and 
van Haeringen6 have used the GG theorem based on modi­
fied wave operators to derive the basic statement of the scat­
tering theory for Coulomb-modified nuclear potentials. 

The purpose of the present paper is to develop a math­
ematical framework for the Coulomb-nuclear problem 
which does not make explicit use of the GG theorem. For 
our development we shall use only the theory of ordinary 
differential equations together with certain properties of the 
higher transcendental functions. We shall see in the course 
of our study that the merit of the present approach is its 
simplicity. For the nuclear part of the interaction we use 
nonlocal separable potentials. This is justified by the obser­
vation that the short-range local potentials can be approxi­
mated by finite-rank separable potentials 7 and also that the 
nonlocal potentials can describe a much wider variety of 
phenomena than that encompassed with short-range local 
potential. 8 The method proposed will be applicable for Cou­
lomb plus separable potentials of arbitrary rank. The plan of 
the present paper is as follows. 

In Sec. II we briefly describe the conventional method 
of treating the separable nuclear interaction with emphasis 
on the Yamaguchi potential9 and judiciously modify the ap­
proach to develop a mathematical framework which is ade­
quate for dealing with the Coulomb-nuclear problem. In 
Sec. III we present results for the Jost function and associate 
Fredholm determinants for the Coulomb plus Yamaguchi 
potential. Similar results are presented in Sec. IV for the 
Coulomb distorted Mongan case IV potential. !O For simpli-

city of presentation we consider the s-wave case only, with 
the subscript 1= 0 omitted, and work in units in which ,,2/ 
2m is unity. The higher partial-wave generalization of our 
results is really trivial. We present some concluding remarks 
in Sec. V. 

II. WAVEFUNCTIONS FOR NONLOCAL SEPARABLE 
POTENTIALS 

Yamaguchi9 has introduced a one-term separable po­
tential to describe the nucleon-nucleon scattering. We begin 
by describing a method to calculate the wavefunctions for 
this potential, which is a little unconventional compared to 
what exists in the literature. The Schrodinger equation for 
the Yamaguchi potential can be written in the form 

( :'22 + k 2)¢(k,r) = d (k)e - ar, (1) 

where 

d (k ) = A i= e - as¢(k,s)ds, (2) 

with A and a, the strength and range parameters of the po­
tential. We shall solve (1) by treating the integral in (2) as a 
constant. The unknown constant which appears will be de­
termined by substituting the solution back in the defining 
equation for d (k ) and matching the desired boundary condi­
tions. For example, if we are interested in the Jost solution II 
f(k,r), we write from (1) 

¢(k,r) = f(k,r) = e'kr + [d (k )/(a2 + k 2)]e - ar. (3) 

Using (3) in (2), we get 

d (k ) = A /(a - ik )D (k ), (4) 

where the Fredholm determinant 

D (k) = 1 - A /2a(a 2 + k 2). (5) 

Substituting (4) in (3), we get 

f(k.r) = e'kr + [A /(a - ik )(a2 + k 2)D (k)]e - ar. (6) 

Clearly, f(k,r) in (6) satisfies the Jost boundary condition 
since 

(7) 
r---+oo 
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From (6) the Jost function is 

I(k)( = l(k,O)) = D +(k)/D (k), (8) 

where 

D +(k) = D(k) +A (a + ik )/(a2 + k 2)2 (9) 

is the Fredholm determinant associated with the physical 
(outgoing wave) solution. The method outlined above has 
been used by one of us 12 to construct analytic expression for 
off-shell Jost and physical solutions for realistic separable 
nucleon-nucleon interactions. We indicate below how this 
method should be suitably modified to treat the Coulomb­
nuclear problem. 

We change the dependent and independent variables in 
(1) by substituting 

t/J(k,r) = if> (k,r) = reikrg(r), 

r = - z/2ik 

and get 

z d 2g(Z) + (e _ z) dg(z) _ ag(z) = 
dz2 dz 

where 

(10) 

_d(k)e Pz 

2ik ' 
(11) 

a=l, e=2, and p=(a+ik)/2ik. (12) 

Complementary functions of (11) are given by the confluent 
hypergeometric functions 

and 

cf> (a,e;z) = r(e) f r(a + n)zn 
r(a)n~O r(e+n)n! 

"if> (a,e;z) = Zl - Ccf> (a - e + 1,2 - e; z). 

(13) 

(14) 

Note that,for e = 2, (14) is not an acceptable solution of (1). 
However, "if> tends towards the solution 13 of (1) when e ap­
proaches 2. In our subsequent discussions we shall always 
mean that limit. This is no loss of generalization. See, for 
example, the treatment of Coulomb field by Newton. 14 An­
other solution of (1) defined within the framework of the 
same limiting procedure is 

r(l-e) 
If! (a,e;z) = cf> (a,e;z) 

rIa - e + 1) 

r(e - 1) -+ cf> (a,e;z). 
rIa) 

(15) 

Given cf> and "if>, we find a particular solution of (1) by 

I 

the method of variation of parameters. 15 Thus we have 

gp (z) = - d2~~) [ - cf> (a,e;z) f "if> ~a:;z) e pZdz 

+ "if> (a,e;z) f cf> ~a:;z) e pZdZ], 

where the Wronskian 

W= W(cf>,"if» = - (e - 1)z-cez. 

(16) 

(17) 

The integrals in (16) can be performed by expanding e pz in 
powers of z and making use of the integrals 16 

f e - ZzU + C - 2cf> (a,e;z)dz 

and 

=zCe-Z[(O"-I)cf>(a,e;z) 

xOu_l(a+ l,e+ 1;z) 

- (a/e)Ou(a,e;z)cf>(a + l,e + l;z)) 

f e - zzu + C - 2"if> (a,e;z)dz 

= zCe - Z [(0" - 1)"if> (a,e;z) 

xOu_l(a+ l,e+ 1;Z) 

+ (e - I)Ou(a,e;z)"if> (a + l,e + l;z)], 

where 

(18) 

(19) 

II ( .) _ u ~ rIO" + a + n)r(O")r(0" + e - 1) n uu a,e,z -Z £.. Z 
n~O r(0" + a)r(O" + n + 1)r(0" + e + n) 

ZU 
---- 2 F2( 1,0" + a;O" + 1,0" + e;z). (20 
U(0" + e - 1) 

Finally we obtain 

( )
_ d(k) ~ On+I(I,2;z) n 

gp Z - - -.- £.. I p. 
21k n~O n. 

(21) 

To write (21), we have made use of the Wronskian relation 
(17). Combining (10), (13), and (21), the solution regular at 
the origin will be given by 

if> (k,r) = reikr cf> (1,2; - 2ikr) 

ikrd(k) -re --
2ik 

~ On(I,2; - 2ikr) I 
X £.. pn- . 

n~1 (n -I)! 
(22) 

Substituting (22) in (2), we have 

A/(a2 + k 2) 
d (k ) = --:-----:-:~~-;;---_---:-----....:.:..:...o=.~:.::.-.!...._-_-------

1 + A [(a2 + k 2)(a - ik)] -I~:~ 1(- lr[(a + ik )/(a - ik WI Fo(I; - 2ik f(a - ik)) . 
(23) 

In deriving (23) we have used the following integrals: 

100 

e - AZzVcf> (a,e;pz) 

= [r(v + 1)1 A v + I ]2FI(a,v + I;e;p/A ) (24) 

and 

1701 J. Math. Phys., Vol. 23, No.9, September 1982 

Loo e-AZzVOa(a,c;pz)dz 

= r(v + 0" - 1) pa 
O"(O"+c+I) Av+u+1 

X 3F2(I,0" + a,v + 0" + 1;0" + 1,0" + e;pfA) (25) 
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together with the reduction formula '7 

pFq(a "fJ"y,,···;a2,{J"Y2'···;Z) 

= p_,Fq_, (a"y,,···;a2'Y2'···;Z) (26) 

for the generalized hypergeometric function pFq • The inte­
gral in (24) has been given by Landau and Lifshitz'8 while 
that in (25) can be proved by expanding Oa(a,c; pz) as a power 
series in z and integrating term by term. 

Since ,Fo( 1; - 2ik I(a - ik)) = [(a - ik )I(a + ik )], it 
can easily be shown that the denominator in (23) isD (k ) given 
in (5). This result is quite expected because the Fredholm 
determinants for the regular and Jost solutions are equal for 
a symmetric non local potential. '9 Thus we write (22) in the 
form 

¢(k,r) = reikr<P(1,2; - 2ikr) 

k A _ re' r _~_-::--__ 

(a2 + k 2)D (k ) 

X _1_ f On(I,2;-2ikr) pn-'. (27) 
2ik n ~ , (n - I)! 

The integral representation of the Jost function/(k) in 
terms of the regular solution ¢ (k,r) is given by 

I(k) = 1 + A f" e - aseiksds fO e - ar¢ (k,r)dr. (8') 

Applying the results in (24) to (26), it is easy to see that/(k ) in 
Eq. (8') is in exact agreement with that given by Eq. (8) ob­
tained earlier by a rather simple technique. However, we 
note that only a relatively complicated formulation of the 
problem outlined above can be extended to treat the Cou­
lomb-nuclear interaction. 

III. JOST FUNCTION FOR COULOMB PLUS YAMAGUCHI 
POTENTIAL 

The radial Schrodinger equation for the Coulomb plus 
Yamaguchi potential is given by 

( ~ + k 2 _ 2rtk)¢ (k,r) = d (k )e - ar (28) 
dr 2 r 

with 

d (k ) = A 1''' e - as¢ (k,s)ds. (29) 

Here rt is the well-known Coulomb parameter 

rt = z ,Z2e2 Iv. (30) 

The transformations in (10) reduce (28) in the form 

z d 2g(Z) + (2 _ z) d(z) _ (1 + irt)g(z) = _ d(~) e Pz, (31) 
dz2 dz 21k 

where 

p = (a + ik )/2ik. 

The complementary functions of (31) are 

g,(z) = <p (1 + irt,2;z) 

and 

g2(Z) = tp (1 + irt,2;z). 

As in (16), the particular integral of (28) is given by 
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(32) 

(33a) 

(33b) 

gp(z) = - d2~~) [ -g,(Z)J ~2~ ePzdz 

+ g2(Z) J :'~ e pZdZ] . (34) 

Following the procedure outlined for the pure Yamaguchi 
potential, gp(z) can be written in the closed form 

z = _ d(k) ~ On+,(1 +irt,2;z) n 
gp( ) 2ik nL::o n! p . (35) 

In terms of (35) the regular solution for (28) is obtained as 

¢ (k,r) = reikr<p (1 + irt,2; - 2ikr) 

d (k) ikr - --re 
2ik 

~ On(l + irt,2; - 2ikr) _, 
X ~ pn . 

n ~, (n - I)! 
(36) 

The unknown constantd (k ) is obtained by substituting¢ (k,r) 
from (36) in (29). Thus we have 

d (k) = Ae271Y l(a2 + k 2)D (k), (37) 

where the Fredholm determinant D (k) associated with the 
regular solution is given by 

A 00 ( a + ik)n 
D (k) = 1 + I ( - It --

(a 2 + k 2)(a - ik) n ~ , a - ik 

(I I . I - ~). (38) X 2F, , +n+lrt; +n; 
a - ik 

Here 

y=tan-'kla. 

Combining (36) and (37), we get 

¢ (k,r) = reikr [ <p (1 + irt,2; - 2ikr) 

2ik (a2 + k 2)D (k ) 

X f Om (1 + irt,2; _ 2ikr) pm -, I] . 
m~' (m - I). 

(39) 

(40) 

In Appendix A we present a Laplace transform method to 
solve (31) and arrive at (40). This method appears to be 
simpler than the approach outlined above. 

The appropriate J ost function/(k ) can be obtained from 
the following integral representation '4,20,2' 

I(k) = fc(k) + A loo e - aSfc(k,s) 

Xds f" e - ar¢ (k,r) dr, 

where the Coulomb Jost solution and Jost function are 

fc(k,r) = ( - 2ik )e71"7//2reikrl[l(1 + irt,2; - 2ikr) 

and 
e71"7J/2 

fc(k) = r(1 + irt) 
respectively, Using (40), (42), and (43) in (41), we have 
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I(k) = J: (k)[ 1 - 2ikA r(l + iT/)e
2

7/Y I] 
c (a2 + k 2)D (k ) 

_ D+(k) 
- D(k) , (44) 

where 
7r'Y//2 e7r'Y/12 

D +(k) = D (k) e + Ae2
7/Y -------

r(l + iT/) r(l + iT/)(a2 + k 2f 
X [R (a, y) + f3 (y)] (45) 

with 

and 

R (a, y) = a + 2T/ke2
7/Y{ - itrl2 + i/2T/ 

+ tP(l + iT/) - tP(l) 

+ In(2k Iy) - pn [1 + (k ly)2]) 

f3 (y) = 2T/ke27/Y f (- 2T/Y) P 

P= I p! 
= 221B 21 

X L (- 1)1 21Y 
1=0 (2/)!(21 +p) 

(46) 

(47) 

In the above B21 and tP stand for the Bernoulli numbers and 
logarithmic derivative of the gamma function, respectively. 
To write (44), we have used the result of the integral 

1= l=se- aSejks lJl(1 +iT/,2; -2iks)ds (48) 

in addition to those in (24) and (25). The method for the 
evaluation of I has been shown in Appendix B. 

IV. JOST FUNCTION FOR COULOMB PLUS A RANK-2 
SEPARABLE POTENTIAL 

A rank-2 separable potential has been introduced by 
Mongan iO in fitting the ISO nucleon-nucleon phase shifts. 
The Schrodinger equation for the Coulomb plus Mongan 
case IV potential can be written in the form 

( ~ + k 2 _ 2T/k)l/J (k,r) 
dr 2 r 

= ddk)e - a,r + d2(k)e - a,r 

with 

and 

d2(k) = A21= e - a,sl/J (k,s) ds. 

The regular solution of (49) is obtained as 

l/J (k,r) = rejkrcp (1 + iT/,2; - 2ikr) 

1 ·k __ reI r 

2ik 

X f en(1 + iT/,2; - 2ikr) 

n=1 (n-1)! 

X [d l(k)P7 - 1+ d2(k)P~ - I]. 

(49) 

(50a) 

(50b) 

(51) 

The unknown constants d I (k ) and d2(k ) are obtained by sub-
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stituting l/J (k,r) in (50a) and (50b) and solving the resulting 
simultaneous equations. We have 

dj(k) = {(a] + k 2) + Aj [(a] + k 2)Xn(aj ) 

- (a~ + k 2)Yn(a j,aj )]} 

1 27/Y i 
/l.·e X I 

D (k )(aT + k 2)(a] + k 2) , 

i= 1,2, j= 1,2, i#j, 

(52) 

where the Fredholm determinant D (k) associated with the 
regular solution is given by 

D(k) = 1 +AIXn(al) + Az%n(a2) 

+ AIA2 [Xn (a l)Xn(a2) 

- Yn(al,a2)Yn(a2,a\)]. 

In Eqs. (52) and (53) 

X (a.)= L (-It -j-1 "" ( a + ik)n 
n I (a j _ ik )(aT + k 2) n = I a j - ik 

X 2Fl 1,1+n+IT/;1+n; .' ( 
. - 2ik ) 

a j -lk 

(53) 

(54a) 

1 "" ( a + ik)n Y (a.,a.) = L (- It --"c--_ 
n I J (aj + ik )(aj _ ik)2 n = I a j - ik 

X2Fl1,I+n+IT/;1+n; .' ( 
. - 2ik ) 

aj-lk 
(54b) 

i= 1,2, j= 1,2, i#J. 

The appropriate Jost function I(k ) can be obtained from 
the integral representation 

I(k) = fc(k) + Al 1= e -a'Sfc(k,s) ds 

X f" e - a,rl/J (k,r) dr 

+A21"" e-a,Sfc(k,s)ds 

X 1= e - a,rl/J (k,r) dr. 

The Jost function comes out to be 

I(k) = D +(k)/D(k), 

where 

D+(k)=D(k) e7r'Y/
/2 

+ e7r'Y/
12 

r(l + iT/) Fl1 + iT/) 
2 

X L Ad R (aj>yj) + f3(Yj)] 
i= 1 

X {e2
7/

Y
iD (k) _ 1 

(a] + k 2
) 

(55) 

(56) 

X [Mn(aj>aj)Xm(a j) + Mn(aj,aj)Ym(aj>aj)]} (57) 
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with 

Mn(a"aj ) =A,/'7Yi{(a] + k 2) 

+ Aj [(a] + k 2)Xn(aj ) 

-(a7+k2)Yn(a"aj)]), (58) 

R (a"y,) = a, + 2Tfke 
211Yi 

X{ - ilrl2 + i12Tf + ",(1 + iTf) - ",(1) 

+ In(2k Iy,) - pn[ 1 + (k Iy,f]} , (59) 

{3(y,) = 2Tfk/'7Yi f (-2~y,)P 
p~' p. 

.en 221B y21 
X I ( - 1)1 21 , , (60) 
I~O (2/)!(21 + p) 

and 

y,=tan~'kla" i=I,2, j=I,2, i=/=-J. (61) 

The quantity D +(k )inEq. (56)is the Fredholmdetermi­
nant associated with the physical solution. A useful check on 
the fairly complicated formulas for D (k) andD +(k) consists 
in showing that when the Coulomb field is turned off by 
allowing Tf---->O, the well-known results for Mongan case IV 
potential are reproduced. It is about trivial to see that the 
appropriate results of Mulligan et a/. 8 are obtained from our 
expressions for D (k) and D +(k) as Tf---->O. 

v. CONCLUDING REMARKS 

In this work we have proposed a wavefunction method 
to calculate Jost functions and other appropriate Fredholm 
determinants for scattering by a Coulomb-modified nuclear 
separable potential. The method proposed depends only on 
the theory of ordinary differential equations and is quite gen­
eral. The specific results presented refer to scattering by (i) 
Coulomb plus Yamaguchi and (ii) Coulomb plus Mongan 
case IV potentials. To our belief, most of these results have 
not appeared before. Some applications of our results will be 
the following: 

(i) The Jost function I(k ) in Eq. (56) can be used in 
cotO = [I(k) + I( - k )]/i[l(k) - I( - k )]tocomputethe 
scattering length and effective range for the Coulomb-modi­
fied potential considered in this paper. We have already 
checked that the results of van Haeringen4 are reproduced 
for A2 = O. 

(ii) The Mongan case IV potential can support spurious 
states and bound states embedded in the continuum for some 
selected values of the parameters. As discussed by Mulligan 
et al., 8 these states are analyzed in terms of zeros of the Fred­
holm determinants associated with the regular and physical 
(outgoing wave) solutions of the Schrodinger equation. Our 
expressions for D (k ) and D + (k ) may be used to examine the 
effect of the Coulomb potential on these states. 

APPENDIX A 

This appendix derives a Laplace transform method for 
solving the inhomogeneous differential equation 

1704 J. Math. Phys., Vol. 23, No.9, September 1982 

z d 2g(Z) + (e _ z) dg(z) _ ag(z) 
dz2 dz 

= _ d(k) e Pz• 

2ik 
(AI) 

Since confluent hypergeometric functions are of exponential 
order, and the right-hand side of (A 1) also is exponential, the 
Laplace transform method is expected to serve as one of the 
best techniques to solve this. If Re e < 2, both parts of the 
complementary functions have transforms, if e;;;.2 only one 
part has. Taking the Laplace transform of (AI), we get 

~ [s(l - s)g(s)] + (es - a)g(s) 
ds 

= (e -1)g(O) - d(~)_l_, (A2) 
21k s-p 

where g(s) = .5t' [ g(z) j. This is a first-order differential equa­
tion in g(s) and can easily be written in the form 

~ [(s_I)'+G~Cs'~Gg(s)] 
ds 

(e - 1 )g(O) + d (k ) 
sG(s - I r ~ u 2ik 

I 
X------- (A3) 

Integrating (A3) between the limits s to 00 we write 

g(s) = sG~ lis - Ir--u~ '[A + (e _ I)g(O) (OO dw 
Js wG(w - I r -- u 

d (k) roo dw ] 
- 2ik Js WU(w _ l)c ~ G(w _ p) , (A4) 

where A is a constant. The first two terms on right-hand side 
of (A3) gives the complementary functions of (AI) while the 
last term gives the particular integral. This can be seen as 
follows. 

Consider the standard integral given in (24). For v = 0 
this reads 

.5t'! <P (a,e;z)j = (lIsbFda, l;e; lis). (AS) 

The Euler representation for the Gaussian hypergeometric 
functions 2F,(a,/3;y;r) is 

F (a {3'Y'r) - Fiy) 
2 , ", - Fi{3)F(y-{3) 

X Ltf3~'(I-t)Y~f3~'(I-tr)~adt. (A6) 

Using (A6) in (AS), we get 

.5t'[<P(a,e;z)] =sG~'(e-I)L(I-q~2(S-t)~Gdt. 
(A7) 

The transformation 

w = (s - t )/( I - t ) 

reduces (A 7) to the form 

.5t' [ <P (a,e;z)j = (e - I )sQ - lis _ l)c ~ Q - , 

X 100 

WU(w ~wl)c~u 
Talukdar, Ghosh, and Sasakawa 
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Thus 

( _I)2'-I{s"-I(S_1)c-a-1 (00 dw } 
e Js wa{w _ 1)< - a 

= 4J (a,e;z). (A 10) 

Similarly 

1 -2'-I{s"-I{s_1)c-a-Ij = 4J(a,e;z). (All) 
r(2-c) 

To deal with the third term in (A4), we restrict ourselves 
to the half-plane Re s > Re p and Re s > 1. Thus 

(00 d 00 (00 dw 

Js wa{W-I)~~W-P) = n2:/nJs wa+n+I{w-Ir- a 

(AI2) 

As we shall see presently, the above justifies the validity of 
expansions in (27) or (36). 

Allowing a-a + n + 1 and e~ + n + 1, we get from 
(A9) 

(c+n)sa+n{s-I),,-a- 1l°O dwlwa+n+I{w_I),,-a 

= 2' {4J (a + n + I,e + n + I;zll 

= (1/sbFI(I,a + n + I;e + n + I;1/s). (AI3) 

Using the expansion 

+ 2FI( 1, a + n + 1; e + n + 1; +) 
r(c+n+I) 00 r(a+n+m+I) 

= r{a+n+I) m2:o r(c+n+m+I) 

X 
r{m + 1) -m-I 

S , 
m! 

we write (AI3) as 

(c + n)sa-I(s _ I)c-a-I (s"" dw 
J, wa + n + I (w - 1)< - a 

r{e + n + 1) 00 r{a + n + m + 1) 

= r(a+n+I)m~or(C+n+m+I) 
X _r--.:('--m----'-+_I..!....) s - n - m - 2. 

m! 

Therefore, 

.2" - 1 {s" - I (s _ I)C - a - I (00 dw } 
J. wa + n + I{W _ 1)C - a 

(AI4) 

(A15) 

I I r(e+n+l) "" r(+n+m+l) 
= c+n n! r{a+n+1) m~or{e+n+m+l) 

X B(n + I,m + I) n + m + I 
Z , (AI6) 

m 

where B( p,q) is a beta function, written as 

B(p,q) = r(p)r(q) . 
r(p+q) 

(A17) 

In views of (20), (A1O), (All), (AI2), (A14), and (AI6),the 
inverse transform of (A4) can easily be taken to write (40). 
Note that for regular boundary condition A = 0 and 
g(O) = 1. 
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APPENDIXB 

In this appendix we describe the method for evaluating 

1= Loo se-1a-ik)s'/l{1 + i'TJ, 2; - 2iks) ds. (BI) 

This is facilitated by expressing '/I in terms of the irregular 
Whittaker function Was 

'/1(1 + i'TJ,2; - 2iks) = ( - 2iks)-le - iksW _ i'l.1/2 ( - 2iks). 
(B2) 

Using (B2) in (BI), we get 

1= - 2~k Loo ds e - asw _ ''1. 1/2 ( - 2iks). (B3) 

To transform this integral to a form suitable for our calcula­
tions, we use the integral representation for the Whittaker 
function 

W (2 'k ) - 2ikse
iks Looe'. 2ikst 

. - I S = e 
-''1,112 r{I + i'TJ) 0 

Xti'l{1 + t) -i'l dt (B4) 

with 0 < e < 1T. Here e is the measure of rotation of the path 
of integration for extending the domain of validity of the 
Laplace integral. 

Substituting (B4) in (B3) and interchanging orders of 
integration, we have after carrying out the integration 

I (ooe'· ( t )i'l dt 
1= r (I + i'TJ) Jo 1+t [a - ik (I + 2t W . 

(B5) 

Making the substitution of variable 

z = t I{I + t), 

(B5) can be written in the form 

1= z''Idz I L1

. 

r{I+i'TJ){a-ik) 0 

X!!.... [ z ] . 
dz (a - ik ) - {a + ik )z 

After partial integration, (B7) yields 

1= _1 ______ _ 

- 2ik (a - ik )r(1 + i'TJ) 

X [I - 2'TJk t zi'ldz ] . 
Jo (a - ik) - (a + ik )z 

Further change of variable 

z = [(a - ik )I(a + ik )]u 

reduces (BS) to 

I 
1=--------

- 2ik (a - ik )r{I + i'TJ) 

[ 
e2'1Y LZO ui'ldu ] 

X 1-2'TJk-- --
a + ik 0 1- u ' 

where 

Zo = e2iY with y = tan -Ik la. 

(B6) 

(B7) 

(BS) 

(B9) 

(B1O) 

(BII) 

For the integral on the right-hand side of equation 
(B 10), we separate the pole term in the integrand at u = 1 
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from the more complicated part of the integrand by writing 

I
ZO Ui71 IZO du 11 uiTl - 1 
--du= --+ --du 

o I-u ol-u ol-u 

II ui1/_1 
- ---duo 

z" 1- u 
Of the three integrals 

(BI2) 

I" du/(1 - u) = -In(I - Zo), larg(I - Zo)1 < 1T. 

(BI3) 

Combining (BII) and (BI3), we get 

I" du/(I - u) = i1T/2 - iy - In(2k Iy) + ! In[ 1 + (k ly)2]. 

(BI4) 

The second integral in (BI2) can be obtained from the limit 

t u
nl 

- I du = lim [t u
i
1/ du 

Jo 1 - u <.0 + )0 (1 - u) 1 - < 

t du ] 
-Jo(I-U)I-<' (BI5) 

Using the integral representation for the beta function, 

B(r,s)= r(r)F(s) = tx'-I(I-x),-Idx, (BI6) 
r(r +05) )0 

we get (B 15) in the form 

11 ui1/_1 
--du 

o 1- u 

= lim {[ F(I + i7])F(l + E) _ 1] IE} . (BI7) 
<-0+ r(1 + i7] + E) 

Straightforward application of the I'Hospital's rule converts 
(B 17) in the form 

11 u"'-I 
--du = ¢(I) - ¢(I + i7]), 

o 1- u 
(BIS) 

where ¢ stands for the logarithmic derivative of the gamma 
function, 

¢(Z) = r '(z)1 r (z). (BI9) 

For the last integral in (BI2) we note that both limits ofinte­
gration are in the unit circle. Thus we change the variable by 

(B20) 

and get 

I I Ui71 -- 1 IY (1 - e - 2"5) 
--du= - dS· 

z" 1 - u 0 sins 
(B2I) 

The integral on the right-hand side ofthe above equation has 
the advantage that real and imaginary parts can be separated 
in a straightforward manner and the imaginary part evaluat­
ed in closed form. Thus 

1706 

~du = - _1_ (27]y - 1 + e- 21/Y) I
I irl I . 

z" 1 - u 27] 

- r(I-e- 21/5)cotsds. 
)0 
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(B22) 

Finally we consider the integral 

f (1 - e- 21/5) cots ds = Y 11 (I - e -- 2" y s) cot(yo5) do5. 

(B23) 

with S = ys. Expanding both the exponential and cotangent 
in power series,22 we get 

oc 

cotz= I (-W22n[B2nl(2n)!]z2n-l, (B24) 
n=O 

where B2n are the Bernoulli numbers; and 

1 - e - 2'IYS = - f (- 27]Ys) P 
P~ I p! 

(B25) 

Using the results given in (B24) and (B25), we obtain from 
(B23) 

f(1 - e - 21/5)cots dS = - pt (- ;7Y) p 

'lO 22nB y2n 
X I (- 1)" 2n . 

,,~"o (2n)!(2n+p) 
(B26) 

Combining the results in (BII), (BI2), (BI4), (BIS), (B22), and 
(B26), we have the value of the integral I as 

1= - _1_ 1 (a + 27]ke21/Y 
2ik r(1 + i7])(a2+k2) 

X {- i1T + _1_' + ¢(I + i7]) - ¢(I) + In (l!5...) 
2 27] y 

- ~ln [I + (kly)2] + f (- 27]Y)P 
2 P~ I p! 

X f (- I)" 22nB2ny2n }). 
n ~o (2n)!(2n + p) 

(B27) 

Equation (B27) is our desired result and has been used in the 
text. A more convenient form than the double series in (B27) 
can be derived by exploiting the relation between the incom­
plete beta function and the Gaussian hypergeometric func-
tion is 

Bx(a,b) = ftU-I(I-t)bldt 

= a- IX U 2F ,(a,I - b;a + I;x). (B2S) 

Note that relation (B2S) is valid for Rea > 0, which is true for 
our case. In (B2S) we use a = 1 + i7], b = 0, x = zo, and t = u 
and get 

I
ZO Uirl 

--du= 
o 1 - u 

Combining (BlO) and (B29), we have 

1= __ 1 _______ _ 
2ik (a - ik )F(I + i7]) 

[ 
e2'IY Z6 + iTl 

X 1-27]k----­
a + ik (1 + i7]) 

X 2F I(I + i7],1;2 + i7];Zo)] . 
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On the representation of electromagnetic fields in gyrotropic media in terms 
of scalar Hertz potentials 
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Warsaw, Poland 
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A proof is given of the following theorem: An arbitrary sourceless electromagnetic field 
determined in a region of a gyrotropic medium can be represented therein in terms of two scalar 
functions, called the scalar Hertz potentials, that fulfill a system of two second order partial 
differential equations. Some restrictions are imposed on the region, and their implications are 
discussed. 

PACS numbers: 41.1D.Hv, 42.1D.Qj 

I. INTRODUCTION 

This paper is a modified version of a report. I The scalar 
Hertz potentials for gyrotropic media have been introduced 
in Ref. 2. The authors have presented there the following 
theorem. 

Theorem 1: An electromagnetic field E, H generated in 
an arbitrary region D of a gyrotropic medium from two sca­
lar functions u, v via formulas 

E = E-1,VXE'VXUZo + iUJI1E- 1e'V v zo, (la) 

H= -iUJEI1-lji·VXUZo+~-I·VXWVXvZo, (lb) 

satisfies in D the homogeneous set of Maxwell's equations 

VXH = - iUJE'E, (2a) 

VXE = iUJWH, (2b) 
if the functions u and v fulfill in D the system of equations 

( 2 Ea a2 2) Ea av V + - - + k u = - UJwr - - (3a) 
, E az2 e g E az' 

( 
2 l1a a2 

2 ) l1a au V, + - - + k m v = UJE'Tg - -. 
11 az2 11 az 

(3b) 

The time dependence is assumed to be given by the fac-
tor exp( - iUJt ) which is suppressed throughout. A system of 
Cartesian coordinates x,y,z is introduced in which the per­
mittivity and permeability tensors have the following forms: 

,~(; 
- iEg 

~} E 

0 Ea 

(4a) 

~~(~. 
- il1g 

~) 11 

0 l1a 

(4b) 

The other symbols are defined as follows: 
2 2 (;2 _ (;2 

k 2 = UJ2E 11 -l1g 
k ~ = UJ 2fla 

g 

e a 
fl (; 

(;g I1g a 
'Tg = - + -, V, =V-Zo-, 

(; 11 az 
where Zo is a unit vector directed along the z axis, and the 
tilde denotes the transpose of a matrix. 

The proof of this theorem follows just from a substitu­
tion of (1) into (2). 

We recall that a medium is said to be gyrotropic if in an 

appropriate system of Cartesian coordinates the tensors E 

and ~ have the forms given by (4), where not both Eg andl1g 
are zero. The z axis is called the distinguished axis of the 
medium. If Eg = I1g = 0 but not both Ea = E andl1a = fl, the 
medium is uniaxial. 

The scalar Hertz potentials defined by Theorem 1 have 
been employed to good purpose in solving a half-plane dif­
fraction problem for a gyrotropic medium. 3 It is believed 
that they will prove useful in many more electromagnetic 
problems for gyrotropic media. However, similarly as for 
isotropic media, there immediately arises the question of 
how general is the class of electromagnetic fields generated 
via (1) in a region D by the set of all functions u, v satisfying in 
D the system (3); or, more specifically, does this class coin­
cide with the class of all sourceless fields determined in D ? 
Though this question was already posed in Ref. 2, it was left 
open, and it is the aim of the present paper to provide an 
answer to it. 

II. FORMULATION OF THE PROBLEM 

The problem of the generality of representation (1) may 
be formulated as follows: 

Can an arbitrary electromagnetic field satisfying the set 
(2) in a region D of a gyrotropic medium be represented via 
( 1) in terms of two scalar functions u, v that fulfill the system 
(3)? 

For isotropic media this question was formulated and 
answered by Bochenek4 (for a class of regions). 

In this paper we present a generalization of Bochenek's 
result to the case of the scalar Hertz potentials for gyrotropic 
media. We also extend his answer to a somewhat broader 
class of regions. 

The following representation theorem summarizes the 
results of the present paper. 

Theorem 2 (representation theorem): An arbitrary elec­
tromagnetic field E, H determined in a sufficiently simple 
region D of a gyrotropic medium and satisfying therein the 
set (2) can be represented in D in terms of two scalar func­
tions u, v in form (1) with u, v satisfying the system (3). 

The restriction on the region D to be of sufficiently sim­
ple shape means that any straight line parallel to Zo must not 
have more than one interval in common with D. Alternative­
ly, we shall formulate this property by saying that D has to be 
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convex with respect to the z axis as shown in Fig. 1. 
We denote by Do the projection of D on a plane 

z = const. 
In order to simplify the proof, we shall assume that 

there exists in D a surface S, given by the equation z = zo(x,y), 
whose projection on the plane z = const coincides with Do 
and zo(x,y) has continuous second derivatives (see Fig. I). 

The role of the convexity restriction will be discussed 
after the proof has been presented. 

Theorems I and 2 can be considered as mutually inverse 
provided Theorem 1 is confined to regions for which Theo­
rem 2 holds. 

Let us rewrite the system (3) in the form 

cW'W = (5'- + 2")w = 0, 

where 

rc
;, 

Y= 
o 

(5) 

The letter cW' is used in (5) to stress that the system (3) is 
a generalization of the Helmholtz equation satisfied by the 
Hertz potentials in isotropic media. The operators Yand 2" 
are the transverse and longitudinal parts of cW', respectively. 

From (1) we have 

F = - KYw, 

where 

In view of (5) we also have 

F=K2"w 
or 

K-IF = 2"w. 

(6) 

(7) 

The basic idea in the proof of Theorem 2 is to find for a given 

z 

J( 

I I 
I I 
J I 
I I 

~ 
~ 

y 

FIG. 1. Region D, its projection Do on xy plane, and surface S. Projection of 
S coincides with Do< 
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F such a solution to (7) that it simultaneously satisfies the set 
(5). It may seem surprising that a solution can fulfill two 
systems but this is possible because, as shown in Ref. 2, F 
fulfills the set 

d¥"K-IF=O. (8) 

An alternative proof could be given by looking for a solution 
to {6) that would fulfill (5). 

III. THE PROOF 
A. Formal scheme 

To highlight the structure of the proof, we first present 
its basic scheme in a formal way. The feasibility of the rel­
evant steps will be demonstrated further on. 

We consider an arbitrary field E. H given in D and satis­
fying therein the system (2). For this field we find w I from 
relation (7) thus 

2"w1 = K-1F. (9) 

Only as an exception could it happen that WI would fulfill (5); 
this would essentially end the proof. However, with no loss 
of generality, we may write 

Jr"w 1 = p, (10) 

where p is some function. In the next subsection we show 
that 

2"p = O. 

We now construct W2 so that 

Yw2 = -P. 

2"w2 = O. 

(11 ) 

(I2a) 

(l2b) 

Finding a function w2 that satisfies simultaneously the two 
systems of equations constitutes the crucial step in the proof. 

For W\2 = WI + W2 we have 

F = K2"WI2 (13) 

and 

cW'W\2 = D. (14) 

Let us denote by E'. H' the field corresponding to w \2 
via (I). Then the field E - E',H - H'is ofTEM type with 
respect to Zo (in particular it could be zero). It can be shown 
that any TEM field in D can be represented in terms of scalar 
Hertz potentials (see subsection 3E). Let us denote by w, the 
potentials for the considered TEM field. Then the sum 

W=W I +w2 +w, 
constitutes the potentials for the considered field E, H, 
which ends the proof. 

B. Equation (11) 

(15) 

2"p = 2" Jr"w 1 = 2"(Y + 2")w 1 = (.'7 + 2")2"WI 

= Jr"2"w 1 =d¥"K- 'K2"w1 =d¥"K-1F=0. (16) 

The final equality in (16) follows from (8). 

C. The function W1 

An explicit form for W I is not necessary for the validity 
of our proof. What we need to know is that such a function 
exists and fulfills Eq. (10). However, for the considered case 
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of a homogeneous medium we can easily construCt an explic­
it solution (see the Appendix). It has the form 

-1 l~ ( '). WI = 2k 2 gx,y,z smYI(z - Z') dz' 
7gYI z. 

+ 2k/ rg(x,y,z')sinY2(z-z')dz', (17) 
7gY2 Jzo 

where 

g=JVF', 

and Y I' Y 2 are determined by 

f" = lil2(e- ± €g)( fl ± flg), 

the upper sign is for n = 1 and the lower for n = 2. 

0_ Construction of W2 

The general solution to (11) has in D the following form: 

p = :t:Pn(X,Y)~JeiYnZ (18) 

where 

. € (fl - fl )112 ;2= -;4=1- --g , 

fl € - €g 

and Pn are arbitrary functions. 
We now solve (12a) assuming p to be given by (18). We 

get 

W2 = :t~qn(X,Y)~J/YnZ, (19) 

where 

qn(X,y) = _1_ f r Pn(S,1])ln ~ dSd1] , 
21r JDo P 

P= [(x-S)1+(Y-1]f]1I2. (20) 

Obviously w2 also satisfies Eq. (12b). 

E. TEMfieid 

For TEM fields the system of Maxwell's equations (2) 
reduces to the following system [cf. (8) and (9) in Ref. 2]: 

aE . H 
Bz = -llilZoXW , 

V-E = 0, V-H = O. 

aH. E 
- = llilZoXe- , 
az (21) 

It can be shown that the general solution to (21) has in D 
the form 

n=4 

E = 2: [en{x,y) - (- Ij"iZoxen(x,y)]eiynZ
, 

n=1 

(22) 
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n=4 

H = L [hn(x,y) - ( -l)"iZoXhn(x,y)]eiYnZ, 
n=1 

where en -Zo = 0 and the fields en fulfill the conditions 

V-en = 0, V-(ZoXen ) = 0, (23) 

hn are given by hn = (wIYn)ZoXe-en • 

The planar fields en can now be represented in Do in the 
following way: 

(24) 

This representation follows as a particular case from the 
Helmholtz theorem (see, for example, Ref. 5). 

From (23) we get 

V~tfJn = 0, 

V;tPn = o. 
We can now define the scalar potentials U I • 

fields (22) in the form 

WI = :t]tfJn(X,y) + ;~ tPn(X,y)](;JeiY.z. 

It can be easily checked that 

(25a) 

(25b) 

Vr for the 

(26) 

~WI =0 (27) 

and that the fields (22) are determined from (26) via formulas 
(1 ). 

A more detailed discussion of TEM fields will be pre­
sented in Ref. 6. 

F. The convexity condition for the region D 

We shall demonstrate by way of an example that the 
convexity condition imposed on D is necessary for the valid­
ity of Theorem 2 in the case of an isotropic or uniaxial medi­
um. Since the proof for a gyrotropic medium is exactly pat­
terned after the isotropic case, this example suggests that the 
restriction on D is essential in general. 

Consider the electromagnetic field of an electric dipole 
of moment p perpendicular to ZOo We denote by x d , Y d' Zd 

the coordinates of the dipole. For an isotropic or uniaxial 
medium (z axis being distinguished) the scalar Hertz poten­
tials for the considered field are given in each of the half­
spaces Z < Zd and Z > Zd by the functions Il, M determined in 
Ref. 7. These functions, however, are not the potentials for 
the whole space since their Z derivatives are discontinuous 
across the plane Z = Zd' Denote these discontinuities by 

and similarly for [aM laz]. Let us note moreover that these 
discontinuities are singular at the point x = X d , Y = Yd' 

If we now consider a convex region not containing the 
dipole but crossed by the plane Z = Zd' then by virtue of 
Theorem 2 there must exist a way to compensate the discon­
tinuities of all I az and aM I az. It is indeed so, since the Hertz 
potentials for an electromagnetic field are not determined 
uniquely. In other words, there exist Hertz potentials differ­
ent from zero that generate the zero field. To demonstrate 
this, we observe first that these potentials must have the form 
of the potentials for a TEM field, given by (26), since obvious-
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ly for the zero field we have Ez = Hz = O. Secondly, one can 
easily find transverse fields en in formulas (22) that lead to 
the zero TEM field. The Hertz potentials WI corresponding 
to these fields en yield the field equal to zero, such potentials 
will be called null potentials (ghost potentials in Ref. 3). 

Let us now state explicitly that by virtue of formulas 
(26) the discontinuities [all laz] , [aM laz] determine the cor­
rective potentials uniquely in that part of the considered con­
vex region (z < Zd or Z > Zd ) that is not pierced by the line 
x = xd,Y = Yd' Consequently, we compensate these discon­
tinuities by adding these potentials to Il and M in that part of 
the convex region. 

However, this corrective technique, which is the only 
possible one, must fail for a concave region D ' shown in Fig. 
2 when the line x = X d , Y = Y d pierces the region D ' on both 
sides of the point Z = Zd' In this case we are not able to con­
struct the corrective null potentials with no singularity along 
the line x = x d, Y = Yd' The singularity present in all I az, 
aM I az would be carried along this line spoiling the correc­
tive null potentials. 

IV. CONCLUDING REMARKS 

Theorem 2 clarifies some of the basic facts connected 
with the representation of electromagnetic fields in terms of 
the scalar Hertz potentials. Its main significance stems from 
the information it provides about the generality of this repre­
sentation. For example, in solving an electromagnetic prob­
lem with the aid of the potentials we now can avoid the un­
pleasant situation in which we would not know whether the 
electromagnetic field to be determined can be represented 
via potentials. 

Somewhat philosophically, one might also remark that 
Theorem 2 explains why it is not possible to forget about 
Maxwell's equations altogether and employ only the system 
of equations for the potentials (restrictions on D ). 

It has been shown in Ref. 2 that the idea of auxiliary 
functions for electromagnetic fields can be extended further 
by introducing the so-called superpotentials which generate 
the scalar potentials. Analogously to Theorem 2, it can be 
shown that an arbitrary pair of scalar potentials given in the 
considered simple region D and satisfying therein system (3) 

z 

y 

x 

FIG. 2. Location of the dipole with respect to the concave region D! 

1711 J. Math. Phys., Vol. 23, No.9, September 1982 

can be represented in terms of one superpotential satisfying 
its fourth-order equation. Thus, indirectly, Theorem 2 leads 
to a remarkable result that an arbitrary electromagnetic field 
in a gyrotropic medium can be derived from only one scalar 
function while in an isotropic medium two functions are nec­
essary. This result becomes less surprising if we note that in a 
gyrotropic medium the components Ez and Hz are coupled 
by system (8) while in an isotropic medium Ez and Hz can be 
two arbitrary, independent solutions of the Helmholtz 
equation. 

Finally we have two more remarks on possible applica­
tions of Theorem 2 to two cases of some practical signifi­
cance. The first one concerns cylindrical regions whose axes 
are perpendi9ular to the z axis. The second one involves me­
dia stratified along z. 

(1) For cylindrical regions and fields harmonic in one of 
the transverse coordinates [e.g., given by exp(iax) or 
exp(i/3y)] the convexity condition on the region D becomes 
unnecessary and the theorem can be proved for any region D 
that can be divided by planes Z = Zv (v = 1,2,.··) into subre­
gions convex with respect to z in such a way that each of the 
planes z = Zv has only one strip in common with D. 

(2) The theorem can be extended to gyrotropic media 
stratified along the distinguished axis, i.e., for E and .... vaFy­
ing with z. The formal scheme of the proof and relation (16) 
remain valid in this case though the operators J¥' and .!L' and 
the matrix K take other forms than used here [cf. formulas 
(28), (29), and (30) in Ref. 2]. As was already observed, the 
closed form for W I is redundant and we can content ourselves 
only with the existence and regularity of W I' What we really 
need in subsection 3D is the existence of four linearly inde­
pendent solutions for Eqs. (11) and (12b). This follows from 
the relevant theorems on the systems of ordinary differential 
equations8 (nonsingular and continuous). More essential 
modifications are necessary concerning the representation of 
TEM fields. In this case the definition of the potentials via 
(26) has to be changed and the proof of the relation (27) be­
comes much more complicated. These considerations will be 
carried out elsewhere. Jump discontinuities in E, .... can be 
dealt with by an appropriate division of D. 

APPENDIX 

Let us change in the system (9) the variable Z to 
s = Z - zo(x,y) and consider this system for s > O. The La­
place transform of (9) takes the form 

2'w l = K-IF- I (AI) 

where!i is the Laplace transform of.!L' and wl(x,y,p) and 
F(x,y,p) are the Laplace transforms ofw 1(x,y,s + zo) and 
F(x,y,s + zo), respectively, i.e., 

WI = i= WI (x,y,s + zo)e- PS ds, 

similarly for F. 
From (A 1) we get 

WI = (detK!i)-lg, (A2) 

with g = ft, where.ff = (K!i)-I det K!i is the Laplace 
transform of JII, and g(x,y,p) is the Laplace transform of 
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g(x,y,s + zo) (see subsection 3C). 
The inverse of the determinant in (A2) can be rewritten 

as follows: 

(detK2TI = 1 
(p2 + ri )(P2 + rz ) 

1 ( - 1 + ). (A3) 
2k 278 p2 + ri p2 + rz 

In order to find the inverse Laplace transform of WI' we 
make use of(A3) and apply to (A2) the convolution theorem. 
We obtain 

-; 1 f'g(x,y,s + zo)sinYI(s - s') ds' 
2k 7gYI )0 

+ 21 ('g(x,y,s + zo)sinY2(s - s') ds' 
2k 7g Y2)0 

(A4) 

or returning to the variable z = s + Zo 

(A5) 
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which coincides with (17). 
One may easily check that (A5) constitutes a solution 

also for z < zoo 
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The pattern space factor and quality factor of cylindrical source antennas 
John M. Jarem 
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For the first time the quality factor of cylindrical source antennas is derived by a plane wave 
expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave 
expansion is shown to be different from Collin and Rothschild's [IEEE Trans. Antennas 
Propagation AP-12, 23 (1964)] quality factor. 

PACS numbers: 41.l0.Hv, 84.40. - x, 02.30.Mv 

I. INTRODUCTION 

The problem of defining a suitable quality factor (ratio 
of 2 times frequency times the greater of the electric and 
magnetic energies in the evanescent fields to the power radi­
ated in the antenna system l

) for planar, cylindrical, and 
spherical antenna sources has received considerable atten­
tion in recent years. 1-8 In this problem of defining a suitable 
quality factor, basically two methods have been used to de­
fine the energies in the evanescent fields. The first method is 
to express the EM fields in the system as an infinite sum of 
propagating (visible region ofk-space) and nonpropagating 
(invisible region ofk-space) plane waves, find the electric and 
magnetic energies associated with each plane wave, and then 
sum these energies only over the evanescent or nonpropagat­
ing values of the wavenumbers. This method has been used 
by Rhodes2 and Collin and Rothschild3 for planar aperture 
antennas. 

The second method introduced by Collin and Roth­
schild I for finding the energy in the evanescent field is based 
on the recognition that there exists an energy density in the 
evanescent field which is given by the difference between the 
total electric or magnetic energy densities !EoE·E· and 
l,uoH·H· in space and the energy density associated with 
radiated power flow namely P rad !Venergyflow = (,uoEo)I/2Prad' 
In this method the total energy in the evanescent field is 
given as an integral over all space of this evanescent energy 
density. This method has been used by Collin and Roth­
schild, I Kalafus,4 and Fante5 to find the quality factor of 
cylindrical and spherical antenna sources. 

At the present time the first method (which is to define 
the evanescent energies as a sum of non propagating plane 
waves) has only been applied to finding the Q for planar 
aperture antennas and not for cylindrical or spherical anten­
nas. This investigation will be concerned with showing that 
the quantities defined by Collin and Rothschild I as the eva­
nescent energies of a cylindrical antenna system are not the 
same as the evanescent energies as defined by a plane wave 
sum over the nonpropagating waves as is done in the case of a 
planar aperture. This will be shown by calculating the plane 
wave evanescent energy in the regiony>O which results from 
a source located in the regiony < 0, r < a. This energy will be 
shown to be infinite for arbitrary source distributions. This 
then shows the difference between the two evanescent ener­
gies since Collin and Rothschild I evanescent energy was 
finite. 

II. ANALYSIS 

The subsequent analysis will be concerned with finding 
the quality factor for cylindrical antenna sources where (for 
simplicity) the radiating source is taken to be an axial mag­
netic current source which excites only TE modes given by 
(this is the same source as used by Ref. 1). 

M=Mz (x,y)ej{-.8zZ +
cut l.i for 

r= (x2 + y2)1/2<a,y<0, 

M = 0 for r> a or y>O 

f3z < (,uoEo)I/2{U = k, 

(1) 

and where the quality factor of the antenna system is given 
byl 

where [ WE' W M ] represents the greater of the evanescent 
electric and magnetic energies, (U is the operating frequency, 
and P is the total power radiated in the radial direction. As 
mentioned in the Introduction, the electric and magnetic 
evanescent energies will be defined in terms of a wave­
number summation over the invisible region of the antenna 
system. 

The first step in the analysis will be to obtain expres­
sions for the evanescent electric and magnetic fields in the 
system. This may be accomplished by expanding the fields in 
a plane wave expansion over the visible and invisible wave­
number and then keeping only that portion of the fields 
which have resulted from summation over the invisible 
wavenumber region. To this end, we note, as shown in Ap­
pendix A, that a plane wave expansion of the E and H fields 
in the regiony > 0, due to the source M ofEq. (I), is given by 
(Ez =0) 

fOO F+(u) 
Hz = HoH=Ho 21/2 

-00 (l-u) 
Xe -j{uR cos¢> + (I - u'I"'R sin ¢> Idu, (2) 

0<¢<1T, 

H = - jf3zHo aH 
r K aR' 

(3) 

-jf3zHo aH 
H¢> = KR a¢' (4) 
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E = - jOJll-ofio aH 
r KR at/J (5) 

E _ jOJll-ofio aH 
q, - K aR' (6) 

where 

(1 - U2)1I2 = - j(U2 - 1)1/2 when lui> 1, 

K = (OJ 21c2 - fJz 2)1/2, Ho = lA 1m, 

R = Kr, X = KX = R cos t/J, Y = Ky = R sin t/J. 
In this expression F +(u) is the pattern space factor of 

the system and is given in Appendix A in terms of M z • 

Following our previous statements that the evanescent 
fields are defined by keeping only that portion of the wave­
number summation which is over the invisible region (in this 
case I u I > 1), we find that the evanescent fields of the system 
He, Ee may be found by calculating 

He = ( F +(u) e-jluRCosq,)-lu'- I)U2Rsin.pdu (7) 
Jlul>1 _j(u2 _1)112 

and substituting this function He in place of H in Eqs. (2)-(6). 
In the source free region Y < 0, R > Ka, the Hz field may 

found from the plane wave expansion 

H =H T-l= I'" F_(u) ejluRcos.p +11-u'I'''Rsinq,Jdu 
z O'~ -00 (l_u2)1/2 ' 

1T < t/J < 21T, R > Ka, 

where F _(u) is the pattern space factor of this region. In this 
expression (1 - U2)1/2 = - j(u2 

- 1)1/2 when lui> 1. 
Now that the evanescent fields have been defined, we 

may now calculate the evanescent energies of the system. As 
mentioned in the Introduction, it is only necessary to calcu­
late the evanescent energy in the regiony:;;'O to show the 
difference between the evanescent energy as defined by Col­
lin and Rothschild 1 and as defined by a plane wave expan­
sion. Calling the evanescent energies in the regiony:;;'O WE + 

and W M +, we find that the expressions for these quantities 
are given by 

oR 2 [ k 2 i1l" -· i Ro 
WE + = lim 4 2:""" dtP R dR 

Ro-oo 4K K 0+. 0 

.-0 X (_1_ aHe aH
eo + aHe aHe

o 
)] 

R 2 at/J at/J aR aR ' (8) 

W M + = lim ~ dt/J R dR T-l2 { i1l"-· i Ro 

Ro-~ 00 4~ 0 + • 0 

.-0 X [fJz 2 (_1_ aHe aHe
o 

~ R 2 at/J at/J 

+ aHe aH
eo 

) + HeHeo]} . (9: 
aR aR 

To proceed further, we differentiate He in (7) with re­
spect to t/J and R as indicated in (8) and (9) and substitute into 
(8) and (9). At this point, following a procedure exactly anal­
ogous to that of Ref. 2 (pp. 64,65), we interchange spatial and 
wavenumber integrals to obtain the expression: 

WE + = Il-~~ ( k: { du { du' F +(u)F~ (u ' ) 
4K K J1ul>1 J1u'I>1 
[uu/ + (u 2 _ 1)1/2(u'2 _ 1)1/2] ) 

X K(uu/) 
(u 2 _ 1)1/2(U/2 _ 1)1/2 " 

(10) 
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where 

i
Ro lrr-. K(u,u/) = lim R dR eUacos.p-f3sinq,JRdt/J, 

Ro-oo 0 0+. 

where a = u/ - u andfJ = (U '2 - 1)1/2 + (u 2 - 1)112. The in­
tegration interchange is justified since the interchange has 
been made before letting Ro- 00, c-O. 

If we change from polar to rectangular coordinates with 
X = R cos t/J and Y = R sin t/J, K (u,u/) becomes after letting 
Ro-oo, 

K (u,u/) = l= dYe - f3Y I: 00 dX e jaX = (21TlfJ )8(u - u/). 

(12) 

This expression has been obtained by realizing that the inte­
gral over x is 21T times the delta function and the integral 
over y is 1/ fJ when the integration over the u/ variable in Eqs. 
(10) and (11) is carried out. The final expression for WE + and 
W M + is found. 

Instead of presenting WE + and W M + directly we will 
form the expressions QE + = OJ WE + IP and QM + 

= OJ W M + I P in order that a comparison can be made with 
the quality factor as obtained by a plane wave expansion and 
as obtained by Ref. 1. In these expressions Pis the real radiat­
ed power and, as shown in Appendix B, may be expressed in 
terms of the pattern space factors F ± integrated over the 
visible region - 1.;;; u.;;; 1. The final expression for QE + and 
QM + is given by 

QE+= !(k2IK2)f,u'>IIF+(uW[(2u2-l)I(u2 -1)3/2]du 

f _ 1 I(IF + 12 + IF - 12)dul(1 _ U 2)1/2 
(13) 

QM + I 2( [ 2.2 2 2 3/2 = !flul;;,] F +(u)1 (j3z 1/\ )(2u - 1) + 1 ]f(u - I) ldu. 

f _ 1 I(IF + 12 + IF - 12)dul(1 _ U2)1/2 
(14) 

Of course it is necessary to recognize that to form a full 
expression for the Q (Q = max[QE ,QM ]) as defined by a 
plane wave expansion, terms which represent the evanescent 
electric and magnetic energy in the region R > Ka, Y < 0 must 
be added to the numerators of Eqs. (13) and (14) to form the 
full expressions for QE and QM' These expressions have not 
been derived since Eqs. (13) and (14) are sufficient to show 
the difference between Ref. 1 and the Q as defined by a plane 
wave expansion. 

Clearly from Eqs. (13) and (14) for the those source dis­
tributions M. for which F +(u) does not vanish at u = ± 1, 
the numerators of Eqs. (13) and (14) diverge. On the other 
hand, the evanescent energies as defined by Collin and Roth­
schild l converge for all source distributions confined to the 
region R < Ka which produce single modes (or a finite num­
ber of single modes). 

As a specific example, let us calculate the evanescent 
energy as defined by Ref. 1 of a delta magnetic current 
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source Mz = Mob(X}I5(Y + KaI2). It is easy to see that in a 
coordinatesystemX',Y'(X' =X,Y' = Y + KaI2),locatedat 
the center of the delta source, the only mode that will be 
excited is the Hg)(kr') mode [see Eq. (A2) of Appendix A], 
where r' = K(x'2 + y'2)1/2. The evanescent energy for this 
mode as given by Ref. 1 (pp. 25,26) will be finite when calcu­
lated over the region R '>R~, where R ~ is a nonzero dis­
tance satisfying 0 < R ~ < Ka12. 

At this point let us calculate the evanescent energy of 
the above delta source using a plane wave expansion. We, 
first of all, find for the above delta function that the pattern 
space factor F +(u) does not vanish u = ± 1 [it is proportion­
al to e - (u' - 1)'''Ka/2 for I u I > 1; see Eq. (AS)], and, since it 
does not vanish at u = ± 1, we conclude, according to our 
earlier statements, that the evanescent energies WE + and 
W M + calculated in the region Y>O, must approach infinity 
[see Eqs. (13) and (14)]. 

Thus we see, in this example, that the evanescent ener­
gy, as calculated by a plane wave expansion, is infinite in the 
region Y>O whereas the evanescent energy as calculated by 
Ref. 1 in a region which includes the region Y>O turned out 
to be finite. Ifwe recall that the evanescent energy density is 
greater than or equal to zero at each point in space, either as 
calculated by Ref. 1 or as calculated by a plane wave expan­
sion, we then clearly see, at least for this example, that the 
evanescent energy as calculated by Ref. 1 is not the same 
because it is finite, as the evanescent energy as calculated by 
a plane wave expansion because it is infinite. We have thus 
completed a major objective of the investigation which is to 
show that the evanescent energies as defined by Ref. 1 are not 
the same as the evanescent energy as defined by a plane wave 
expansion. 

Several additional interesting statements can be made 
about the above expressions. We first of all note that the 
form ofthe Eqs. (13) and (14) is in direct analogy to the 
quality factors derived by Rhodes2 and Collin and Roth­
schild3 for planar aperture antennas. The evanescent energy 
is expressed as an integral of the pattern space factor squared 
over the invisible region, and the power is expressed as a 
pattern space factor squared over the visible region. Further­
more, the pattern space factor is in direct analogy with the 
pattern space factor as derived by Refs. 2 and 3 in that it is 
expressed as an integral transform of the source field [using 
Eq. (AS)] whereas the integral transform of Refs. 2 and 3 for 
the planar aperture was just the finite Fourier transform of 
the aperture field. Another interesting feature of comparison 
is the fact that both of the numerators of QE + ,QM + have 
terms which are proportionalto 2/(u 2 - 1) and l/(u 2 _ 1 )3/2 
[note that (2u 2 

- 1)/ (u2 - 1)3/2 = 2/(u 2 - 1) 
+ l/(u 2 

- 1)3/2], which are precisely the same terms which 
multiply the squared pattern space factor of the H-plane 
strip source antenna and the E-plane strip source antenna of 
the planar aperture case. See Refs. 2 and 3. 

III. CONCLUSION 

In conclusion, the main contribution this author has 
tried to make in this paper is the fact that the expression for 
the evanescent energy of a cylindrical radiator as defined by 
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a plane wave expansion is not necessarily the same as the 
evanescent energy as defined by Collin and Rothschild l (the 
difference between the total energy and an energy of power 
flow). This contribution was found by showing that the eva­
nescent energy in the region Y>O due to a source in the re­
gion R <Ka,Y <0 was in some cases infinite (when the pat­
tern space factor of the source did not vanish at u = ± 1), 
whereas the evanescent energy found by Ref. 1 was always 
finite for sources which produce single modes. An example 
of the evanescent energy of a delta source was given, and the 
evanescent energy was found to be infinite for a plane wave 
expansion but finite when calculated by Ref. I. 

APPENDIX A 

The purpose of this appendix is to derive the pattern 
space factor F + (u) from the magnetic current source M z • We 
first note that the Hz component of the fields satisfies the 
following wave equation (all coordinates are unnormalized): 

(V~ +~)Hz(x,y) = (jcuEcFlk2)Mz(x,y). (AI) 

Ifwe set the rhs of (AI) to a delta function 0 (x)oty), then the 
solution of (AI) will be given by (Ref. 10, p. 823), 
r= (x2 + y2)1/2, 

g(x,y) = ~ H ~1(Kr) 

f
OO ( • ) -j[kx"+(,.-2-kil,j2y ] 

= ...L. e dk . 
-00 417 (K2_k;)1/2 x 

(A2) 

If the rhs of (AI) is set equal to (jCUErJ(2/k 2)Mz (xo,yo) 
o (x - xo)oty - Yo), then by simple translation the solution 
for the function at Xo,Yo will be 

¢(x,ylxo,yo) = (jCUErJ(2Ik 2)Mz (xo,Yo) g(x - Xo,y - Yo) 

= foo (- CUEcFM;(xo,yo) /[kxxo+(,.-2-k~I"'y.]) 
- 00 417k 

- j[ kx" + (K'- k~I'j'y] 
X e dk . (A3) 

(~_ k;)I/2 x 

If the above ¢ are added everywhere that the M z (xo,yo) 
is not zero, then the superposition of these ¢ will be Hz 

Hz = foo {f dxodyo - CUEcFM;(Xo,yo) 
- 00 Jv. 417k 

X --e j [ kr". + (,.-2 - k ~I"'y. ] } 

-j[ kr" + (K'- k;l,j,y] 

X e dk . 
(K2 _ k;)1/2 x 

(A4) 

The expression in curly brackets is the unnormalized 
pattern space factor of the system. If we made the change of 
variables Xo = KXo, Yo = KYo, and u = kx IK in both the vol­
ume and wavenumber integrals, and also divided Hz by 
Ho = I Aim, the following expression results: 

H = Joo { - CUEo 1 dX dY. M (X Y. )ej[UX. + (I - u'l,j,Y.] } 
4 k 2H 0 0 z 0' 0 

00 1T' 0 Vo 

e-j[ux+(I-u'I,/lYI 

X (1 _ U2)1/2 du, Yo<O, Y>O. (AS) 
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The expression in curly brackets is the pattern space 
factor F +(u) of Eq. (A3). 

APPENDIX B 

The power may be obtained from the Poynting vector 
!Re(EXH*) evaluated on a surface r-oo surrounding the 
source. The term !E X H* becomes entirely real as r_ 00 and 
we have 

P = lim! {21T EX H*.rd¢r = lim.!.. {21T E.pH :d¢. 
r_oo Jo r-oo 2 Jo 

(BI) 

The expressions for Hz and E.p as r-oo are found an 
asymptotic expansion of Eq. (7) which turns out to be 
(R =Kr) 

Hz = HoP ± (cos ¢ )(21TIR )1/2e -j(R - 7T/4) (B2) 

and a similar expression for E.p as given in (3e). Substitution 
of (A2) into (AI) yields, after letting u = cos ¢, 
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an arbitrary potential of finite range 
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A qualitative investigation of the one-dimensional Percus-Yevick integral equation by 
perturbation method is discussed for an arbitrary potential of finite range I. When the particle 
density p is restricted to the interval (0,1) it is proved that every order of perturbation has a unique 
continuous and bounded solution, which can be expressed as a convergent generalized Fourier 
series. The perturbation series is absolutely and uniformly convergent if the supremum norm of 
the nth order solution is less than or equal to nL Under the assumptions (i), ° <p < 1 and (ii), the 
absolute and uniform convergence of the perturbation series, it can be proved that the Percus­
Yevick equation cannot exhibit a phase transition. 

PACS numbers: 64.60.Cn, 34.20. - b 

I. INTRODUCTION 

The problem of phase transition for the one-dimension­
al system of classical fluids has been of great interest in the 
past. For the nearest neighbor interaction, Giirseyl had 
shown that there was no phase transition for the one-dimen­
sional system. This conclusion was further generalized by 
Van Hove2 to an arbitrary attractive potential v(x) of finite 
range I. On the other hand, Kac et al. 3 has investigated the 
parametric limit of the potential and shown that there indeed 
does exist a phase transition as 1-00 in the van der Waals 
limit. The delicate nature of phase transition depends mar­
kedly upon the model potentially employed.4 

In 1958 Percus and Yevick proposed an approximate 
theory for the pair distribution function5 in classical fluids. 
Since then much work has been developed in its various ap­
plications. It is generally agreed that the Percus-Yevick (PY) 
approximation has been quite successful, particularly, in the 
one-dimensional case where it becomes an exact theory for 
the hard rod potential. Recently Wertheim6 had studied the 
PY equation for the nearest neighbor interaction. He con­
cluded that the one-dimensional PY equation could not ex­
hibit a phase transition. The purpose of this paper is to fur­
ther generalize Wertheim's conclusion for an arbitrary 
attractive potential of finite range by a perturbative method. 7 

In this paper we assume that the intermolecular poten­
tial consists of a hard rod potential uo(x) of diameter 1 and an 
arbitrary attractive potential v(x) of finite length l. By consid­
ering v(x) as a perturbation on uo(x) we can obtain a set of 
coupled integral-differential equations from the PY equa­
tion which can then be transformed into a set of differential­
difference equations of advanced and retarded types. When 
the particle density p is restricted to the interval (0, 1), every 
order of perturbation for the pair distribution function has a 
unique continuous and bounded solution which can be ex­
pressed as a generalized fourier series expansion. The pertur­
bation series can be shown to be absolutely and uniformly 
convergent if the supremum norm of the nth order solution 
is less than or equal to n!. Finally we prove that the PY 
equation cannot exhibit a phase transition under the as-

sumptions ° <p < 1 and the absolute and uniform conver­
gence of the perturbation series. 

II. PERTURBATION SERIES 

Consider the intermolecular potential 

u(x) = uo(x) - A5"V(X), 

where 

( ) _{oo, Ixl<l, 
uox -

0, Ixl>l, 

t
o, Ixl<l or Ixl>l, 

v(x) = a positive smooth function for IxIE[ 1, I,). 

5" denotes the maximum of the physical tail potential so that 
Maxlv(x)1 = 1 andO<IA 1<1. For convenience, we set Ito be 
a positive integer. Let f3 = 1/ KT, where K is the Boltzmann 
constant, and T is the temperature. We define 

f(x) = e - (Ju(x) - 1, 

y(x) = ef3U(X)g(x), 

h (x) =g(x) - 1, 

wheref(x) is the Mayer's function, g(x) is the pair distribution 
function and h (x) is the total correlation function. Following 
Ornstein and Zemike,8 the total correlation function can be 
written as a sum of the direct correlation function c(x) and an 
indirect correlation function by a convolution as follows: 

h (x) = c(x) + p f: 00 h (x - x/)c(x/) dx'. ( 1) 

The convolution relation (1) is usually called the Ornstein­
Zernike (OZ) relation, which can be considered as the defini­
tion of c(x). Suppose c(x) = 0 for Ixl >1. It has been proved9 

that the one-dimensional OZ relation (1) can be transformed 
into the following equivalent Baxter's relations: lD 

c(x) = Q (x) - p LQ (x/)Q (x/ - x) dx', O<x<l, (2) 

h (x) = Q(x) +p Lh(X -x/)Q(x')dx', x>O, (3) 
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where Q (x) is a real bounded function for O<.x<.l, and 
Q (x) = ° for x < 0, or x;;. I. TJ.1e Percus-Y evick approxima­
tion assumes c(x) = f(x)y(x), so that c(x) = ° for Ixl ;;.1. The 
one-dimensional PY integral equation can be written as a 
coupled integral-differential equation by supplementing the 
Baxter's relations (2) and (3) with the PY approximation. For 
hard sphere potential the PY equation can easily be solved 
with exact solution. However, the problem becomes very 
difficult for any realistic potential. 

If the attractive potential - 5'v(x) is considered as a per­
turbation on the hard rod potential uo(x), we can obtain a 
series expansion in A/35' for fix), 

fix) = e - f3uo(x1e"f3sv{xl - 1 

00 An 
= fo(x) + L -, fn (x), 

n= I n. 
where 

fo(x) = e- f3uo(xl_ 1, 

fn(x) = e- f3uo
(X1[/35'v(xW· 

Similarly we can have the following perturbation series 
expansions: 

00 1 
Q (x) = Qo(x) + L .. (A/35' rQn (x), 

n = I n. 
00 1 

y(x) =Yo(x) + L .. (A/35')nyn (x), 
n = I n. 

00 1 
h (x) = ho(x) + L - (A/35' rhn (x), 

n = I n! 
00 1 

c(x) = co(x) + L - (A/35' rCn (x), 
n = I n! 

(4) 

(5) 

(6) 

(7) 

where the subscript "0" in Qo(x),yo(x), ho(x) and co(x) denotes 
the unperturbed system with hard rod potential uo(x), and 

hn (x) = e - f3
Uo(XI,toC) [v(x) ]Yn _ ,(x), n;;. 1, 

Cn (x) = e -f3Uo(XI,toC) [v(x) ]'yn _ I (x) - Yn (x), n;;' 1, 

Qo(x) = Q = - 1/(1 - pl· 

From the PY integral equation and Eqs. (4)-(7), it then fol­
lows that 

co(x) = Qo(x) - p fQo(X')Qo(X' - x) dx', 

ho(x) = Qo(x) + p Lho(X - x')Qo(x') dx', 

co(x) = !o(x)Yo(x), 

and 

x;;.o, 
(8) 

cn(x) = Qn(x) - L [Qo(x')Qn(x' - x) + Qn(x')QO(x' - x)] dx' 

n-lil - p '~I x Q,(x')Qn - ,(x' - x) dx', 0<. x<.l, (9) 

hn(x) = Qn(x) +p,tIG)Lhn-,(x -x')Q,(x') dx', 

(10) 
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Note that Eq. (8) is the PY equation for the hard rod 
potential, whose solution is well known. II Due to the nature 
of the intermolecular potential, Eqs. (9) and (10) can be fur­
ther simplified. After some lengthy derivations, we finally 
obtain the following results: 

An (x) + p L ho(x' - x)Qn (x') dx', o<x< 1, (11) 
x+1 f+1 Bn(x) -pQ x Qn(x')dx', l<x<.I-I, (12) 

Bn(x) -pQ fQn(X') dx', 1- l<.xd, (13) 

f+1 En (X) + pQ x Qn(x') dx', O<x<l, (14) 

Yn(x) = Fn(x)+pQ fYn(X')dX', 1 <x<2, (15) 

Gn (x) + pQ i~ IYn (x') dx', 2<x< 00, (16) 

whereAn,Bn are functions ofQm andYm for m <n, whereas 
En ,Fn, and Gn are functions ofQm' Ym and Qn' so that in the 
nth order perturbation they can be considered as known 
functions. Because of their complexity, the detailed expres­
sions of An,Bn,,·Gn are omitted since we will not need them 
in the subsequent discussions. 

It is interesting to note that, if the attractive potential is 
considered as a perturbation on the hard sphere potential, we 
can then express Q (x), C (x), andy(x) in a series expansion of 
/35', which is similar to the ordinary density expansion. 
Moreover, the PY equation can be reduced to a set of cou­
pled linear differential-integral equations (11 H 16). 

III. SOLUTIONS OF PERTURBATION SERIES 

Equations (11 )-( 16) are related. However, Eq. (13) is 
self-contained and can therefore be solved first. With the 
solutionofQn in [1- 1, I] we can successively solve Eqs. (12), 
(11), (14), (15), and finally Eq. (16). 

(a) Solution of Qn (x) for / - 1 <.x<./ 

Qn(X) = -Bn(X)+PQfQn(X')dX" (13) 

For the hard rod potential it is known thatyo(x) is a real 
entire function on (m, m + 1), but of class em - 2 on 
[m, m + 1] where m is a positive integer greater than or 
equal to 2. By induction we can then deduce that Bn (x) is at 
least of class C I - 3 on [I - 1, /] depending on the smoothness 
ofv(x). Since Qn(l) = 0, Eq. (13) can be transformed into a 
differential equation. 

Q ~(x) + pQQn(x) = - B ~(x) = sIx) 

with solution 

Qn(x) = - [e-PQlx-tIS(t)dt. 
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(12) 

Equation (12) can be transformed into a differential-differ­
ence equation of the advanced type 

with the initial condition given by the solution ofEq. (13) for 
f - l.;;x .;;f. By the standard continuation method the fol­
lowing theorem can easily be proved. 

Theorem 1: There exists a unique continuous function 
Qn (x) which satisfies Eq. (17) for xE[I, f - 1] and the initial 
condition given by the solution ofEq. (13) for xE[l- 1, f]. 
Furthermore, Qn is a real entire function in each subinterval 
(i, i + 1), and is at least of class C I on [i, i + 1], i = 1, 2, ... , 
f - 2, except possibly at x = 2. 

In order to further study the properties of Qn (x) we next 
consider the Laplace transform of Eq. (17). 
Let 

Qn(t) = f~IQn(X)e~/XdX' 

B (t ) = r' Qn (x) e ~ Ix dx - (2 Qn (x) e -- Ix dx, 
)l~ I )1 

s(t) = f~ Ibn (x) e-- Ix dx, 

F(t) = e~/s(t) + b(;J(t) - Qn(/ - 1) e~tl 

+ Qn(1)e~2/, 
H (t) = te ~ '+ bo e ~ I - b(» 

bo=pQ· 

The Laplace transform of Eq. (17) yields 

Qn(t) =H~I(t)F(t). (18) 

~n taking the Laplace transform it must be assumed that Qn 
IS known on [1, 2] from the continuation method. The infor­
mation of Qn on [1, 2] and [f- 1, f] appears in B (t). 

Before we employ the inverse Laplace transform, we 
first consider the distribution of zeros of H (t ). 

Lemma 1: All roots of H(t) = ° are simple. 
Proof 
FromH(t)wecanobtainH'(t)=e~/(I-b -t)and 

h"( ) 0 t = - e~/(2 - bo - t).LetH'(t) = O.Thent = 1- boo 
But h "(1 - bo)¥=O, whereas H(1 - bo) = e ~ (I ~ b,,1 - boo 
Consider u(x) = e ~ (I ~ xl - X. It is evident that u(x);;;'O and 
u(x) = ° at.x ~ 1. foIence H has a double root if and only if 
bo = 1, WhICh Imphes bo = pQ = - pl(1 - p) = 1, i.e., 
p = ± 00. 

Let G (t) = e'H (t) = - boe' + bo + t. G (t) and H (t) 
have the same roots. Since G (t) = ( - boe' + t )[1 + e(t )], 
where e(t )-+0 as It 1-+00, for large It I the roots of G (t) are 
asymptotIc to the comparison function 

Ge(t) = - boe' + t. 
We now ~onsider the distribution of roots of the exponential 
polynomIal Ge (t ), which can be recast in the form 

1719 J. Math. Phys., Vol. 23, No.9, September 1982 

Ge(t) = Pot mofi3"t + PIt m'fi3,I, 

with Po = 1, mo = 1, /30 = 0, PI = - bo' m I = 0, /31 = 1. 
The distribution diagram of the exponential polynomial 
Ge(t) consists of a line L passing through two points 
f/3o, mol and (/31' mtl with slope - 1 in the/3-m plane. 

Define the curvilinear strip VI by 

VI:IRe(t -In(t ))1.;;c l , 

where CI is a constant to be specified later. The strip VI is 
bounded by a curve Re(t - In(t)) = const with the following 
characteristics 12: 

(i) If t = x + iy lies on the curve, then Iylxl-+oo and 
larg(t )1-+1T/2 as It 1-+00, i.e., It I = y(1 + 0 (1)) as It 1-+00. 

(ii) The curve is asymptotic to the curve x - In (Iyl) 
= const. 

(iii) The curve lies entirely in a right half-plane and 
Re(t)-+oo as t-+oo. 
By Theorems 12.9 and 12.10 of Bellman-Cooke, 13 all zeros 
oflarge modulus ofG (t) lie within VI' and the zeros in V are 
asymptotically the same as those of Ge(t) comprised o/the 
terms associated with points on the line L of the distribution 
diagram. 

In order to consider the distribution of zeros in VI we let 

Ge(t) = tGIft), 

where 

GI(t) = 1 - bot -I e' = 1 - bo e' ~ InU I. 

By the transformation T: t-+z defined by 

z = t -In(t), 

GI(t) is transformed intoJ(z) given by 

J(z) = 1 - bo< 
with roots 

z = In(lllbol) + 2n1Ti 

= In(II - p)lpl) + 2n1Ti, n = 0, ± 1, ± 2,.··. (19) 

Since T is a one-to-one transformation, 14 there exists a one­
to-one correspondence between the zeros of large modulus 
of G Ift ) and the zeros oflarge modulus ofJ(z). By the inverse 
transformation of T the zeros of Ge (t) lie along a curve 
Re(t -In(t)) = C I = In(II - p)lpl). In fact, if we let 
t = x + iy, then 

x - In(lt I) = Re(z) = In(11 - p)lpl), 

y - arg(t) = Im(z) = 2n1T. 

But larg(t )1-+1T/2 and It I = lyl(I + 0 (1)); consequently, we 
have 

y = arg(t) + Im(z) = (2n ± !)1T, n: large integer, 

x = In(lt)1 + In(I(I - p)lpl) 

= In(II - p)lpl) + In(I(2n ± t)1TI) + 0 (1). (20) 

Summarizing our result, we have 
Theorem 2: The zeros of G (t ) form a root chain of ad­

vanced type lying asymptotically along a curve It -I e'l 
= In(I(I - p)lpl). For large modulus of t the roots have the 

form given by Eq. (20). 
We can now employ the inverse Laplace transform of 

Eq. (18) and obtain 
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Qn (x) = _1_. r H -I(t )F(t) e'x dt 
2m J 

00 F(t) 
= Res[H-l(t)F(t)e'X ] = L __ n_e''''', 

n~IH'(tn) 

wheretn is a root of H (t) and the summation is taken over all 
characteristic roots of H (t ). 

By Theorem 6.10 of Bellman-Cooke, 15 the generalized 
Fourier series expansion given above is uniformly conver­
gent for 2<x<1 - 1. As emphasized in Sec. 6.10 of Bellman­
Cooke, this finite transform method is valid only for finite I. 
As 1--+00 , the Laplace integral S; - IQn(x)e - Ix dx diverges 
and the method breaks down subsequently. 

(c) Solution of Qn (x) for 0 <x < 1. 

Qn(x) = -An(x) - P r' holt - x)Qn(t) dt. (11) 
Jx+ I 

Once we know the solution ofEq. (12), the solution ofEq. 
(11) will follow immediately by a simple integration. 

(d) Solution of Y n (x) for 0 < x < 1. 

Yn(X) = En (X) +pQ fQn(X+t)dt. (14) 

Again the solution ofEq. (14) can be obtained easily by sim­
ple integration. 

(e) Solution of Yl(X) for 1 <x<2. 

Yn(x)=Fn(x)+pQ IXYn(t)dt. (15) 

We can transform Eq. (15) into a differential equation 

y~(x) -pQyn(x) =F~(x), 

which has the solution 

Yn(X)=e+ PQx { e- PQ Yn(I-)+ IX e-PQIF~(t)dt}, 
(21) 

where we have made use of Y n (1 -) as the boundary condition 
so that Y n is continuous at x = 1. 

(f) Solution of Yn (x) for 2<x < 00. 

Yn(x) = Gn(x) + pQ f- tn(t) dt. (16) 

Equation (16) can be transformed into a first order retarded 
differential-difference equation 

y~ - pQyn(x) + pQyn(x - 1) = G ~(x) = a(x) (22) 

with the initial condition given by Eq. (21). 
SinceYn is continuous on [I, 2] and a is at least of class 

C I on (2, 00), by the continuation method we can obtain the 
following result: 

Theorem 3: There exists a unique continuous function 
Yn which satisfies Eq. (22) for x;;.2 and the initial condition 
given by Eq. (21) for 1 <x<2. Moreover,Yn is at least of class 
C I on (2, 00) and at least of class C 2 on (3, 00). 

Due to the fact that both Qn and v(x) vanish for X;;. I, by 
generalizing Theorem 3.5 of Bellman-Cookel6 we can ob­
tain an exponential bound for Yn(x), IYn (x)1 <KI ek,(x - 21, 

X;;. 2, K I , K2,: positive constants. We can now take the 
Laplace transform of Eq. (22). Let 

1720 J. Math. Phys., Vol. 23, No.9, September 1982 

Yn (t) = f"Yn (x)e - Ix dx, 

a(t) = 1'" a(x)e - Ix dx, 

{J(t) = a(t) + Yn(2) e- 2, - pQ e- I fYn(X) e- IX dx. 

Then 

Yn(t) =R -1(t)/3(t), 

where 

R (t ) = t - pQ + pQe - '. 

Similar to Lemma 1 we have: 

(23) 

(24) 

Lemma 2: All roots of R (t) are simple. Moreover, R (t) 
has a real root only at t = 0 if P < I, and has two real roots 
only, one at t = 0, the other on the positive real axis if p > 1. 

Since R (t) and I It) = etR (t) = tet - pQe' + pQ have 
the same roots, we now consider the distribution of zeros of 
I (t) = 0 instead. For large modulus of t we find 

I(t)-te' [1 +c(t)] +pQ, 

where lim l, I~'" c(t) = O. Let Ie(t) = te' + pQ. For large It I, 
the roots of I (t) = 0 are asymptotic to the roots of the com­
parison function Ie (t ) = O. The distribution diagram of the 
roots of Ie (t ) contains the points (0, 0) and (1,1), showing that 
there is a single chain of roots of retarded type. Hence for 
large modulus of t the roots of R (t ) have the asymptotic form 

x = In( IpQ i) - In(2k1T) + 0 (1), 

Y = 2krr + arg( - pQ ) + rr /2 + 0 ( 1), 

where K is any integer of large magnitude. The upper sign 
applies to roots for which Y--+ + 00, the lower sign to roots 
for which Y--+ - 00. 

We next prove that all roots of R (t) lie in the left half­
plane (lhp) except for the root at t = O. Let t = x + iy be a 
root of R (t). Then 

y2+ [x+p/(I-pW= [p/(l-pWe-· 2x 

and x<O if 0 <p < 1. Alternatively, we can consider the per­
turbation of roots of I (t ) by a small positive parameter c. Let 

12(t) = - (p + c)Q e' + pQ + te' 

= _ [ - p - c et + _P _ _ t e'] = O. 
I-p I-p 

By Hay's theorem 17 all roots of 12(t ) lie in the left half-plane if 
and only if p < 1. When It 1-< 1, 12(t) has a root at 
t = - eI(l - p) in the Ihp, which moves toward t = 0 as 
c--+O. Since both 12(t ) and I (t ) are entire functions, 
I (t) = lim€~I2(t), and therootsof/2(t ) depend continuously 
on c; the roots of I (t ) will coincide with the corresponding 
roots of 12(t) as c--+O. 

Lemma 3: Except for the root at t = 0, all roots of R (t) 
lie in the left half-plane if and only if p < 1. 

The inverse Laplace transform of Eq. (23) yields 

Yn(x) = _1_. (R-I(t){J(t)eIXdt 
2m J 

= I {J(tn) /"", x;;. 2, (25) 
n~ I R '(t n ) 
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where tn is a root of R (t) and the roots {tn J are arranged in 
decreasing order of real parts with complex conjugate roots 
arranged in any prescribed order. In principle the residue at 
t = 0 determines the asymptotic behavior of Y n (x) as x~ 00 • 

Since all roots of R (t ) are simple and have nonpositive real 
parts, it then follows that Yn (x) must be bounded as x~ 00 .18 

But limx_."" Gn(x) = O. By Eq. (16) we then have 
limx_ocYn(x) = 0, i.e., Yn is an asymptotically stable solu­
tion. Again, by Theorem (6.10) of Bellman-Cooke, the gen­
eralized Fourier series given by Eq. (25) can be shown to be 
convergent for x>2 and uniformly convergent over any fin­
ite interval for x>2. By virtue of Lemmas 2 and 3 we can 
summarize our result as follows: 

Theorem 4: Suppose 0 <p < 1. The solution of Eq. (22) 
can be expressed as a convergent generalized Fourier series 
expansion given by Eq. (25), which becomes uniformly con­
vergent over any finite interval for x>2. Moreover,Yn is as­
ymptotically stable, i.e., limx_.""Yn(x) = O. 

Thus we have completed our discussions of the pertur­
bation solutions. 

IV. THE PROBLEM OF PHASE TRANSITION 

According to Lemmas 2 and 3, the solution ofYn given 
by Eq. (25) is no longer asymptotically stable ifp > 1. Howev­
er, whenp = 1, the hard rods are in the closest contact and 
thus p = 1 is the maximum attainable density for the one­
dimensional system. 19 By Theorem 4 and the solutions of 
Eqs. (14)-(16), Yn is continuous and bounded on (0,00]. On 
the other hand, by the solutions of Eqs. (11 H 13), Qn is con­
tinuous on (0, 1 ), except possibly a finite discontinuity at 
x = 0 and x = 1. Qn is also bounded. But Qn and Y n depend 
implicitly on n throughAn' Bn, ... ,Gn in Eqs. (11)-(16) and 
may increase as n increases. Unfortunately, it is impossible 
to determine the n dependence. In case of the square-well 
potential, it is possible to obtain analytical solutions of Qn 
andYn' from which we can examine the convergence of the 
perturbation series for Q andy. In view of the fact that 

and 

I I 1/35r Yn(X)[';;; I 1/35/ suplYn I, 
n~O n. n~O n. 

we can at least obtain the upper bound of sup [Qn I and 
suplYn I for the absolute and uniform convergence of the per­
turbation series, that is, suplQn [.;;;n! and suplYn I .;;;n! forlarge 
n. 

In order to discuss the physical significance of our re­
sult, we next consider the compressibility equation 

/3 -1 (ap ) = 1 + p foc h (x) dx. 
ap T Jo 

It is well known that the critical point is characterized by the 
divergence of the isothermal compressibility 
K T = P - 1 (ap! ap h·. The divergence of the integral 
SO' h (x) dx thus implies the occurrence of a phase transition. 

Suppose the perturbation series for Y is absolutely and 
uniformly convergent. 20 Then Y is a continuous function of 
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/35' On the other hand, Y n depends continuously on the den­
sity p (through the expressionpQ) except for the singularity 
atp = 1.Asp~l,therootsofH(t)andR (t)movetowardthe 
imaginary axis given by et = 1. Since 

h (x) = y(x) - 1 = Yo(x) - 1 + i 1/35 t Yn (x), x>l, 
n~ 1 n! 

the convergence or divergence of the integral SO'h (x) dx is 
equivalent to the integral SO' [y(x) - 1] dx. By virtue of 
Lemma 3 and Theorem 4, the asymptotic behavior of Yn in 
Eq. (25) is determined by the term corresponding to the clo­
sest root t 1 to the origin in the lhp. Thus 

ly;,(x)I~1 :~;::) II et,xl, x>l. 

This shows thatYn~ exponentially. Hence 
SO' [y(x) - 1] dx is convergent and the isothermal compress­
ibility is a bounded continuous function of /35 and p for 
0</35 < 1 and 0 <p < 1. This in turn implies that there is no 
horizontal segment in the p-V diagram and consequently 
there is no phase transition. 

Theorem 5: Suppose 0 <p < 1 and 0 </35 < 1. Then the 
pair distribution function g(x) [or equivalently y(x)] obtained 
from the PY equation by the perturbation method is absolu­
tely and uniformly convergent if and only if suplYn I <:n! for 
large n. Furthermore,y(x) - 1~ exponentially so that the 
isothermal compressibility is finite, which implies that the 
PY equation cannot exhibit a phase transition. 

Before we conclude our discussions, we briefly com­
ment on the case as I~ 00 . It should be noted that Theorems 
1 and 2 are strictly valid only for finite I, because the solution 
of Qn in [1, 1 - 1] depends on the solution in [/- 1, l]. But 
Qn (l ) = O. Thus the solution of Qn (x) on [l - 1, I] becomes 
the asymptotic condition Qn (x)---..O as I~ 00. The continu­
ation method therefore cannot be applied. Also, the Laplace 
transform for the differential-difference equation of the ad­
vanced type diverges. This is essentially due to the fact that 
not all zeros of H (t ) lie in the Ihp. Consequently, the result for 
1---+ 00 cannot emerge from our solutions. 
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Shallow water waves are governed by a pair of nonlinear partial differential equations. We 
transfer the associated homogeneous and nonhomogeneous systems (corresponding to constant 
and sloping depth, respectively) to the hodograph plane, where we find all the nonsimple wave 
solutions and construct infinitely many polynomial conversation laws. We also establish 
correspondence between conservation laws and hodograph solutions as well as Backlund 
transformations by using the linear nature of the problems on the hodograph plane. 

PACS numbers: 92.lO.Hm, 92.1O.Sx, 02.30.Jr 

I. INTRODUCTION 

The linearity of a partial differential equation implies 
that any linear combination of solutions of the equation will 
also be a solution. This fundamental fact is also the main 
reason behind the method of separation of variables. In the 
event that a partial differential equation is nonlinear, this 
property is lost, and it becomes impossible to employ separa­
tion of variable techniques, or any other argument that de­
pends on superpossibility. Another striking difference 
between linear and nonlinear partial differential equations is 
that, unlike linear p.d.e.'s, nonlinear equations often do not 
admit solutions which can be continuously extended wher­
ever the differential equations themselves remain regular. 

During the last decade, finding exact solutions to non­
linear differential equations has once more become impor­
tant for both theoretical and practical purposes (soliton the­
ory). It has been observed on some occasions (Korteweg-de 
Vries, sine-Gordon) that there are close connections 
between exact solutions, the existence of conservation laws, 
the inverse scattering method, and Backlund transforma­
tions. Such cases are called completely integrable systems. 
They come in association with some linear differential equa­
tions. In this article we shall obtain similar relations and 
properties in the case of the shallow water wave theory. 

We were introduced to the area of water waves by 
Nutku's recent paper. I Shallow water waves are governed by 
a system of two nonlinear partial differential equations, 
which can also be written in the form of two conservation 
laws. First, we try to find further conservation laws by using 
the method of Wahlquist and Estabrook.2 For the homogen­
eous case (corresponding to constant depth) we are able to 
construct an infinite family of conservation equations. This 
leads us to search for the exact solutions. It was at this point 
that we learned that these results were already known to 
Whitham. 3 We pass to the hodograph plane where we catch 
the linear system of equations associated with our nonlinear 
problem. On this plane we show that conservation laws are 
easily derivable. On the hodograph plane we obtain all the 
solutions, except simple waves, by potentials which also sa­
tisfy linear equations. These potentials are, in fact, the Le­
gendre transforms of the ones introduced by Nutku. Via 
these potentials we are also able to construct a correspon­
dence between conservation laws and nonsimple wave solu-

alOn leave from the Middle East Technical University, Ankara. Turkey. 

tions of the homogeneous problem. 
Finally, we take up the nonhomogenous case corre­

sponding to a sloping beach. By using the polynomial con­
servation laws of the related homogeneous problem, we con­
struct an infinite family of polynomial conservation laws for 
the nonhomogeneous case. By using the solutions of the cy­
lindrical wave equation, we also indicate how one can con­
struct auto-Backlund and Backlund transformations for 
these homogeneous and nonhomogeneous problems. 

II. METHOD OF ESTABROOK AND WAHLQUIST 

We consider the following system of two homogeneous 
first-order quasilinear equations: 

u, + uux + 2ccx = 0, 

c, + ucx + !cuxO, 

(Ia) 

(lb) 

representing shallow water waves, the bottom of the ocean 
being horizontal.4 u(x, t) and c(x, t) are the velocities of the 
fluid and of the disturbance with respect to the fluid, respec­
tively. Subscripts denote partial derivatives. 

First we shall apply the techniques of Wahlquist and 
Estabrook2 (Sec. III) to the system (I) above to find all the 
conservation laws, which are used to obtain potentials in 
their paper. 

In the four-dimensional space of all the independent 
and dependent variables, {x, t, u, c 1, the set of first-order 
differential equations (1) above can be expressed by the fol­
lowing pair of differential 2-forms I: 

a I = du A dx - udu A dt - 2cdc A dt, (2a) 

a 2 = 2cdc A dx - 2cudc A dt - c2du A dt. (2b) 

Any regular (differentiable) solution (u, c) of (1) will annul 
this set of forms. Since da; = 0, i = 1, 2, the ideal generated 
by a I and a 2 is closed, and one can, therefore, apply Cartan's 
theory. 

Conservation laws correspond to the existence of exact 
2-forms contained in the ring of a;. Let us try to find all the 2-
forms 

/3=/a l +ga2, (3) 

satisfying d/3 = 0, the condition for exactness. This is the 
(local) integrability condition for the existence of a I-form, 
say w, such that 

/3 = dw. (4) 

The following treatment is restricted in that we do not allow 
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fandg to be explicit functions of the independent variables x 
and t. This seems plausible since the system (I) itself has no 
explicit (x, t ) dependence: 

d/3 = (fudu + fcdc)Aa 1 + (gudu +gcdc )Aa2 
= (2cgu -fc)duAdcAdx 

+ (c2gc - 2cugu + ufc - 2cfu )du A dc A dt. 

Hence, d/3 = 0 implies 

fc = 2cgu, 

2fu = cgc' 

/3 = dUJ =fa 1 + ga2 

= fdu A dx + 2cgdc A dx - (uf + c2g) 

X du A dt - 2c(f + ug)dc A dt, 

which, with the help of (5), integrates to 

UJ = dX·ff au - dt·f(uf + c2g) au. 

(Sa) 

(5b) 

(6) 

Since dUJ lies in a closed ideal of differential forms, the "Fro­
benius theorem" applies: Any local solution which annuls 
the ideal must also annul UJ. This, in turn, gives us the follow­
ing conservation equation: 

[ 
1 
o 
c2 

uc2 

U
2
C

2 + c4 

~U3C2 + 2uc4 

s. 
o 

U 

1u2 + c2 

ju3 + 2uc2 

Au4 + 2U 2
C

2 + c4 

(7) 

It is interesting to note that F and G are homogeneous in u 
and c. This observation immediately makes us think of our 
Russian colleagues who have extracted the algebro-geomet­
ric structures of some of the "completely integrable" evolu­
tion equations.5

•
6 For the boundary conditions u = 0 and 

c = 0 at x = 0 and 00, we obtain infinitely many conserved 
quantities by integrating F's with respect to x from 0 to 00. 

Differentiating (Sa) partially with respect to u and (5b) 
with respect to c and subtracting, we find 

(9) 

or 

(10) 

Thus, we have the cylindrical wave equation for g(u,c). This 
is a linear equation for g which can be solved by standard 
methods. Similarly, for flu, c) we have 

4fuu = fcc - fclc, (11 ) 

or 

4fuu = c(fc/c)c· 

On the other hand, upon eliminatingf andg from the set 
of equations (8), we arrive at the following relations: 
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where 

F = ff au with Fe = 2cg, (8a) 

and 

G = f(uf + c2g) au with Gc = 2c(f + ug). (8b) 

When the condition (7) is satisfied, we shall say that the pair 
(F, G) forms a conservation law. If G = 0 at x = 0 and 00, we 
obtain the corresponding conserved quantity ft' F dx. 

Since the system of equations (1) is quasi linear (i.e., lin­
ear in the derivatives) with polynomial coefficients in u and c, 
the most interesting conservation equations are polynomial 
in u andc. They may be obtained consistently from (5) and (8) 
by taking 

n n 

f = LPi(U)C2i, g = L qj(u)c
2j

, 
i=O )=0 

from which it follows that 

pb = 0, q~ = 0, 

mpm=q;"_l' p;"=mqm, m=I,2, ... ,n. 

(It can easily be checked that the odd powers of c do not 
survive.) We list the first few of these polynomials: 

F 
u 
c2 

uc2 

iU2C2 + ic4 

ju3c2 + uc4 

iU4C2 + U2C4 + jc6 

G 
l-u 2 + c2 
2 

uc2 

U2C2 + ~C4 
iU3c2 + uc4 

ju4c2 + PU 2
C

4 + !c6 

tU5C2 + ju 3c4 + uc6 

Gu = uFu + ~cFc> (12a) 

Gc = 2cFu + uFc • (12b) 

As before, differentiating the first equation in (12) partially 
with respect to c, the second equation with respect to u, and 
subtracting, we obtain 

(13) 

Unfortunately (maybe fortunately), we don't have a nice 
equation for G. 

We make the following observation: Even though x and 
t are the independent variables, all our expressions are (lin­
ear) partial differential equations in the variables u and c. 
This is because we have no (x, t) dependence in the system of 
equations (I) with which we started. This suggests that we 
should interchange the roles of the dependent and indepen­
dent variables. This is called the "hodograph " method, 
which we will take up in the following section. 

III. METHOD OF HODOGRAPH TRANSFORMATION 

We consider the system (1) which has no explicit (x, t) 
dependence. For any region where the Jacobian 
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is nonzero, the system (1) can be transformed into an equiva­
lent linear system by interchanging the roles of dependent 
and independent variables. IfJ =1= Of or a solution u(x, t ), c(x, t ) 
of (1), we may consider x and t as functions of u and c. From 

Ux = Jte, Ut = - Jxe, 

Cx = -Jtu, Ct =Jxu' 

(14a) 

(14b) 

we see that the highly nonlinear factor J cancels out in (1) and 
that x(u, c) and t (u, c) satisfy the linear differential equations 

Xu = utu - !cte, (15a) 

xe = - 2ctu + ute' (15b) 

By eliminating x we obtain the linear equation 

4tuu = tee + (3/c)te' (16) 

which can be solved by standard methods. This can be 
further simplified by introducing the transformation 

t = se/c, (17) 

We obtain the cylindrical wave equation 

4suu = see + sJc, (18) 

whose solutions involve Bessel functions. We remark thatg 
and s satisfy the same equation. 

The described transformation of the (x, t ) plane into the 
(u, c) plane is called a hodograph transformation. Since the 
possibility of this reduction depends essentially on the as­
sumptionJ =1=0, solutionsforwhichJ = o cannot be obtained 
by the hodograph method. These solutions are called simple 
waves and they are important tools for the solutions of flow 
problems (Courant and Friedrichs,? Sec. 29). Wave breaking 
occurs when J = 0 corresponding to the multivaluedness, 
i.e., shock waves. We notice that the solution 

u = }x/t, c = !x/t, 

given by Nutku l represents a simple wave. So, we could not 
possibly obtain this solution by the hodograph method. 

We would like to mention that in the set of all solutions 
the simple waves form a set of measure zero. But this is not to 
say simple waves are unimportant. 

Just to show how natural it is to work in the hodograph 
plane, we shall rederive the conservation equation (12). In 
the (u,c) plane Eq. (7) becomes 

Ft + Gx = Fuu t + Fect + Guux + Ge(" 
= -JxeFu + JXuFe + JteGu -JtuGe =0. 

Above, we have employed Eq. (14). Again, thenonlinearfac­
tor J cancels out, and we arrive at 

(19) 

or 

dx /\dF= dt/\dG. (20) 

Upon using (IS), (19) becomes 

te(Gu - uFu - !cFe) = tu(Ge - 2cFu - uFe)· (21) 
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Since this is to be an identity, the coefficients of the deriva­
tives must vanish separately: 

These are the same as (12). We note that the computation 
above is somewhat shorter than the Wahlquist-Estabrook 
method used in the previous section to establish these equa­
tions. Whitham3 has an even simpler way of deriving them. 
Even so, we have included the method of Wahlquist and 
Estabrook because it has provided us with two nice func­
tions-f and g-which we make use of in this paper. 

IV. POTENTIALS 

We look for potentials in the hodograph plane. The sys­
tem of equations (15) can be rewritten in the following equi­
valent form: 

(2cx - 2cut)u = - (c2t )e, 

(x - ut)e = - (2ct )u . 

(22a) 

(22b) 

These, in return, suggest the existence of potentials '/I (u, c) 
and <P (u, c), satisfying 

(2la) 

and 

<Pu =X - ut, <Pe = - 2ct. (23b) 

'/I, <P are, in fact, the Legendre transforms of the potentials 
introduced by Nutku. 1 Solving them for x and t, we obtain 

x = '/Ie/2c - (u/c2 )'/Iu' t = - '/Iu/c2 (24a) 

and 

(24b) 

Hence, if we know '/I (u,c) or <P (u,c), by using these formulas 
we can compute x and t. Combining (24a) with (22b), we 
obtain 

4'/1uu = '/lee - '/Ie/c. (25) 

Equation (24b) together with (22a) gives 

4<Puu = <Pee + <Pe/c. (26) 

Unlike their Legendre transforms, '/I and <P satisfy linear 
equations. 

Comparing (9), (11), (13), (18), (25), and (26), our readers 
realize that we keep encountering the following set of 
equations: 

4Xuu = Xee ±Xe/c. (27) 

In the next section too we shall encounter these equations 
when we are dealing with a related nonhomogeneous prob­
lem. Not only can we derive the conservation laws from the 
solutions of (27), but we can also construct all the hodograph 
solutions of the original system of equations with which we 
started. In this way, we are able to construct a solution of the 
system of equations (1) from a given conservation law by 
letting '/I = F and by using (24a). We can reverse this process 
for non-simple wave solutions. Now we have an infinite fam­
ily of solutions associated with the list of polynomial conser­
vation laws listed in Sec. II. Here we list the first few of these 
special solutions: 
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f x t 
U U/C2 tle2 

c2 1 0 
uc2 0 1 
!U2C2 + !c4 _ !u2 +c2 -u 
ju3c2 + uc4 j2u3 _ uc2 u2 + c2 

!U4C2 + U2C4 + jc6 !u4 _ c4 ~U3 + 2uc2 

V. CASE OF SLOPING BEACH 

We consider the following nonhomogeneous system of 
equations: 

u, + uu" + 2cc" =gf3, 

c, + uc" + ~cu" = 0, 

(28a) 

(28b) 

representing shallow water waves on a sloping beach. The 
constant term g{J involves the gravitational constant g and 
the slope of the bottom {J. 

In his Tata Institute Notes,8 Whitham absorbs the non­
homogeneous term gf3 in a conservation form as 

(29) 

and adds the following statement: "But this comment does 
not appear to lead any further." However, by the means of 
(29) we were fortunate in finding ourselves able to construct 
conservation laws in the form 

[F(U,C) - itl ~ (g{Jt)iPi(U,C)L 

+ [ G (u,c) - itl ~ (g{Jt )iQi (U,C)] x = 0, (30) 

for the nonhomogeneous system (28) above. We will denote 
the contents of the two square brackets in (30) as F and G, 
respectively. As one can guess, we shall require (F, G) to form 
a conservation law for the related homogeneous system (I). 
Hence, as in (12) of Sec. II, they satisfy the following linear 
system of equations: 

Gu = uFu + !cFc ' 

Gc = 2cFu + uFo 

whose integrability condition is (13): 

With the help of(31}, (30) simplifies to 
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(3Ia) 

(3Ib) 

(32) 

U C2 

X/t 1/t 

-t x + ~t2 
implicit solution 
implicit solution 

.R ~ 1 ' I - gp' ~ --(g{Jt )' - Pi = O. 
i=di-I)! 

Imposing the following further conditions, 

forces us to take 

and 

For convenience, we shall use the notation 

F~ml = F uu",u . 

(33a) 

(33b) 

The last condition requires us to takeF~m + II = 0, which can 
automatically be satisfied for a suitable F, if we start with 
polynomial conservation laws for the related homogeneous 
problem. What really makes this construction work is the 
fact that all the Pi turn out to be ± F~I and the pairs (Pi ,Qi) 
and (F,G ) satisfy the same system of equations. Since the 
compatibility equation (32) is also satisfied by the u deriva­
tives F~l, the integrability condition of the system (33) is au­
tomatically guaranteed. We have, therefore, a consistent 
method, and by using the list in Sec. II, we can construct an 
infinite family of conservation laws for the nonhomogeneous 
system (28). 

The computations for Qi become easier once one real­
izes that the ith u derivative of F on the jth line in the list is 
proportional to F on the (j - i}th line in the same list in Sec. 
n (excluding the first line). 

Here we list the first few of these conservation laws 
(F,G): 
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F G 
u - g{3t 
C

2 
fu 2 + c2 

uc2 

UC2 - g{3tc2 U2C2 + ~C4 - g{3tuc2 

!U2C2 + !C4 - g{3tuc2 + !(g{3t fc2 

jU 3C2 + UC4 _ 2g{3t (!U 2C2 + ~C4) 
!U 3C2 + uc4 - g{3t (U 2C2 + !c4) + !(g{3t )2UC2 

ju4c2 + PU2C4 + !c6 
_ 2g{3t (!U 3C2 + uc4) 

+ (g{3t )2UC2 - !/g/3t )3 C2 + (g{3t )2(U2C2 + !c4) - j(g{3t fuc2 

f,U4C2 + U2C4 + jc6 
- 2g{3t (jU 3C2 + UC4) t,U5C2 + j4u3c4 + uc6 

- 2g{3t (ju4c2 + PU2C4 + jc6
) 

+ 2(g{3t f(~u2c2 + !C4) - ~(g{3t )3UC2 + f,(g{3t )V 

We note that F and G are homogeneous in u, c, and t. 
We would like to thank Dr. Mirie for drawing our attention 
to the fact that the terms containing t can be put into the 
form (u - g{3t)". But, as is clear even from the first line of the 
above list, we cannot completely eliminate all the u's in G's, 
although we can write F 's in terms of v = u - g{3t and conly. 
Nevertheless, v's do not show up separately in G 's; they all 
come multiplied with u's or c's. Hence, for the boundary 
conditionsu = O,c = Oatx = o and 00, we still obtain infini­
tely many conserved quantities by integrating F's with re­
spect to x from 0 to 00 (cf. the homogeneous case). 

Having constructed an infinite number of conservation 
laws, one might, therefore, expect to be able to find the solu­
tion of the nonhomogeneous system (28) analytically. In­
deed, as we have learned from Whitham, 8 Carrier and 
Greenspan introduced new variables suggested by the char­
acteristic forms of these equations and applied a hodograph 
transformation to them and obtained 

g{3x= -~+ ¢! +~ 
2 2a2 16' 

(34a) 

g{3t=i.-~ 4 (7' 
(34b) 

where (7 = 4c,A. = - 4(u - g{3t), and ¢ satisfies thecylindri­
cal wave equation 

(35) 

We observe that ¢ in (35) and qJ in (26) satisfy the same 
kind of equation. Hence, after the necessary relabelling of 
the variables, a solution of (35) can be used to generate a 
solution of either of the problems: homogeneous [via (24b) 
and nonhomogeneous [via (34)]. In this way, we find a corre­
spondence between the nonsimple wave solutions of the two 
systems which we have considered in this paper. In a way, 
this corespondence can be thought of as a Backlund transfor­
mation between the homogeneous and nonhomogeneous 
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+ 2(g{3t )2(!U3C2 + Uc4) - j(g{3t )3(U2C2 + !c4) + f,(g{3t )4UC2 

problems (1) and (28). By using the linearity of the space of 
solutions of (35) we can also construct auto-Biicklund trans­
formations for each of these problems. 

We leave it to our interested readers to construct the 
solutions of the nonhomogeneous problem which corre­
sponds to the solutions listed in Sec. IV of the homogeneous 
system. 

To us, the story of this paper looks similar to the hydro­
gen atom problem, (the invariance group being the space of 
solutions of the cylindrical wave equation). We expect to 
shed more light on this subject by using the orbit theory 
picture of Krillov, Kostant, and Souriau. This is our forth­
coming project. 
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1. INTRODUCTION 

Convergence properties of various methods to approxi­
mate the "physical" solution of the nonlinear integral, 
Chandrasekhar H-equation 

H(z) = 1 +zH(z) t du(x) H(x). (1) 
Jo z+x 

have been studied recently by several authors. 1-4 The ap­
proximations H n, Kn obtained by solving 

il du(x) 
Hn+ I(Z) = I +zHn(z) --Hn(x) 

o z+x 
and 

il du(x) 
Kn+ I(Z) = 1 +zKn+ I(Z) --Kn(x), 

o z+x 

n>O, Ho =Ko = 0, 

(2) 

(3) 

have been shown to converge uniformly with respect to z, 
and monotonically from below to the physical solution H. 1-3 

Also I Kn J converges faster than does I Hn J. 3 These results 
were proved assuming that du(x)/dx>O and that 

11 1 
Co(u) = du(x) < - . 

o 2 
However the assumption of differentiability is unnecessary 
and it is sufficient to assume that u(x) is nondecreasing. In 
Ref. (4) the method of moment approximants, denoted here 
by Hn , were introduced as the solutions of 

A A 11 du (x) A 

Hn(z) = 1 +zHn(z) -n-Hn(x), 
o z+x 

(4) 

where Un (x) is the approximation to u(x) obtained by solving 
the truncated moment problem of order (2n - 1). Assuming 
further that u(x) is continuous at a dense set of points in [0,1] 

including the end points, it was shown that Hn (z) - H (z) 
n~oo 

uniformly for z in [0,00 ), provided that Co(u) <~. 
In the present note we improve the result of Ref. (4) to 

include each Co(u) < !. Also, we show that the sequence ob­
tained by the Newton method converges to H monotonically 
and uniformly with respect to z, faster than does I Kn J and 
hence I Hn J, under the same assumptions. Since the cases 
Co(u»! are reducible to the case Co(u) < ~ by some simple 
transformations, I these results are quite satisfactory from 
the physical view point. 

2. PRELIMINARIES 

Let L l(p) be the real Banach space of absolutely Il-inte­
grable functions on [0,1] where Il is a nonnegative measure 

with III 0 J = O. In the sequelll will be induced by some non­
decreasing functionll(x) and the integration will be assumed 
to be in the Lebesgue-Stieltjes sense. The norm of the vectors 
inL ltu)andtheoperatorsfromL Itu)toL ltu)willbedenoted 
by II ·IIP. Consider the nonlinear operator Ap defined by 

Apu = 1 + uBpu, 

where u is the operation of mUltiplication by u(x) and 

(Bpu)(z) = tdll(x) _z_ u(x). 
Jo z+x 

It is clear that (B Jl u )(z) is well defined for z in [0,(0). We have 
Lemma 1: The Frechet differential A ~ (u) of Ap at 

uEL ltu) exists with IIA ~(u)IIJl.;;:lluIlJl. 
Proof It is straightforward to check that 

(A ~ (u)h)(z) = tdll(x) ~(z,x), hEL ltu), Jo z+x 

where a(z,x) = [h (z)u(x) + h (x)u(z)] = a(x,z). It follows that 

IIA ~ (u)h IIJl 

.;;: tdfl(z) (dfl(X) -z-la(z,x)1 
Jo Jo z +x 

= ~ [fdfl(z)fdfl(X) la(z,x) I 

_ tdfl(z) (dfl(X) x -z la(z,x)I] 
Jo Jo x+z 

IiI i l 

= - dfl(Z) dfl(x) la(z,x) I 
2 0 0 

.;;:llullJlllh liP, 
implying the result. The interchange of the order of integra­
tion is justified by Fubini's theorem. 

The results of Lemma 2 follow by straightforward sub-
stitutions. Therefore we state them without proofs. 

Lemma 2: Let u, h E L ltu). 
(i) For u >0, BJl u>O, Ap u> 1 for each z>O; 
(ii) for u, h >0, A ~(u)h = hBJlu + uBJlh>O; 

(iii) IIAJl uIIJl';;:Cotu) + !!IIu IIP)2; 

(iv) I (B" u)(z)1 <; IlullJl for z E [0,(0). 
It may be remarked that some of the conditions in 

Lemma 2 may be weakened to be valid a.e. 
It is clear from Lemma I that if Co(P) < ! and 

IlulIP<; [I - VI - 2Co(P)] = d {Jt), then IIA ~(Plll<;d (P) < 1. 
Also, from Lemma 2(iii) it follows that if IlullJl<;d (P) then 
IIApuIIP<;d (P). This means that Ap is a contraction of the 
closed ball of radius d (P) in L I {Jt) implying the existence of a 
unique solution HI-' of Hp = ApHp in the ball i.e., 
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IIHp W'<d (Jl). This implies that l<Hp(z)«l - 2Co{Jl))-1/2 
for all z>O. Furthermore {H; } defined by H; + I = ApH;, 
n>O, with H~ being an arbitrary vector in the ball, con­
verges to Hp. Monotonicity and the bound property of the 
sequence result from a more careful choice of H~. These 
results have been obtained previously by a slightly different 
but equivalent approach. I Also the fact that 

IIH" II" = IIH" II < 1 was found to be sufficient to establish 
that Hq = H, i.e., the physical solution. I The continuity of 
H is obvious. We state these results for later reference. p 

Corollary 1: Let Hp be as above and Co{Jl) <!. Then Hi< 
is continuous with IIHi< 11i«d (Jl) and 
1 <Hi< (z)«l - 2Co{Jl))-1/2 for Z E [0,(0). 

I t is obvious that H (z) is positive for z>O. In Proposition 
1 we characterize H (z) to be the minimal positive fixed point 
of A" = A for z>O. 

Proposition 1: _ 
(i) Let z E [0,1] and H (z) be as above; then H (z)<H (z) 

where H (z»O is a fixed point of A. 
(ii) The statement of (i) is valid with z E [0,(0). 
Proof 
(i) LetHo = OandHn+ I =AHn· Then O<Hn tH.' 

Since H (z»O, Ho<H. Assume that Hn <iI. It follows that 

iI -Hn+ I =AH -AHn 

= i'dtA'[Hn +t(H-Hn)](H-Hn), 

where the integration is understood in the Riemann sense.5 

By assumption, (H - Hn »0, implying that for O<t< 1, 
[Hn + t (H - Hn)] >0. Hence, from Lemma 2 (iit 
(H - Hn + I »0. It follows that H = limn~oo Hn <H. 

(ii) It is clear that 

H - H = (H - H )BH + HB (H - H) 

= [I-BH]-'HB(H -H). 
Since, from (i), H - H>O on [0,1], B (iI - H »0 on 

[0,(0) (Lemma2(i)). Also, O<BH<IIH II < 1 on [0,(0). Thus if 
H>O on [0,00 ), H - H>O there. 

3. CONVERGENCE OF THE MOMENT METHOD 
APPROXIMANTS 

Let u(x) be nondecreasing and continuous at a dense set 
of points in [0,1] including zero and one; and let Un (X) be the 
moment approximation of order (2n - 1) to u(x). The nonde­
creasing, discontinuous function Un (X) is determined within 
a constant by 

I>m(du(X) - dUn (X)) = 0, m = 0,1,00', 2n - 1. 

Continuity of u(x) at zero implies that {O} is of measure zero 
with respect to u, Un' In addition to the abbreviations 

A" =A,B" =B, 11·11"= 11·11 we shall useAa =An, 
n 

Ba = Bn, II . rn = II . lin for the sake of convenience of n 

writing. The approximant in question here is the minimal 
positive fixed point Hn of An. It will be assumed that 
Co(u) = Co < !. Since Co(u n) = Co, it follows from Corollary 
I by setting,u = u, an' that IIH 1I,IIHn Iln< [1 - vI - 2Co], 
I<Hn' H«I - 2CO)-1/2 for each n and that H, Hn are con­
tinuous. 
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Lemma 3: Let Iwl<M,z>O; then 

lim(Bw)(z) = lim(Bnw)(z) = o. 
z~ z~ 

Proof We consider the case of B; the case of B n follows 
by the same argument. By definition 

(Bw)(z) = L'du(X) _z_ w(x). 
o z+x 

Since the integrand is bounded by a u-integrable function M 
and converges to zero for x > 0, i.e., for a.e. x, the result 
follows by the Lebesgue dominated convergence theorem. 

Lemma 4: Let I u I, I un! <M, u be continuous on [0,1] 
and Ilu - un Iln~;, o. 
Then 

uniformly with respect to z in any compact subset of [0, 00 ). 
Proof From Lemma 3, vIOl = v n (0) = O. Let z > O. We 

have that 

Iv(z) - vn(z)l< IL'(du(X) - dun(x))_z- u(X) I 
o z+X 

+ IL'dUn(X)_z_(U - Un)(X)I· 
o z+x 

Since z > 0 and u(x) is continuous, u(x)/(z + x) is continuous 
on [0,1]. Consequently the first term converges to zero with 
increasing n (see e.g., Theorems 64.1, 64.2, and Sec. 67 of 
Ref. 6). The second term is majorized by Ilu - Un IIn __ n~oo O. 
Thus Vn(Z)--HOO vIz) pointwise. Now 

Tn(z) = Iv(z) - Vn (z)1 <MLI(du(X) + dUn (X)) _z_ 
o z+X 

and 

L
'dUn (x) _z_ <L'du(X) _z_ for z E (0,00).7 

o Z+X 0 z+x 
Hence 

Tn (z) <2M L'du(X) _z_ --0. (Lemma 3). 
o z+X z~ 

Thus for any E > 0 there is a t> (E) independent of n such that 
z < t>(E) implies that Tn (z) < E. Now, let z, z' be in a compact 
subset SE of[t> (E), (0). We have that 

I Tn(z) - Tn (z') I = Ilv(z) - vn(z)1 - Iv(z') - vn(z')11 

< I (v(z) - vIz')) - (vn(z) - vn(z'))! 

< ILldU(X) (z - z')xu(x) I 
o (z + x)(z' + x) 

+ IL'dUn(X) (z - z')xun(x) 
o (z + x)(z' + x) 

<lz_z,! 2CoM __ 0. 
t>(E) HZ' 

Therefore Tn (z) is a sequence of uniformly continuous func­
tions converging to zero for each z = S€. This implies that 
the convergence is uniform for z in SE' 8 Thus given E> 0 one 
can pick a t> (E) such that Tn (z) < E for z < t>(E) and then in­
crease n to ensure that Tn (z) < E on the complement of 
[0,15 (E)). 

Theorem 1: Let Co < ! and H, Hn be as above. Then 
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it (Z)n~oo H (z) uniformly for z in any compact subset of 
[0,00). 

Proof We have that 

H(z) -it(z) = T!(z) + T~(z), 
where 

T!(z) = (AH)(z) - (AnH)(z), 

and 

T~(z) = (AnH)(z) - (AnHn)(z) 

= fdt {A ~ [Hn + t(H -Hn)](H - Hn)J(z), 

Now, 

IT!(z)1 = IH(z)[(B-Bn)H](z)1 
«1 - 2CO)-

1I2 1(B - Bn)H(z)l. 
-0, 

uniformly for z E [0, 00 ) from Lemma 4 by setting 
U=Un =H. 

Hence, 

IIT!lln = fdan(X)IT!(X)ln~oo O. 

Further, 

IIT~ Iln< Sup IIA ~ [Hn + t(H - Hn)] lin IIH - Hn lin 
/E[O,IJ 

and for each t E [0,1], 

IIA ~ [Hn + t (H - Hn] lin, 

<litH + (1 - t)ifn lin (Lemma 1) 

<t IIHlIn + (1- t)IIHnlin 

<tIlHII+(I-t)IIHnlln+tlIIHlIn-IiHIlI. 

Also [t IIH II + (1 - t )IIHn lin] «1 - vI - 2Co) from Cor­
ollary 1, and t IIiH lin -IIH III <lSb(da(x) - dan (x))H (x)1 
~oo 0 because of the continuity of H (X).6 Consequently, if 
Co < ~, one can ensure by increasing n that 

IIT~ II n«1 - VI - 2CoI2)IIH - Hn lin. 

Therefore 

IIH - Hn IIn<IIT! lin + (1 - VI - 2CoI2)IIH - Hn lin 

<2(1- 2Co)-1/2I1T!lIn _ O. 

It follows now from Lemma 4 and Corollary 1 that 

uniformly with respect to z. The proof is completed by ob­
serving that 

H(z) = [1-(BH)(z)]-I, Hn(z) = [l-(BHn)(z)]-1 

and I(BH)(z)l, I(BnHn)(z)1 < IIH II, IIHnlln< 1 [Lemma 2 (iv), 
Corollary 1]. 

4. NEWTON'S APPROXIMATIONS TO H 

In this section we use the techniques of Ref. 9 to deduce 
the convergence properties of the Newton method to ap­
proximate H. Therefore, we establish some parallel results. 
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Since no reference to any measure other than a will be made, 
the results are stated for A rather than AIL' From Lemma 2 
we have that A is positive and increasing. In Lemma 5 we 
establish the convexity of A and the analog of the weak posi­
tivity lemma. 

Lemma 5: (i) Let A ' (u), h be as in Lemma 2 (ii) and let 
v;>u, then (A '(v) - A '(u))h;>O(ii) Let u,h;>Oand lIuli < 1; then 
[1-A '(u)]-lh;>O 

Proof (i) The result follows by observing that 
[A '(v) - A '(u)]h = (v - u)Bh + hB (v - u) = A '(v - u)h and 
Lemma 2(ii). 

(ii) Since IIA '(u)1I < lIuli < 1 (Lemma 1), the series expan­
sion of[1 - A '(u)]-t converges inL \u). If h EL 1 (.u) is non­
negative, then each term in the series for [1 - A '( u)] - I h is 
easily seen to be so, from Lemma 2(ii). 

As a consequence of the convexity of A, we have 
Corollary 2: LetA '(u) be as in Lemma 5 (i) and v;>u;>O; 

then 

o (u,v) = Av - Au - A '(u)(v - u);>O. 
Proof Since 

O(u,v) = fdt {A '[u + t(v - u)] -A '(u)l(v - u) 

and [u + t (v - u)];>u for Oq< 1, the result follows from 
Lemma 5 (i). 

Let X (v) = [1 - A '(v)] -I [A (v) - A '(1.1)1.1]. Newton's ap­
proximation (j) to a fixed point of A is given by (j) = X (v), with 
v being an initial guess. 

Lemma 6: Let O<v<H on [0,1]. Then 
(i) IIA '(1.1)11 < I, 
(ii) (j) = X (v) <H on [0,1]. 
Proof (i) Since O<v<H,lIvll < IIH 11«1 - VI - 2Co) < 1 

(Corollary 1). The result now follows from IIA '(1.1)11<111.111 
(Lemma 1). 

(ii) We have that 

[1 - A '(v)](H - (j)) = [AH - Av - A '(v)(H - v)] 

= o (v,H) 
;>0 

for H;>v>O (Corollary 2). Since IIA '(1.1)11 < 1, from (i), the re­
sult follows from Lemma 5(ii). 

Let Uo be arbitrary with lIuolI<[1 - vr=- 2Co] and 
Un + 1 = X(u n), n>O;{ Un I will be called Newton's sequence 
generated by Uo. 

Lemma 7: Let I Un I be Newton's sequence generated by 
Uo = O. Then Un <Un + 1 <H for each non [0,1]. 

Proof It is clear that uo<u 1 = 1 <H. Now assume that 
H;>un ;>un _ I . We have that 

Un + I - Un = [Aun + A '(Un )(un + I - un)] 

from Corollary 2. 

- [Aun _ I + A '(Un _ I )(un - Un _ I)] 

= 0 (Un _ 1 ,un) + A '(Un )(un + I - un) 
;>A '(un)(u n+ I - Un) 

Since O<un <H,IIA '(un)1I < 1 [Lemma 6(i)]. Therefore, 
from Lemma 5(ii), and Lemma 6 (ii) H;>un + I >un. Using the 
induction principle we have that O<un <un + I <H on [0,1] 
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for all n. 
The results obtained so far are sufficient to conclude 

convergence on [0,1]. However, as such it is not even clear if 
the domain of definition of ! Un (z)] extends beyond [0,1]. In 
the following we define! Un (z)] on [0,00) and establish the 
result of Lemma 7 there. 

The equation Un + 1 = X(u n) reduces to 

Un + 1 (z) = 1 + Un + 1 (z)(Bun )(z) 

+ un(z)[B(un+ 1 - un)](z). (5) 

Since I(Bun )(z)1 <; IIUn II <; IIH II < 1 from Lemma 2(iv) and 
Lemma 7, (5) defines a continuous Un + 1 (z) on [0, 00) ifun(z) is 
defined and continuous there. Since Uo = 0 for z>O, ! Un (z)] 
is defined by (5) on [0,00). Furthermore, we have 

Lemma 8: Let! Un (z)) be defined by (5) on [0,00) with 
Uo = O. Then O<;u n <;un + 1 <;H for each z>O, and all n. 

Proof First we show that O<;u n <;un + 1 for all non 
[0,00). Since 0 = uo<;u 1 = 1, the result is true for n = O. As­
sume that O<;un ~ 1 <;un. It follows from (5) that 

Un+ 1 -Un ={Un+ 1 -un)Bun +(Un -un~d 

XB(u n - Un~ I) + unB(un+ 1 - Un) 
= [1 - Bu n ] ~ 1 [ (u n - U n ~ '1 )B (u n 

-Un~I)+unB(un+1 -Un)]' 

Now, for z E [0,1], Un + 1 >un >0 from Lemma 7, therefore, 
from Lemma 2(i), B (un + 1 - Un »0 for z E [0,00). Also, 
O<;un <;H on [0,1]; hence O<;Bun <;llun II < 1 from Lemma 
2(iv) and Lemma 7. These results and the assumption 
O<;u n ~ 1 <;un on [0,00) are easily seen to imply that 
(un + 1 - Un »0 on [0,00). The result now follows by induc­
tion. 

The fact that! Un I is bounded by H on [0,00) follows by 
a similar argument. It is clearly true for n = 0, and 
(H - Un + I ) satisfies 

H-un+1 = [1-Bun]~I[{H-un)B(H-un) 
+ Un B (H - Un + I ) ] . 

The assumption O<;u n <;H on [0,00) implies that 
H - Un + I >0 exactly as above. 

After we have established thatO<;u n <;un + I <;H, a proof 
of uniform convergence is a routine matter. 

Theorem 2: Let! Un I be as in Lemma 8. Then 
Un (z) r H (z) uniformly for z in any compact subset of [0, 00 ). 

Proof Let the set under consideration be denoted by S. 
Since! Un I is nondecreasing sequence bounded by Hand Sis 
closed, bounded; Un r U <;H on S. 

Now from (5) 

U = limun+ 1 = 1 + lim [u n+ IBun + unB(un+ 1 - un)]· 
n--oo n_oo 

Since Uz/(z + x))(u n + I - Un )(x) I is bounded by a a-integra­
ble function H and converges to zero pointwise, the Lebes­
gue dominated convergence theorem yields that 
B (un + 1 - Un )-+n~ao O. This and the fact that O<;un <;H im­
ply that unB (un + 1 - Un )-+n~ao 0 on S. By a similar argu­
ment it follows that 
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lim Un + 1 BUn = uBu. 

Thus U satisfies 

u(z) = [1 - (Bu)(z)] ~\ 

with I (Bu)(z) I < 1. Since u(z)<H{z) for ZE [0,1], and His the 
minimal solution [Proposition 1 (i)] u(z) = H on [0,1], imply­
ing that u{z) = [1 - (BH )(z)] - 1 on S. Therefore u{z) = H (z) 
on S. Also, ! Un (z) I is a nondecreasing sequence of contin­
uous functions, converging to a continuous function H. Con­
sequently, the convergence is uniform on S, by Dini's 
theorem. 

We have three sequences: ! Hn I, [Kn ], and! un], given 
by (2), (3) and Theorem 2, respectively, which converge mon­
otonically and uniformly to H. The convergence of 
! Hn J,! Kn ] was considered on [0,1]1-3, but, as above, it is 
sufficient to conclude the uniform convergence on S. The 

A A 

sequence [Hn] falls out of this category. Although [Hn] 
converges uniformly, it may not have any bound property. It 
is known that H>Kn >Hn on [0,1] (which implies the same 
on S) for each n if Ko = Ho = 0. 3 In the following we show 
that un is even closer to H. 

Proposition 2: Let ! un],! K n I be as in Theorem 2 and 
Eq. (3), respectively; then, for each n, H,un >Kn on [0,00). 

Proof With Uo = Ko = 0 one has that 1 = ul>K1 = 1. 
Now assume that Un >Kn· For n> I, (un + 1 - Kn + I) is given 
by 

Un+ 1 -Kn+1 
=un+IBun -Kn+IBKn +unB(un+ 1 -un) 

=(Un+ 1 -Kn+I)BKn +un+IB{un-Kn) 

+unB(un+ 1 -Un) 
= [1-BKn]~I[un+IB{un-Kn) 

+unB(un+ 1 -Un)] 

>0 

for un >Kn by assumption, Un + 1 >Un >0 from Lemma 8, and 
O<;BKn < 1 follows from O<;Kn <;un <;H. Thus 
(un + 1 - Kn + 1 »0 on S. The result now follows by induc­
tion. 
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We study the dynamical importance of vorticity, w2lp, assuming different upper limits on the 
relative shear, ale, for a general relativistic model with a content represented by a perfect fluid 
distribution with a linear equation of state. Adopting a very conservative point of view with 
respect to the values of the Hubble constant and the density parameters of matter and radiation, 
we obtain that either a/e > 7% or there was a bounce at some point in the past during the matter 
era if the present-day relative vorticity is (wle)o > 4%. Taking into account the latest results on 
singularities, the possibility of a bounce must be regarded from a local point of view. 

PACS numbers: 98.80. - k, 98.80.Dr 

INTRODUCTION 

Large-scale properties of our real universe are well de­
scribed by the standard Friedmann-Robertson-Walker 
(FRW) models, 1-3 which are relativistic models whose geom­
etry possesses homogeneity and isotropy and a content re­
presented by a perfect fluid. Also, these type of models can 
be characterized by a nonvanishing expansion (e> 0) and 
have no rotation, distortion, and acceleration 
(w = a = U = 0).4 In spite of the theoretical simplicity and 
observational evidence supporting this view, there has been a 
lot of work concerning more general cosmological models. 

We shall deal in this paper with models possessing vor­
ticity and, concretely, we shall assume that the present-day 
relative vorticity (wle)o > 4%. There are several reasons to 
relax the rigid assumptions of the standard picture. From a 
theoretical point of view, the FRW models are highly unsta­
ble: vorticity perturbationsS are amplified when one goes 
back in time. Also, the possible influence of vorticity on the 
expansion of the universe has animated many theoristsS

-
9 as a 

possibility to escape from the inevitable singularity ofFRW 
models through a bouncing point. Another interesting as­
pect is that the rotation of galaxies could be explained by the 
fact that they condensed out of a rotating universe. 10 From 
an observational point of view: direct observations II give 
very weak limits on the present-day vorticity, (wle)o S 1. 
Strong constraints can be inferred from upper limits on ani­
sotropies of the cosmic background radiation if one assumes 
perturbed FRW models. 12 

Our point of view is that observations do not rule out 
the possibility of using more general cosmological models 
that may not differ from the FRW ones from an observation­
al standpoint, but with a quite different metric. In any case, 
our position makes it possible to understand which state­
ments are geometry-dependent and which are not. 

We shall study in this paper the dynamical importance 
of vorticity in the past of the universe using, essentially, the 
equations derived from conservation of energy-momentum 
for a perfect fluid and the law governing the evolution of 
vorticity.4.5.9 The possibility of a bounce in a dust-filled uni­
verse is carefully examined using Raychaudhuri's equa­
tion, 13 and conclusions are drawn concerning the relevant 
physical quantities ale and wle. 

1. THE EVOLUTION OF VORTICITY 

A. Basic equations 

In general relativity (GR), the conservation of energy 
and momentum for a perfect fluid is expressed by the well­
known equations4

•
5.9 (we choose units such that 

c = 81TG = 1; a,b, . .. = 0,1,2,3) 

p+(p+p)e=o, (1) 

ua + (p + p)-Ih abp;b = 0, hab=gab + UaUb , (2) 

where U a is the average velocity of matter, p is the energy 
density, p is the isotropic pressure, e =u a;a is the expansion 
scalar, t =I;a U a for any tensor I, U a is the acceleration, and 
gab is the metric tensor. 

By defining the vorticity vector and the shear as usual, 

2wa:=:=rtbCdubUc;d' aab=ljta chb d(Uc;d + Ud;C) -!ehab , 
(3) 

and applying the Ricci identity to the velocity U a, one arrives 
at the propagation equation for w a along the flow lines of the 
fluid,4.5.9 

(4) 

Let us assume a barotropic equation of state for the 
fluidp = p( pl. Thus, substituting Ii a given by Eq. (2) into Eq. 
(4), one easily obtains 

h ab (;/ + [ie + (p + p)-I( P + p)'j w a = aabWb , (5) 

where we have taken into account Eq. (1). From Eq. (5) one 
arrives at the equation governing the evolution of the vorti­
city scalar, 

pn [ (p + p)R 5 w lj' 

= aab nanb , w= + (wawa)1I2 , na:=:=w-Iwa (6) 

whereR (x a) is definedbyRR -I = ie. Thus angular momen­
tum, L 0:: (p + p)R 5W, is conserved if aabnanb=O, i.e., the 
component of aab along the axis of rotation vanishes. 

By using comoving coordinates (ua = D~) and the vari­
able x=Ro R - I (hereafter a SUbscript ° will denote a pre­
sent-day value), the vorticity evolution equation (6) can be 
integrated in the form 
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(i) = (i)r}X5(p + p)O(p + p)-l 

xexp [ - 3 f dx(xll)-lCTabnanb ] . (7) 

On the other hand, considering the inequalities 

__ 2_ CT<CT bnanb<_2_ CT t:r== + (!CTabCT ab)l/2 
V3 a v3' 

that hold for any unit vector n a, one obtains for B> 0 and 
t < to 

x5(p + p)o(p + p)-I exp{ - 2v3 f ~ (~)} 
< :0 <X5(p + p)o(p + p)-l eXP{2V 3 f ~ (~)} . 

(8) 

The particular case of a linear equation of state 

p = n p, nE[O,l]=>p = POX31l + nl , 

implies the following bounds on (i) and (i)2 I p, which measures 
the dynamical importance of vorticity, 

x 2 - 3ne - a<~<x2 - 3nea, a=2v3 IX dx (!!...), (9) 
(i)o JI x B 

B. The dynamical importance of vorticity 

Let us assume that CTIB < (v3/2)ln - ~I, 

n#~, VtE[tl,to], tl<tO' ThenEq.(9)implies 

(10) 

{

(i) > (i)o for nE [O,n 
VtE[tl,to)~ ,(11) 

(i) < (i)o for nE (p ] 

i.e., the rotation was greater (or smaller) in the past. 
On the other hand, if we assume CTIB < (3v3/4)ln - ~I, 

n #~, VtE[tl,to], tl < to, Eq. (10) leads to 

(i)2 ( (i)2 ) E ( (i)2 ) -;;'-x>-
P pop 0 

VtE[tl,to)~ 
(E> 0) for nE[ O,~) 

(i)2 ( (i)2 ) _ E' ( (i)2 ) -<- x <-
P pop 0 

(12) 

(E' >0) for nEt p 1 

i.e., vorticity has been dynamically important in the past or 
not, depending on the equation state chosen to represent the 
content of the universe. 

Regarding our real universe, a semirealistic representa­
tion can be made by means of the particular equations of 
state p = 0 (matter era) and p = ! (radiation era). In these 
cases we have 

1. Casen=O 

OnchoosingCTIB<l/v3, VtE[tl,to], teq<tl<to 
(hereafter a subscript eq will refer to the equilibrium point, 
i.e., the point where the density of radiation and matter are 
the same), Eq. (9) leads to 
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VtE[tl,to)~l <~<X4, (13) 
(i)o 

i.e., if the relative distortion CTIB has been smaller than 57% 
between the equilibrium point and the present time, we can 
conclude that vorticity has been greater in the past. 

The condition CTIB < (l/4v3)(1 - E), EE(O,l), VtE[tl,tO]' 
t 1 < to, substituted in Eq. (10), gives 

VtE[tl,to)~l <XE« :2) ( :2 t-1 <X2 - E <X2, (14) 

i.e., vorticity was dynamically important in the past if the 
relative distortion has been smaller than 14%. As a conse­
quence of this analysis an interesting question arises: Can the 
dynamical effect of vorticity have produced a bounce in the 
past? We shall give an answer in the next section. 

2. Case n = 1/3 

On choosing 
CTIB < (l/2v3)(1 - E), EE(O,l), VtE[tl,teq ], tl < teq , Eqs. (9) 
and (10) lead to the following bounds: 

(i)eq R 

{

I < WE<~<W2 - E < w2 , w= Req 

VtE[tl,teq)~ 2 2-1 

W-4<W-212-EI«: )(: )eq <w- 2E <1, 

(15) 

i.e., if the relative distortion has been smaller than 28% be­
fore the equilibrium point then vorticity was greater in the 
past of this point but was not dynamically important. 

2. THE POSSIBLE BOUNCE OF A DUST-FILLED 
UNIVERSE 

A. Assumptions 

Let us consider the following hypothesis in (t l,tO],t I < to: 
(i) There is expansion, B> 0, (ii) the content can be represent­
ed by "dust," p = 0, (iii) 0 < CTIB«v3/12)(1 - E), EE(O,I). 

Obviously, for dust Eq. (2) gives Ii a = 0, i.e., the fluid 
lines are geodesics (though (i) #0 in general). Assumption (iii) 
leads to the bounds given by Eq. (14): 

x;;. l~XE« :2) ( :2 t-1 <X2 - E . (16) 

On the other hand, the equation governing the evolu­
tion of the expansion scalar for a dust is 

e+!B2+2(~_(i)2)+!p=0, (17) 

that is, a particular case of Raychaudhuri's equation. 13 

By defining the functiony=B 21 p, and using Eqs. (1) and 
(17), one arrives at the law 

: +X-I[I-12(~r]Y= _12x- 1(:2 - !), 
(18) 

where co moving coordinates and the variable x=Ro R -I 
have been introduced, where RR -I=!B. Equation (18) can 
be formally integrated in the form 
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Y=X- Iet[Yo-12 fdX(:2 - !)e- A
], 

A ==12 f dx X-
I
( ;y. 

B. A sufficient condition for a bounce 

(19) 

We mean by a bounce the possibility that there was a 
time tbE(tl,tO) such that the "radius of the universe" R 
reached a minimum value at this time, and the relative dis­
tortion was bounded, 0 < (O/O)b < 00 (hereafter a subscript b 
will refer to the bounce point). Obviously, a sufficient condi­
tion is 

(20) 

the second condition, 0 < 010 < 00, is trivially ensured under 
assumption (iii). The condition for a bounce can be rewritten, 
taking into account Eqs. (17) and (19), as 

(!i.-) >~. P b 4 
(21) 

Obviously, asyo=(O 21p)0 mustbe positive, a sufficient condi­
tion for the existence of such a bounce is 

3xb > l/fb dX( :2 _ !) 
xexp{ - 12 f dx x-

I
( ;Yl>o, (!i.-) >~. p b 4 

(22) 

C. Case (w2Ip)o>1 

If we assume a lower limit of25% on the present-day 
value of the vorticity-density ratio, Eq. (16) implies 

X> I=>( :2» ! XE> ! ; (23) 

thus the two inequalities given by Eq. (22) are trivially satis­
fied. Therefore, in a dust-filled universe, if a time to exists 
such that (w2Ip)0>! then 0> 0 and 0 <alO < Y/3/12 cannot 
be satisfied indefinitely in the past, i.e., either alO > 14% or 
there is a bounce at some point in the past. 

Next, we shall try to obtain upper limits on Xb depend­
ing on the value of Yo under the possibility of a real bounce. 
On the one hand, assumption (iii) implies 

(24) 

This, together with inequality (23), can be substituted into 
Eq. (19): 

x> l=>y<XS

-
I {yO - 12 f dX[ (:2 tXE - ! lx-'} . 

After a lengthy but easy calculation, one arrives at the 
inequality 
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X> l=>y < 3(1 - S)-I - 3(1 - s + c)-IXE + XS 
- I 

X [Yo - 3c(1-s)-1(1-s + e)-I) . 

From this last expression, if we assume 
yo<3c(1 - s)-I(l - s + e)-I, we obtain the bound 

x> 1=>y<3(1-s)-1 - 3(1-s+e)-lxE 

andasy 0 21p must be positive, 

XE < 1 + e(l _ S)-1 . 

(25) 

(26) 

In the opposite case, Yo > 3c( 1 - s) -I( 1 - s + e) - 1, Eq. (25) 
leads to the inequality 

x> l=>y < 3(1 - s + e)-I[ 1 + *(1 - s + c)Yo - XE] 

and analogously y > 0 implies 

(27) 

Summing up: Ifa time to exists such that (w2Ip)0>! for a 
dust-filled universe, then the assumptions 0> 0 and 
0< alO < 00 can be maintained in the past at most in 

XE[l,P +e(l-S)-ljc-l) 
for yo<3e(1 -s)-I(l -s + e)-I, 

XE[I,P +l(1-S+e)YolC I) 
for yo>3e(1-s)-1(1-s+e)-I. (28) 

These are very important upper limits on x that we will use 
from a physical point of view in Sec. 3. 

D. Case (w2/p)o < 1 
In this case, if the relative radiusx= [!(w2Ip)o- I]E 

can be reached in the past, Eq. (16) leads to 

( (2) > (!i.-) r > ~ , 
p x p 0 4 

> 1 

(29) 

i.e., we can always choose as an initial condition a lower limit 
of25% on the vorticity-density ratio unless the assumptions 
(i), (ii), or (iii) of Sec. 2A are dropped before. In principle there 
is a possible behavior such that these conditions can be satis­
fied, but the relative radius x is never reached, in this case the 
radius R reaches asymptotically a minimum value such that 
Xm < X. However, in this case there necessarily exists a point 
X 2 such that (;12=0; but then Raychandhuri's equation gives 
(w2lpb >! that can be used as an initial condition. 

3. APPLICATION TO OUR REAL UNIVERSE 

The results obtained in the last section allow a maxi­
mum relative radius Xmax ' given by formulas (28), up to 
which the conditions (i) 0> 0, (ii) dust era, and (iii) 
0<aIO«Y/3/12)(1 - c), eE(O,l), can be maintained. Of 
course, it is very interesting to know whether this upper limit 
Xmax lies in the dust era, characterized by the upper bound 

Xeq' 

A. Assumptions on observational parameters 

We shall adopt a conservative point of view. Current 
values of the Hubble constant H o, in km s - 1 Mpc - I, are in 
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the range H oE[ 40, 100], to which corresponds the normalized 
value 

(30) 

A standard value '4 usually taken in the literature is h = 0.5. 
Observations of visible mass 15. 16 give a firm lower limit 

on the density ofmatter:Pmo > 4X 1O- 31h 2(g cm- 3
), which 

corresponds to the following bound on the density 
parameter: 

(31) 

Also the cosmological origin of the cosmic background radi­
ation gives a lower-limit form on the density of radiation: 
PrO> 4.5 X 1O- 34(g cm -3), which corresponds to the density 
parameter 

ilr > 2.25x 1O- 5h -2. (32) 

The equilibrium point is given by the theoretical 
expression 

then according to Eqs. (30) and (32) 

(33) 

Xeq <4.5X 105ilm . (34) 

On the other hand, Yo=( 0 21 p)o = 3il ;;; I, so inequality 
(31) leads to 

Yo<150. (35) 

B. Results 

Taking into account the upper limits given by Eqs. (31) 
and (35), the last paragraph of Sec. 2B can be rewritten as 
follows: If a time to exists such that 
(wlO )0;;;'(ilm /12)'/2 > 4% for a dust-filled universe, assump­
tions 0>0 and 0<0/0«v3/12)(1 - E) can be maintained 
in the past at most in 

for ilm ;;;'E- ' (1 ~s)(l-s+E)' 

XE [ 1,11 + 50( 1 - S + EW ) l
XE[l,11 +E(l-s)-'je-') 

for ilm <E-'(l - s)(l - S + E). (36) 
Let us choose as an indicative value 
E=0.5 (i.e., 0 < % < v3/24- 7%). Then the correspond­
ing intervals are 

{
XE[ 1,2.4) 

XE[ 1,5311) 

for il;;;.2.7, 

for il<2.7. 
(37) 

It is remarkable that the two upper limits, up to which the 
conditions 0 > 0, 0 < (TIO < 7% can be maintained, are below 
the upper limit obtained for the equilibrium point in the most 
unfavorable case because Eq. (34) leads to Xeq < 9 X 103 for 
ilm = 0.02. Thus, if the present-day relative rotation 
(wlO 10> 4%, either (TIO > 7% or there was a bounce at some 
point in the past during the matter-dominated era! 

The last strong conclusion has been obtained under the 
crucial hypothesis (wIO)o > 4%; however, if 
(wlO 10 < (ilm 112)1/2 we have seen in Sec. 2D that the sign of 
this inequality can be reversed once the universe reached the 
relative radiusx= [(ilm /12)(wI0 )0- 2y-'. For the indicated 
value E=O. 5 if one wishes the x value to lie below the equilib­
rium point, the following inequality must be satisfied: 
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(38) 

which is a lower limit to obtain the above conclusion with the 
simple analysis we have made. 

Of course, this kind of analysis does not allow us to 
draw any physically interesting conclusion for low densities 
if E is chosen to be close to zero (0 < % < v3/12-14%), 
because then the upper limit given by Eq. (36) goes to 
infinity. 

4. CONCLUSIONS 

We have carefully examined the law governing the evo­
lution of vorticity for general relativistic models with linear 
equations of state, assuming different upper limits on the 
relative shear, and we have emphasized the possible dynami­
cal importance of vorticity in the past of the universe. This 
suggests, the possibility of a bounce at some point in the past 
with a finite relative distortion. 

Next, we have analyzed such a possibility for a dust­
filled universe and have found that, if the present-day rela­
tive vorticity (wIO)o > 4%, either % was greater than a 7% 
at some point in the past or there was a bounce point. The 
two possibilities lie in the matter-dominated era. 

Regarding the well-known theorems on singularities, 
the latest results 17-1'1 seem to indicate that, for the equations 
of state we have assumed, there must be a true curvature 
singularity. Thus the bounce must be local unless the space­
time be very pathological. 

It might be, as suggested by some authors, 17.20 that the 
singularity consisted of a small region of space-time with 
most of the matter avoiding it. Nevertheless, our opinion is 
that the occurrence after the equilibrium point of a local 
bounce, but extended to a very large region of space-time, 
does not seem plausible. If that is so, our present understand­
ing about primordial element formation, the evolution of 
galaxies, cosmic background radiation, etc., could be highly 
affected. For instance, the possibility of such an extended 
bounce after decoupling (the point where the radiation be­
came transparent to the matter) could imply that stars, clus­
ters, and galaxies were in existence before that bounce point 
and thus their age could be very much greater than the stan­
dard observational values. Regarding the existence of a 
bounce in the radiation era, let us remark that we cannot 
extend our analysis to this epoch because pressure gradients 
must be incorporated into the Raychaudhuri equation. We 
want to stress that, in general, all the observations explained 
in the standard picture of the universe must be carefully re­
examined and also possible observational consequences 
explored. 

If one rejects the occurrence of a bounce after the equi­
librium point, one can conclude that (TIO has been greater 
than 7% in the past if(wIO)o > 4%. Of course, if one assumes 
from the beginning that (TIO< 1 during the matter era, this 
necessarily implies (wIO)o < 4% from a theoretical stand­
point. Let us remark that direct observations II give poor 
upper limits on the relative rotation, (wIO)o S 1, and indirect 
bounds obtained through measurements ofthe cosmic back­
ground radiation (anisotropies of the observed temperature) 

J.L.Sanz 1735 



                                                                                                                                    

are inferred with the use of approximations to Friedmann 
models. 12 However, our analysis leads one to wonder if the 
standard picture of the universe, i.e., a perturbed Friedmann 
model, is the only one allowed by observations. In principle, 
the use of general cosmological solutions that may not differ 
from the Friedmann ones from an observational standpoint, 
the metric being quite different, is an open possibility from a 
theoretical and observational point of view. 
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Erratum: Interpolation theory and refinement of nested Hilbert spaces [J. 
Math. Phys. 22, 2489 (1981)] 

J. -Po Antoine 
Institut de Physique Theorique, Universite Catholique de Louvain, B-J348 Louvain-la-Neuve, Belgium 

W. Karwowski8
) 

Centre de Physique Theorique, CNRS, Luminy, F-13288 Marseille, Cedex 2, France 

(Received 7 May 1982; accepted for publication 14 May 1982) 

PACS numbers: 02.30.Sa, 02.30.Tb, 99.10. + g 

The following references were omitted: 
7 A. Grossmann, "Elementary Properties of Nested Hilbert 
Spaces," Commun. Math. Phys. 2, 1-30 (1966). 

8E. Nelson, "Construction of quantum fields from Markoff 
fields," J. Funct. Anal. 12,97-112 (1973). 

9E. Nelson, "The free Markoff field," J. Funct. Anal. 12, 
211-227 (1973). 

lOW. Karwowski, "On Borchers class of Markoff fields," 

Proc. Camb. Phil. Soc. 76,457-463 (1974). 
liE. Nelson, "Analytic vectors," Ann. Math. 70, 572-615 

(1959); R. Goodman, "One parameter groups generated by 
operators in an enveloping algebra," J. Funct. Anal. 6, 
218-236 (1970); B. Nagel, "Generalized eigenvectors in 
group representations," in Studies in Mathematical Phy­
sics, edited by A. O. Barut (Reidel, Dordrecht, 1973), pp. 
135-154. 

Erratum: Ground state energy bounds for potentials Ixl v [J. Math. Phys. 23, 64 
(1982)] 

R. E. Crandall and Mary Hall Reno 
Department of Physics, Reed Col/ege, Portland, Oregon 97202 

(Received 16 March 1982; accepted for publication 16 April 1982) 

PACS numbers: 03.65.Ge, 02.30.Hq, 02.60.Lj, 99.10. + g 

In Sec. III, the ground state estimate for the quartic 
potential should read 1.060 362 090 484 1820···. The origi­
nal text is in error at the sixth decimal digit. 
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Erratum: Linearization stability of Einstein equations coupled with self· 
gravitating scalar fields [J. Math. Phys. 22, 343 (1981)] 

R. V. Saraykar and N. E. Joshi 
Department of Mathematics, Nagpur University, University Campus, Nagpur-440 010, India 

(Received 18 May 1982; accepted for publication 28 May 1982) 

PACS numbers: 04.40. + c, 99.10. + g 

Tftv should be Tftv = 2 {3(2¢>.ft ¢>,v - gftv(¢>,p¢>'P 
+ m 2¢> 2)). The remarks in the introductory paragraph re­

garding 1T 0 mesons and C fields are not valid, as the lineari­
zation stability theorem is true only for massless scalar 
fields. Thus Brans-Dicke scalar fields are covered. a should 
be + 4{3Y/.lg and K F should be 213(y. + A (¢> ))f.lg (positivity 
of energy). 

In Eq. (4), in the first coordinate, the sign before 
{3N(i¢ - gA (¢> ))f.lg should be negative, whereas in the sec­
ond coordinate, the signs of both the terms should be re­
versed. The last coordinate should be +. Corresponding 
changes should be made in Eqs. (7) and (9). In the expression 
for Dg KF . h before Eq. (10), the sign of{3(24) - gA (¢>)). h 
should be negative. A corresponding change should be made 
in the expression before Eq. (10) and Eq. (10) itself; and simi­
larly in Eq. (11), and before it. Signs in the expression for 
D", K F • ¢ should be reversed. Sign changes as mentioned 
above should be made in the equations before Eqs. (13) and 
(14). 

These cause further changes in the calculations in the 
proof of linearization stability: Equations (17) and (18) 
should be written according to Eq. (4). With corresponding 
changes in further calculations, Eq. (21) now reads 

(.:iN )f.lg + fiN (2y. - m 2¢> 2)f.lg - ! tr(L x 1T) = O. 

Corresponding changes are in order in later expressions. 
Thus we can conclude "N is constant" only if m = O. In 
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other words, linearization stability is implied only for mass­
less scalar fields. This conclusion is consistent with the fact 
that the energy-momentum tensor for the scalar fields 
satisfies the physically reasonable strong energy condition 
only when m = O. If m :;60, as in Ref. I of this erra-
tum, Tab WaW b - ~Wa WaT = (¢>,a W a)2 -! m2¢> 2. Thus, 
¢>.a wa is exactly r when W a = Z~, the forward pointing 
unit timelike vector normal to the hypersurface ~ 
[Z ~ = (1/ N, Xii N) in terms oflapse and shift]. This can be 
shown easily by using the evolution equation for ¢>. Thus the 
right-hand side ofthe above equation is precisely. 
r 2 - ~ m 2¢> 2 which is involved in the elliptic equation (21). 
However, for 1T mesons (m :;60), although the energy-mo­
mentum tensor may not satisfy the strong energy condition 
at every point, this does not affect the physically reasonable 
convergence of timelike geodesics over distances greater 
than 10- 12 cm. (For detailed argument see Ref. 1.) Thus, 
expecting linearization stability for coupled gravitational 
and massive scalar fields would be physically unreasonable. 

The other theorems in the paper are valid for m:;6 0 
since they are consequences ofthe evolution equations writ­
ten in the adjoint form. 

IS. Hawking and G. Ellis, Large Scale Structure o/Space-Time (Cambridge 
U. P., New York, 1973), pp. 95 and 96. 
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